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Supplementary Notes
Supplementary Note 1. Calculation of electrochemical surface area (ECSA)
CV scan was performed in a non-Faradic potential range (e.q., 1.06 ~ 1.2 VRHE) at different scan rates (5-30 mV/s) in a 0.1M HClO4 electrolyte to estimate double-layer capacitance (Cdl) of catalysts. The difference between anodic and cathodic currents (J = Janodic-Jcathodic) at the middle of potential (1.13 VRHE) was plotted against the scan rate, where the slope corresponds to twice of Cdl of the catalyst. The equation used for calculating Cdl is as follow,
Cdl =  =  =         			 (8)
where, ja and jc represent the anodic and cathodic current densities, respectively, recorded at the midpoint of potential, 𝜐 is a scan rate. The ECSA of the samples were attained from the measured Cd, in which a flat surface area of 1 cm2 in the catalyst is approximately corresponding to a specific capacitance of about 40 μF cm-2. Then, the ECSA of catalyst can be expressed using the following equation.
ECSA =                   (9)

Supplementary Note 2. Calculation of Ir mass activity
For the calculation of Ir mass activity, a current at an overpotential of 250 mV was divided by the mass of Ir in the samples, determined from the ICP-OES results. The Ir mass activity was then calculated using the following equation.
         		(10)

Supplementary Note 3. Calculation of turnover frequency (TOF) 
TOFs of the samples for OER was calculated using the following equation18-21,
                     (11)
, where j is a current density at an overpotential of 250 mV, NA is the Avogadro number (6.02 x 1023), F is the Faradaic constant (96,458 C mol-1), and Ns is the concentration of active sites (mol cm-2). The Ns was calculated via CV measurements using a scan rate of 10mV/s, where the oxidative area currents are directly related with the number of active sites. As the oxidation of Ir3+ to Ir4+ is a single electron transfer reaction, the number of electrons for oxidative currents is equal to the number of active sites.

Supplementary Note 4. Calculation of activation energy (Ea)
Activation energies of the samples were obtained from the LSV curves measured at different temperature of 27, 37, 47and 57°C. The Ea was then determined using the Arrhenius equation, 
 					(12)
, where j is a current density at an overpotential of 250 mV, T is the temperature (K), R is the ideal gas constant (8.314 J·K-1mol-1), respectively.

Supplementary Note 5. Calculation of Faradaic efficiency (FE) calculation using gas chromatography (GC)
Faradaic efficiency (FE) of the samples for OER was calculated using a lab-fabricated H-Cell connected to GC equipment (ChroZen GC; Youngin Chromass Corp.). Chronopotentiometry was performed at 100 mAcm-2 under acidic media, while a thermal conductivity detector (TCD) was utilized to quantify the evolved oxygen gas during OER. Of note, calibration curves were attained using the O2 standard gas (0.5, 1, and 2 cmol/mol) to convert peak areas to moles of O2. Faradaic efficiency (FE) was obtained using the following equation,
FE(%) =  =  =    		(13)
, where I, t, n, z, Q and F are the current (A), time (s), the amount of gas measured (mol), 4 for OER, total charge, and the Faradaic constant (96458.33C mol-1)

Supplementary Note 6.  Calculation of stability number (S-number)
S-number was determined from the amount of dissolved Ir during chronopotentiometry at 100 mAcm-2 under acidic media. The electrolytes were collected at different time intervals, where the dissolved Ir was determined by inductively coupled plasma-mass spectroscopy (ICP-MS). The S-numbers of samples were calculated using the below equation,
S-number = 			          (14)
,where nO2 is the moles of oxygen evolved during OER, and ndisolved Ir is the moles of Ir in the electrolyte after OER for specific time.
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Supplementary Figure 1. Bulk structure of c-Ir, h-Ir.
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Supplementary Figure 2. FE-SEM images of (a) titanium substrate, (b) s-Ni, (c) s-Ir without citric acid, and (d) s-Ir with citric acid.
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Supplementary Figure 3. FE-SEM images of (a) c-Ir(Ni) and (b) h-Ir(Ni,Re).
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Supplementary Figure 4. The OER polarization curves for Ir(Ni,Re) with (a) different Ir amounts, (b) different Ni amounts, and (c) different Re amounts. (d) Reproducibility test for the Ir(Ni,Re) with the optimal Ir, Ni, Re content.
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Supplementary Figure 5. XRD pattern of h-Ir(Ni,Re)22.
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Supplementary Figure 6. (a) High angle annular dark field-STEM and (b) bright field-STEM image of for the cross section of as-prepared c-Ir(Ni) without dealloying process.


