
Table 4 and Fig. 26 Data Analysis

The data stored in

/content/drive/My Drive/ShanShui/

1. guo_xi.jpg

2. Picture27a.jpg

3. Picture27b.jpg

4…

Please see the Zipped file named: ShanShui-20250813T111616Z-1-001.zip

from google.colab import drive

from PIL import Image

import matplotlib.pyplot as plt

import cv2

import numpy as np

import os

from skimage.metrics import structural_similarity as ssim

import pandas as pd

import math

เช่ือมตSอ Google Drive

drive.mount('/content/drive')

Install required libraries

!pip install Pillow matplotlib opencv-python numpy scikit-image

Define the directory containing the images

drive_dir = '/content/drive/My Drive/ShanShui'

Define the list of Shanshui backbone candidates

backbone_candidates = ['Picture5.jpg', 'Picture22.jpg', 'Picture24.jpg']

Define a reference image (example: guo_xi.jpg)

reference_image_name = 'guo_xi.jpg'

reference_image_path = os.path.join(drive_dir, reference_image_name)

Define a target size for resizing (adjust as needed)

target_size = (800, 600) # width, height

Function to resize and load images

def load_and_resize_image(image_path, target_size):

 try:

 img = Image.open(image_path).convert("RGB") # Ensure image is in RGB format

 img_resized = img.resize(target_size)

 return img_resized

 except FileNotFoundError:

 print(f"Error: Image not found at {image_path}")

 return None

 except Exception as e:

 print(f"Error loading or resizing image {image_path}: {e}")

 return None

Load and resize the reference image

reference_img_resized_pil = load_and_resize_image(reference_image_path, target_size)

if reference_img_resized_pil:

 print(f"Loaded and resized reference image: {reference_image_name}")

 # Load, resize, and store backbone candidates

 resized_candidates_pil = {}

 print("\nLoading and resizing backbone candidates:")

 for img_name in backbone_candidates:

 img_path = os.path.join(drive_dir, img_name)

 img_resized = load_and_resize_image(img_path, target_size)

 if img_resized:

 resized_candidates_pil[img_name] = img_resized

 print(f" - {img_name}")

 # Display the resized images for comparison

 if resized_candidates_pil:

 fig, axes = plt.subplots(1, len(resized_candidates_pil) + 1, figsize=(20, 5))

 axes[0].imshow(reference_img_resized_pil)

 display_ref_name = reference_image_name

 if reference_image_name == "guo_xi.jpg":

 display_ref_name = "Guo Xi's Shanshui"

 axes[0].set_title(f'Reference: {display_ref_name}\n({target_size[0]}x{target_size[1]})')

 axes[0].axis('off')

 for i, (name, img) in enumerate(resized_candidates_pil.items()):

 axes[i+1].imshow(img)

 display_name = name

 if name == "Picture5.jpg":

 display_name = "Ours, LoRA Fine-tuned Backbone (Fig. 5)"

 elif name == "Picture22.jpg":

 display_name = "LoRA 2nd Session Backbone (Fig. 22)"

 elif name == "Picture24.jpg":

 display_name = "LoRA 3rd Session Backbone (Fig. 24)"

 axes[i+1].set_title(f'Candidate: {display_name}\n({target_size[0]}x{target_size[1]})')

 axes[i+1].axis('off')

 plt.tight_layout()

 plt.show()

 # Convert PIL images to OpenCV format (numpy arrays) for metric calculations

 reference_img_resized_cv2 = cv2.cvtColor(np.array(reference_img_resized_pil), cv2.COLOR_RGB2BGR)

 resized_candidates_cv2 = {name: cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) for name, img in resized_candidates_pil.items()}

 # --- Image Metric Calculations ---

 # Function to calculate MSE

 def calculate_mse(img1, img2):

 # The images must have the same dimension

 if img1.shape != img2.shape:

 raise ValueError("Images must have the same dimensions for MSE calculation.")