[image: 스크린샷, 텍스트, 다채로움, 직사각형이(가) 표시된 사진

자동 생성된 설명]
Supplementary Figure 7. (a) Dark field-STEM image of as-prepared c-Ir(Ni) without dealloying process. The inset shows quantitative elemental analysis for SEM-EDX spectra. STEM-EDX mapping images of c-Ir(Ni) for (b) Ni, (c) Ir, (d) overlay maps.
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[bookmark: _Hlk161068011]Supplementary Figure 8. (a-d) Cross-sectional BF-STEM images of as-prepared c-Ir(Ni) without dealloying process, (e) corresponding SADP, and (f, g) HR-TEM image with the inset of the FFT image.
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Supplementary Figure 9. (a) High angle annular dark field-STEM and (b) bright field-STEM image of the cross section of as-prepared h-Ir(Ni,Re) without dealloying process.
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Supplementary Figure 10. (a) Dark field-STEM image of as-prepared h-Ir(Ni,Re) without dealloying process. The inset shows quantitative elemental analysis for STEM-EDX spectra. STEM-EDX mapping images of h-Ir(Ni,Re) for (b) Ni, (c) Re, and (d) Ir.
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Supplementary Figure 11. (a) TEM images of c-Ir(Ni) after 100 h OER at 300mAcm-2. (b) SADP of c-Ir(Ni) after 100 h OER at 300mAcm-2.. (c, d) HR-TEM images of c-Ir(Ni) after 100 h OER at 300mAcm-2 revealing a cubic Ir phase. (e) STEM-EDX mapping images of the post-OER c-Ir(Ni) for Ni, Ir, and O, respectively. The inset shows quantitative elemental analysis for SEM-EDX spectra.
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Supplementary Figure 12. (a, b) Dark field-STEM image of post-OER c-Ir(Ni). The inset shows quantitative elemental analysis for STEM-EDX spectra. STEM-EDX mapping images of c-Ir(Ni) for Ni, O, and Ir. 
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Supplementary Figure 13. (a) High angle annular dark field and (b) bright field cross sectional STEM images of post-OER c-Ir(Ni).
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Supplementary Figure 14. (a) TEM images of h-Ir(Ni,Re) after 100 h OER at 300mAcm-2. (b) SADP of h-Ir(Ni,Re) after 100 h OER at 300mAcm-2. (c, d) HR-TEM images of h-Ir(Ni,Re) after 100 h OER at 300mAcm-2 revealing a hexagonal Ir phase.
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Supplementary Figure 15. (a, b) Dark field-STEM image of post-OER h-Ir(Ni,Re). The inset shows quantitative elemental analysis for STEM-EDX spectra. STEM-EDX mapping images of post-OER h-Ir(Ni,Re) for O, Re and Ir.
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Supplementary Figure 16. (a) High angle annular dark field and (b) bright field cross sectional STEM images of post-OER h-Ir(Ni,Re).
[bookmark: _Hlk161070846]
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Supplementary Figure 17. HR-TEM images of h-Ir(Ni,Re) after 100 h OER at 300 mA cm-2 showing the IrO2 tetragonal phase is persistent.
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Supplementary Figure 18. Atomic-scale ABF-STEM image of IrOx phase in h-Ir (Ni, Re) after surface reconstruction.
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Supplementary Figure 19. (a) Dark field-STEM image of one-dimensional rod-like grains of post-OER h-Ir(Ni,Re). STEM-EDX mapping images of post-OER h-Ir(Ni,Re) for (b) Ni, (c) O, (d) Re and (e) Ir. (f) Quantitative elemental analysis for SEM-EDX spectra.
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Supplementary Figure 20. Morphology of self-standing (a) s-Ni and (b) s-Ir.
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Supplementary Figure 21. The OER polarization curves for catalysts over a wide voltage range.



Supplementary Figure 22. Tafel plots of c-Ir(Ni) and h-Ir(Ni,Re) before and after OER. 



Supplementary Figure 23. Nyquist plots (Z´ vs -Z´´) of c-Ir(Ni), h-Ir(Ni,Re), and s-Ir.



Supplementary Figure 24. Current density difference at a middle of potential in cyclic voltammetry curves (Fig. S23), where the slope is proportional to a double layer capacitance.
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Supplementary Figure 25. CV Scans for calculating Cdl of (a-c) c-Ir(Ni), h-Ir(Ni) and IrO2 , respectively, measured at the scan rates of 5, 10, 15, 20, 25 and 30 mV s-1.




Supplementary Figure 26. Comparison of turn over frequency for h-Ir(Ni,Re), c-Ir(Ni), and a benchmark IrO2 catalysts at an overpotential of 250 mV.
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Supplementary Figure 27. (a) CV curves of electrocatalysts where (b) the oxidation peak is employed for area integration to calculate the surface-active sites of electrocatalysts. (c) TOFs of electrocatalysts for acidic OER as a function of overpotential.
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Supplementary Figure 28. OER polarization curves measured at various temperatures for (a) c-Ir(Ni), (b) h-Ir(Ni,Re) and (c) IrO2 ,respectively.




Supplementary Figure 29. Activation energy for the acidic OER at an overpotential of 250 Mv.
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Supplementary Figure 30. (a) Mass variations of c-Ir(Ni) and h-Ir(Ni,Re) after different electrodeposition times. (b) Comparison of OER performance of the samples prepared with different deposition time.




Supplementary Figure 31. Faradaic efficient of h-Ir(Ni,Re) calculated by measuring evolved O2 gas amounts during OER using gas-chromatography.
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Supplementary Figure 32. FE-SEM images of (a) c-Ir(Ni) and (b) h-Ir(Ni,Re) after OER (CP at 300 mA cm-2 for 100 hrs).
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Supplementary Figure 33. Chronopotentiometry of s-Ir at 500mAcm-2 (without IR-compensation).
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Supplementary Figure 34. Re 4f XPS spectra of h-Ir(Ni,Re) and post-OER h-Ir(Ni,Re) in acidic electrolyte.


[image: 스크린샷, 라인, 보라색, 예술이(가) 표시된 사진

자동 생성된 설명]
Supplementary Figure 35. The first derivative XANES spectra of Re L3-edges.

[image: ]
Supplementary Figure 36. Ni 2p XPS spectra of c-Ir(Ni) , h-Ir(Ni,Re) and post-OER h-Ir(Ni,Re) in acidic electrolyte.
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Supplementary Figure 37. XANES spectra of O K-edge for c-Ir(Ni), post-OER c-Ir(Ni), h-Ir(Ni,Re) and post-OER h-Ir(Ni,Re). 
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Supplementary Figure 38. XANES spectra of O K-edge for (a) c-Ir(Ni) and h-Ir(Ni,Re), (b) post-OER c-Ir(Ni) and h-Ir(Ni,Re). The marked peak area is related to the O 1s to O 2p – M 5d (528 – 530 eV) transition.
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Supplementary Figure 39. Side view of atomic configurations for metallic Ir slab models. (a) (100), (110), and (111) surfaces in the cubic structure. (b) (0001), (101 ̅0), and (112 ̅0) surfaces in the hexagonal structure.