 err = np.sum((img1.astype("float") - img2.astype("float")) ** 2)

 err /= float(img1.shape[0] * img1.shape[1] * img1.shape[2])

 return err

 # Function to calculate PSNR

 def calculate_psnr(img1, img2):

 mse = calculate_mse(img1, img2)

 if mse == 0: # MSE is zero means no noise, the images are identical

 return float('inf')

 max_pixel = 255.0 # For 8-bit images

 psnr = 20 * math.log10(max_pixel / math.sqrt(mse))

 return psnr

 # Function to calculate SSIM

 def calculate_ssim(img1, img2):

 # SSIM requires images to be grayscale or have the same channel count

 # Ensure channel count matches or convert to grayscale

 if img1.shape[-1] == 3 and img2.shape[-1] == 3:

 # Calculate SSIM on each channel and take the average

 ssim_value = ssim(img1, img2, channel_axis=-1) # Use channel_axis for multichannel images

 elif img1.shape == img2.shape:

 # Assume grayscale

 ssim_value = ssim(img1, img2)

 else:

 raise ValueError("Images must have compatible dimensions and channels for SSIM.")

 return ssim_value

 # Function to calculate Color Histogram Cosine Distance

 def calculate_color_histogram_cosine_distance(img1, img2):

 # Calculate color histograms

 hist1 = cv2.calcHist([img1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])

 hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])

 # Normalize histograms

 hist1 = cv2.normalize(hist1, hist1).flatten()

 hist2 = cv2.normalize(hist2, hist2).flatten()

 # Calculate cosine similarity

 cosine_similarity = np.dot(hist1, hist2) / (np.linalg.norm(hist1) * np.linalg.norm(hist2))

 # Cosine distance is 1 - cosine similarity

 cosine_distance = 1 - cosine_similarity

 return cosine_distance

 # Function to calculate Edge Feature Cosine Distance (using Canny edges)

 def calculate_edge_feature_cosine_distance(img1, img2):

 # Convert to grayscale

 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

 gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

 # Apply Canny edge detection

 edges1 = cv2.Canny(gray1, 100, 200)

 edges2 = cv2.Canny(gray2, 100, 200)

 # Flatten edge images to vectors

 edges1_flat = edges1.flatten().astype(float)

 edges2_flat = edges2.flatten().astype(float)

 # Calculate cosine similarity

 # Handle cases where one or both edge images are all zeros (no edges detected)

 norm1 = np.linalg.norm(edges1_flat)

 norm2 = np.linalg.norm(edges2_flat)

 if norm1 == 0 and norm2 == 0:

 cosine_similarity = 1.0 # Identical (no edges)

 elif norm1 == 0 or norm2 == 0:

 cosine_similarity = 0.0 # One has edges, the other doesn't

 else:

 cosine_similarity = np.dot(edges1_flat, edges2_flat) / (norm1 * norm2)

 # Cosine distance is 1 - cosine similarity

 cosine_distance = 1 - cosine_similarity

 return cosine_distance

 # Store results

 results = {}

 print("\n--- Calculating Image Similarity Metrics ---")

 for name, img_candidate_cv2 in resized_candidates_cv2.items():

 print(f"\nComparing {name} with {reference_image_name}:")

 # Ensure the candidate image is also in BGR format (OpenCV default)

 # (already handled during conversion)

 # Calculate metrics

 mse = calculate_mse(reference_img_resized_cv2, img_candidate_cv2)

 psnr = calculate_psnr(reference_img_resized_cv2, img_candidate_cv2)

 ssim_val = calculate_ssim(reference_img_resized_cv2, img_candidate_cv2)

 color_hist_dist = calculate_color_histogram_cosine_distance(reference_img_resized_cv2, img_candidate_cv2)

 edge_feat_dist = calculate_edge_feature_cosine_distance(reference_img_resized_cv2, img_candidate_cv2)

 print(f" MSE: {mse:.4f}")

 print(f" PSNR: {psnr:.4f} dB")

 print(f" SSIM: {ssim_val:.4f}")

 print(f" Color Histogram Cosine Distance: {color_hist_dist:.4f}")

 print(f" Edge Feature Cosine Distance: {edge_feat_dist:.4f}")