[image: ]
Supplementary Figure 40. Pourbaix diagram for metallic Ir surfaces. (a-c) (100), (110), and (111) surfaces, respectively.
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Supplementary Figure 41. Schematic illustration of the different OER reaction pathway, including (a-c) AEM, OPM and LOM, respectively.
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Supplementary Figure 42. Atomic configurations of OER intermediates adsorbed on Ir (110) surface following AEM. The cyan, red, and white balls represent Ir, O, and H atoms, respectively.
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Supplementary Figure 43. (a) High angle annular dark field-STEM and (b) bright field-STEM images for the post-OER h-Ir(Ni,Re).
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Supplementary Figure 44. Top view and side view of optimized IrO2 (110) structure. Color codes are the same as those in Figure S42.
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[bookmark: _Hlk161943105]Supplementary Figure 45. Re doping formation energy. Color codes are the same as those in Figure S42. The aquamarine ball represents Re atom.
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Supplementary Figure 46. Cross-sectional HAADF-STEM image of post-OER h-Ir(Ni,Re). (a) low-magnification HAADF-STEM, (b) high-resolution HAADF-STEM image with viewed along the [010]-zone axis and (c) enlarged HAADF-STEM image with line profiles for Ir atomic intensity at marked regions in (c). The cross-sectional HAADF-STEM image of post-OER c-Ir(Ni). (d) low-magnification HAADF-STEM, (e) high-resolution HAADF-STEM image with viewed along the [010]-zone axis and (f) enlarged HAADF-STEM image with line profiles for Ir atomic intensity at marked regions in (f).
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Supplementary Figure 47. Optimized atomic configurations of IrO2 (110) with Ir vacancies. Color codes are the same as those in Figure S42.
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Supplementary Figure 48. Pourbaix diagram of IrO2 (110) surfaces.
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Supplementary Figure 49. Bader charge analysis for IrO2 (110) and Re-IrO2 (110) surfaces. The cyan, red, and aquamarine balls represent Ir, O, and Re atoms, respectively. 
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Supplementary Figure 50. The integrated crystal orbital Hamilton population (ICOHP) of IrO2 (110) surfaces.
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Supplementary Figure 51. Calculated charge-transfer energies of IrO2 (110) surfaces.
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Supplementary Figure 52. Projected density of states (PDOS) of O 2p, Ir 5d, and Re 5d for IrO2 (110) surfaces. The gray dashed line represents the Fermi level, and the vertical bold-red line indicates the O 2p-band center.
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Supplementary Figure 53. LSV polarization curve of h-Ir(Ni,Re) and Pt/C for HER using a scan rate of 5 mV s-1 in 0.1 M HClO4. 
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Supplementary Figure 54. (a) Two-electrode polarization and (b) chronopotentiometry curves for 
overall water splitting measured in 0.1 M HClO4.
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Supplementary Figure 55. LSV polarization curves of h-Ir(Ni,Re) for OER and HER in (a, d) 1M KOH, (b, e), 1M KOH + 0.5M NaCl and (c, f) 1M PBS electrolytes using a scan rate of 5 mV s-1.


Table S1. Calculated lattice constant and cohesive energy of metal Ir, consistent with prior studies.
	
Method
	
Structure
	Lattice constant
	|Ecoh| (eV/atom)
	
Reference

	
	
	a0 (Å)
	c(Å)
	
	

	GGA
	cubic
	3.87
	-
	7.35
	This work

	GGA
	hexagonal
	2.75
	4.47
	7.28
	This work

	LDA
	cubic
	3.85
	-
	9.35
	23

	LDA
	cubic
	3.86
	-
	-
	24

	LDA
	cubic
	3.81
	-
	10.31
	25

	Exp.
	cubic
	3.84
	-
	-
	26

	Exp.
	cubic
	3.84
	-
	-
	27

	Exp.
	cubic
	-
	-
	6.94
	28

	Exp.
	cubic
	3.83
	-
	-
	29




Table S2. Elemental compositions (at%) of Ir, Ni, and Re in c-Ir(Ni) and h-Ir(Ni,Re) before and after OER.
	Samples
	Ir (At%)
	Ni (At%)
	Re (At%)

	c-Ir(Ni)
	16.6
	83.4
	N.A

	c-Ir(Ni) after OER
	99.3
	0.7
	N.A

	h-Ir(Ni,Re)
	13.47
	81.14
	5.39

	h-Ir(Ni,Re) after OER
	99
	0.3
	0.7





Table S3. Crystallographic information on experimental d-spacing and degree to spot #1 from the FFT pattern corresponding to the HR-TEM micrographs.
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	Spot#
	d-value (nm)
	Degree to Spot #1

	
	#1 
	2.219
	0.00

	
	#2 
	1.620
	44.6

	
	#3 
	2.234
	89.1





Table S4. Theoretical crystallographic data for IrO2 phase, Ir-hexagonal phase and Ir-cubic phase.
	[bookmark: _Hlk171540182]Name: IrO2 phase
Crystal system: Tetragonal
Space group: P 42/mnm
	Name: Ir phase
Crystal system: Hexagonal
Space group: P 63/mmc
	Name: Ir phase
Crystal system: Cubic
Space group: Fm-3m

	h k l
	d-value (Å)
	h k l
	d-value (Å)
	h k l
	d-value (Å)

	110
	3.186
	100
	2.38
	111
	2.241

	101
	2.586
	002
	2.23
	200
	1.940

	200
	2.253
	101
	2.10
	220
	1.372

	111
	2.243
	102
	1.63
	311
	1.170

	210
	2.015
	110
	1.38
	222
	1.120

	211
	1.699
	103
	1.26
	
	

	220
	1.593
	
	
	
	

	002
	1.579
	
	
	
	

	310
	1.425
	
	
	
	





Table S5. Comparison of OER activity of h-Ir(Ni,Re) with previously reported catalysts under an acidic environment.
	Samples
	Overpotential(mV)
@10mAcm-2
	Stability@10mAcm-2
(S-number)
	Electrolyte
	References

	h-Ir(Ni,Re)
	210
	475h@500mAcm-2
(3.47 x 105)
	0.1M HClO4
	This work

	SrIrO3

	243
	20h
(6 x 103)
	0.05M H2SO4
	30

	Lu1.25IrOxOHy
	295
	11h
1 x 105
	0.1M HClO4
	31

	DNP-IrNi
	248
	50h
	0.5M H2SO4
	32

	IrOx-50- AC/Ti 
	256
	190h
(2.3 x 105)
	0.1M HClO4
	33

	SZIO
	240
	30h
	0.1M HClO4
	34

	INC-50
	285
	5.55h
	0.1M HClO4
	35

	Ir-doped WO3
	258
	12h@100mAcm-2
	0.5M H2SO4
	36

	IrO2/GCN
	276
	4h@20mAcm-2
	0.5M H2SO4
	37

	W-Ir-B
	300
	120h@100mAcm-2
2.49 x 105
	0.5M H2SO4
	38

	IrO2 NN-L
	313
	2h
	1M H2SO4
	39

	Li-IrOx
	290
	70h
	0.1M HClO4
	40

	Ir@WO3-x(H2)
	280
	110h
	0.5M H2SO4
	41

	Ag1/IrOx SAC
	224
	50h
	0.5M H2SO4
	42

	Ir-Co3O4
	236
	30h
	0.5M H2SO4
	43

	Ir/CuTiONx/C
	280
	N.A
(7.8 x 104)
	0.1M HClO4
	44

	La3IrO7-SLD
	296
	16.67
	0.1M HClO4
	45

	PN-IN frame/C
	308
	5h
	0.1M HClO4
	46

	α-HxIrO3
	245
	12h
	0.5M H2SO4
	47

	IrO2@TaB2
	288
	130h
(5.2 x 104)
	0.1M HClO4
	48

	3D Ir superstructure
	270
	8h
	0.1M HClO4
	49

	SrIr2O6
	303
	300h
	0.1M HClO4
	50

	UF-Ir/IrOx
	299
	200h
	0.5M H2SO4
	49





Table S6. Changes in overpotential over time for c-Ir(Ni), h-Ir(Ni,Re) and IrO2 in Figure 2d.
	Samples
	Stability
(@ current density)
	Initial overpotential (V)
	Final overpotential (V)

	c-Ir(Ni)
	100h  (@300mAcm-2)
	1.33
(without iR correction)
	1.29
(without iR correction)

	
	92h   (@500 mAcm-2)
	2.00
(without iR correction)
	2.71
(without iR correction)

	h-Ir(Ni,Re)
	100h  (@300mAcm-2)
	1.21
(without iR correction)
	1.14
(without iR correction)

	
	475h  (@500mAcm-2)
	1.91
(without iR correction)
	1.91
(without iR correction)

	IrO2
	46h   (@10mAcm-2)
	0.300
(with iR correction)
	0.89
(with iR correction)




Table S7. XPS results of the c-Ir(Ni), c-Ir(Ni) after OER, h-Ir(Ni,Re), h-Ir(Ni,Re) after OER samples. Peaks are calibrated with reference of carbon 1s.
	Samples
	Position (eV)
	Area (a.u.)
	Atomic percentage (%)

	Ni0 2p3/2
(eV)/(at.%)
	c-Ir(Ni)
	852.76
	1103.28
	12.17

	
	h-Ir(Ni,Re)
	853.39
	278.31
	3.36

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Ni2+ 2p3/2
(eV)/(at.%)
	c-Ir(Ni)
	855.67
	2357.85
	26.00

	
	h-Ir(Ni,Re)
	856.07
	2264.25
	27.32

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Ni 2p3/2
satellite
(eV)/(at.%)
	c-Ir(Ni)
	860.68
	2250.60
	24.82

	
	h-Ir(Ni,Re)
	861.37
	2627.78
	31.70

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Ni0 2p1/2
(eV)/(at.%)
	c-Ir(Ni)
	870.11
	491.51
	5.42

	
	h-Ir(Ni,Re)
	871.53
	121.66
	1.47

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Ni2+ 2p1/2
(eV)/(at.%)
	c-Ir(Ni)
	873.60
	1076.45
	11.87

	
	h-Ir(Ni,Re)
	873.69
	915.96
	11.05

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Ni 2p1/2
satellite
(eV)/(at.%)
	c-Ir(Ni)
	879.22
	1788.86
	19.73

	
	h-Ir(Ni,Re)
	879.55
	2081.14
	25.11

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Re0 4f7/2
(eV)/(at.%)
	h-Ir(Ni,Re)
	40.70
	6309.37
	23.0

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Re4+ 4f7/2
(eV)/(at.%)
	h-Ir(Ni,Re)
	41.80
	1910.71
	7.0

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Re7+ 4f7/2
(eV)/(at.%)
	h-Ir(Ni,Re)
	45.86
	4560.58
	16.6

	
	h-Ir(Ni,Re)
after OER
	47.93
	8732.83
	50.7

	Re 4f7/2
Satellite
(eV)/(at.%)
	h-Ir(Ni,Re)
	46.86
	1461.03
	5.3

	
	h-Ir(Ni,Re)
after OER
	48.79
	2123.78
	12.3

	Re0 4f5/2
(eV)/(at.%)
	h-Ir(Ni,Re)
	43.07
	5794.16
	21.1

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Re4+ 4f5/2
(eV)/(at.%)
	h-Ir(Ni,Re)
	44.22
	2287.70
	8.3

	
	h-Ir(Ni,Re)
after OER
	N.A
	N.A
	N.A

	Re7+ 4f5/2
(eV)/(at.%)
	h-Ir(Ni,Re)
	48.16
	3913.81
	14.3

	
	h-Ir(Ni,Re)
after OER
	50.31
	5557.27
	32.3

	Re 4f5/2
Satellite
(eV)/(at.%)
	h-Ir(Ni,Re)
	49.19
	1208.14
	4.4

	
	h-Ir(Ni,Re)
after OER
	52.01
	801.278
	4.7

	O 1s
O-H
(eV)/(at.%)
	c-Ir(Ni)
	529.11
	10449.11
	6.4

	
	c-Ir(Ni)
after OER
	528.78
	27052.13
	13.0

	
	h-Ir(Ni,Re)
	529.73
	9395.98
	7.9

	
	h-Ir(Ni,Re)
after OER
	529.68
	9764.193
	6.3

	O 1s
OL
(eV)/(at.%)
	c-Ir(Ni)
	530.98
	111778.06
	68.3

	
	c-Ir(Ni)
after OER
	531.11
	74912.08
	36.0

	
	h-Ir(Ni,Re)
	531.47
	83546.62
	69.9

	
	h-Ir(Ni,Re)
after OER
	531.01
	72478.59
	46.4

	O 1s
VO
(eV)/(at.%)
	c-Ir(Ni)
	532.17
	41313.19
	25.3

	
	c-Ir(Ni)
after OER
	531.28
	105936.11
	51.0

	
	h-Ir(Ni,Re)
	532.77
	26719.98
	22.3

	
	h-Ir(Ni,Re)
after OER
	531.88
	73829.35
	47.3




Table S8. The OER steps with each step generating one proton and one electron depending on different mechanisms.
	Step
	AEM
	OPM
	LOM

	1
	* +H2O(l)OH*+H++e–
	2*+H2O(l)*+OH*+H++e–
	*+ H2O(l)OH*+H++e–

	2
	OH*O*+ H++e–
	*+OH*+H2O(l)2OH*+H++e–
	OH*O*+ H++e–

	3
	O*+H2O(l)OOH*+ H++e–
	2OH*O*+OH*+H++e–
	O*+H2O(l)VO+OH*+ O2(g)+H++e–

	4
	OOH**+O2(g)+H++e–
	O*+OH*2*+O2(g)+H++e–
	VO+OH**+ H++e–





Table S9. The calculated overpotential with respect to the structure and plane of metal Ir.
	Sample
	Mechanism
	ΔG1 (eV)
	ΔG2 (eV)
	ΔG3 (eV)
	ΔG4 (eV)
	η (V)

	Ir (100)
	AEM
	0.12
	0.93
	2.28
	1.58
	1.05

	
	OPM
	0.49
	-0.55
	1.42
	3.55
	2.33

	Ir (110)
	AEM
	0.52
	0.70
	2.20
	1.49
	0.97

	
	OPM
	0.06
	-0.03
	1.16
	3.73
	2.50

	Ir (111)
	AEM
	2.21
	0.59
	1.94
	0.18
	0.98

	
	OPM
	1.65
	1.98
	1.13
	0.15
	0.75

	Ir (0001)
	AEM
	0.20
	1.16
	1.94
	1.62
	0.72

	
	OPM
	0.33
	-0.31
	1.82
	3.08
	1.85

	Ir (100)
	AEM
	0.56
	0.76
	2.13
	1.47
	0.90

	
	OPM
	0.37
	0.15
	1.08
	3.32
	2.09

	Ir (110)
	AEM
	0.97
	0.99
	1.57
	1.39
	0.34

	
	OPM
	0.90
	0.28
	1.51
	2.22
	0.99






Table S10. The calculated lattice parameters of Rutile IrO2, consistent with prior studies.
	
Method
	Lattice constant
	
Reference

	
	a (Å)
	b (Å)
	c(Å)
	u
	

	GGA
	4.54
	4.54
	3.19
	0.31
	This work

	GGA+DF
	4.54
	4.54
	
	0.31
	51

	GGA
	4.54
	4.54
	
	-
	52

	GGA+U
	4.55
	4.55
	3.19
	0.31
	53

	Exp.
	4.50
	4.50
	3.15
	-
	54

	Exp.
	4.51
	4.51
	3.16
	0.31
	55






Table S11. The calculated overpotential for OER of IrO2 (110) surfaces.
	
Sample
	
Mechanism
	Gibbs free energy
	Overpotential

	
	
	ΔG1 (eV)
	ΔG2 (eV)
	ΔG3 (eV)
	ΔG4 (eV)
	η (V)

	

IrO2
(110)
	AEM
	-0.04
	1.45
	1.39
	2.11
	0.88

	
	OPM
	-0.29
	-0.35
	1.73
	3.83
	2.60

	
	LOM
	-0.04
	1.45
	3.44
	0.06
	2.21

	

Re-IrO2 (110)
	AEM
	-0.34
	1.41
	1.63
	2.23
	1.00

	
	OPM
	-0.20
	-0.67
	2.05
	3.74
	2.51

	
	LOM
	-0.34
	1.41
	3.55
	0.31
	2.32

	

1VIr-IrO2 (110
	AEM
	0.29
	1.33
	1.25
	2.04
	0.81

	
	OPM
	0.13
	-0.72
	2.29
	3.22
	1.99

	
	LOM
	0.29
	1.33
	2.06
	1.24
	0.83

	

2VIr-IrO2 (110)

	AEM
	0.36
	1.52
	1.09
	1.96
	0.73

	
	OPM
	0.33
	-0.33
	2.23
	2.69
	1.46

	
	LOM
	0.36
	1.52
	1.68
	1.36
	0.45

	

3VIr-IrO2 (110)

	AEM
	0.83
	1.50
	1.18
	1.41
	0.27

	
	OPM
	0.88
	-0.40
	2.20
	2.24
	1.01

	
	LOM
	0.83
	1.50
	1.09
	1.49
	0.27

	

4VIr-IrO2 (110)
	AEM
	0.95
	1.45
	1.24
	1.28
	0.22

	
	OPM
	N/A
	N/A
	N/A
	N/A
	N/A

	
	LOM
	0.95
	1.45
	1.08
	1.44
	0.22


Table S12. Comparison of PEMWE performance for h-Ir(Ni,Re) with previously reported Ir-based anodes (reference for Fig. 5h). 
	MEA
	
Temperature
(°C)
	
Flow rate
(ml/min)
	
Current density
(Acm-2@1.7V)
	
Current density
(Acm-2@1.8V)
	
Cell voltage
(VCell@2Acm-2)
	
Reference

	Anode
(loading amount)
	Membrane
	Cathode
(loading amount)
	
	
	
	
	
	

	h-Ir(Ni,Re)
on Ti felt
(1.136mgIrcm-2)
	Nafion 212
	Pt/C 
(0.4mgpt cm-2)

	80
	5
	2.061
	3.13
	1.689
	This work

	Ir88Ru12@CM
on Ti felt
(1mgmetal cm-2)
	Nafion 212
	Pt/C 
(0.4mgpt cm-2)

	90
	10
	1.645
	2.38
	1.756
	56

	DNP-IrNi
on Ti felt
(0.67mgIrcm-2
	Nafion 212
	Pt/C 
(0.4mgpt cm-2)

	90
	15
	1.42
	2
	1.794
	32

	IrRu/TG10
(1.0mgIrRucm-2)
	Nafion 212
	Pt/C 
(0.2mgpt cm-2)

	80
	15
	1.821
	2.40
	1.729
	57

	Ir-ND
on Au coated Ti foam
(1mgcm-2)
	Nafion 212
	Pt/C
(N.A)
	80
	1.5
	1.109
	1.50
	1.92
	58

	IrRuOx
on Ti&Au coated stainless steel
(1.8mgcm-2)
	Nafion 115
	Pt/C 
(0.5mgpt cm-2)

	80
	3.33
	1.197
	1.71
	1.90
	59

	Ir/TiO2-MoOx 
on Ti felt
(0.5mgIrcm-2)
	Nafion 115
	Pt/C
(0.5mgpt cm-2)
	80
	50
	1.051
	1.43
	1.93
	60

	Ru @Ir
on Ti sheet
(0.1mgIrcm-2)

	Nafion 117
	Pt/C
(0.5mgpt cm-2)
	80
	5
	0.9622
	1.44
	1.90
	61

	IrO2@TiO2
on Ti
(1.2mgIrcm-2)

	Nafion 212
	Pt/C
(0.5mgpt cm-2)
	80
	40
	1.244
	2.14
	1.78
	62

	IrO2-ATO
(2.0mgcm-2)
	Nafion
115
	Pt/C
(0.5mgpt cm-2)
	80
	N.A
	0.865
	1.307
	1.94
	63

	Ir/B4C
(0.5mgIrcm-2)

	Nafion 212
	Pt/C 
(0.4mgpt cm-2)

	80
	N.A
	1.436
	2.0
	1.8
	64

	Ir black
(0.4mgIrcm-2)
	Aquvion
	Pt/C 
(0.1mgpt cm-2)

	90
	4
	0.796
	1.20
	1.96
	65

	IrO2 nanoneedles
(4mgcm-2)
	Nafion 117
	Pt/C 
(4mgpt cm-2)

	80
	0.1
	0.70
	0.969
	2.158
	39

	IrO2/TiO2
on Ti
(0.6mgIrcm-2)
	Nafion 115
	Pt black
(3mgptcm-2)
	80
	50
	0.799
	1.296
	1.9
	66

	Ir-IrOx
on Ti
(1.5mgcm-2)
	Nafion
117
	Pt/C 
(0.7mgpt cm-2)

	80
	N.A
	0.883
	1.625
	1.77
	67
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