 # Store results

 results[name] = {

 'MSE': mse,

 'PSNR': psnr,

 'SSIM': ssim_val,

 'Color_Hist_Cosine_Dist': color_hist_dist,

 'Edge_Feat_Cosine_Dist': edge_feat_dist

 }

 # --- Normalize and Prepare for Spider Graph ---

 # We want all values between 0 and 1 for the spider graph.

 # For SSIM and PSNR (similarity metrics), higher is better, scale directly.

 # For MSE, Color Hist Distance, Edge Feat Distance (distance metrics), lower is better.

 # We need to invert them or scale them such that higher value means more similar.

 # Option: 1 - distance for distance metrics.

 # Option: Normalize SSIM (already 0-1), PSNR needs scaling (log scale?), MSE needs scaling.

 # Let's normalize all metrics to be between 0 and 1, where 1 means perfect similarity to the reference.

 normalized_results = {}

 # Collect all values for normalization

 all_mse = [res['MSE'] for res in results.values()]

 all_psnr = [res['PSNR'] for res in results.values() if res['PSNR'] != float('inf')] # Exclude inf for normalization

 all_ssim = [res['SSIM'] for res in results.values()] # SSIM is already 0-1

 all_color_dist = [res['Color_Hist_Cosine_Dist'] for res in results.values()]

 all_edge_dist = [res['Edge_Feat_Cosine_Dist'] for res in results.values()]

 # Simple min-max scaling for metrics that are not already 0-1

 def min_max_scale(values, min_val, max_val):

 if max_val - min_val == 0:

 return [0.5] * len(values) # Avoid division by zero, assign a neutral value

 return [(v - min_val) / (max_val - min_val) for v in values]

 # Normalize MSE (lower is better, so invert after scaling)

 min_mse, max_mse = min(all_mse), max(all_mse)

 scaled_mse = min_max_scale(all_mse, min_mse, max_mse)

 normalized_mse = [1 - s for s in scaled_mse] # Inverted: 1 is perfect similarity (0 MSE)

 # Normalize PSNR (higher is better)

 min_psnr = min(all_psnr) if all_psnr else 0

 max_psnr = max(all_psnr) if all_psnr else 1 # Avoid division by zero if only one image or all inf

 scaled_psnr = min_max_scale(all_psnr, min_psnr, max_psnr)

 # Handle inf PSNR: assign 1 (perfect similarity)

 normalized_psnr = [1.0 if results[list(results.keys())[i]]['PSNR'] == float('inf') else scaled_psnr[i] for i in range(len(all_psnr))]

 # Normalize SSIM (already 0-1, higher is better) - no scaling needed

 # Normalize Color Hist Distance (lower is better, so invert)

 min_color_dist, max_color_dist = min(all_color_dist), max(all_color_dist)

 scaled_color_dist = min_max_scale(all_color_dist, min_color_dist, max_color_dist)

 normalized_color_dist = [1 - s for s in scaled_color_dist] # Inverted: 1 is perfect similarity (0 distance)

 # Normalize Edge Feat Distance (lower is better, so invert)

 min_edge_dist, max_edge_dist = min(all_edge_dist), max(all_edge_dist)

 scaled_edge_dist = min_max_scale(all_edge_dist, min_edge_dist, max_edge_dist)

 normalized_edge_dist = [1 - s for s in scaled_edge_dist] # Inverted: 1 is perfect similarity (0 distance)

 # Populate normalized results dictionary

 metric_names = ['Normalized_MSE', 'SSIM', 'Normalized_PSNR', 'Color_Hist_Similarity', 'Edge_Feat_Similarity']

 # Rename distance metrics to similarity for clarity in the spider graph

 normalized_results_list = []

 for i, name in enumerate(results.keys()):

 normalized_results[name] = {

 'Normalized_MSE': normalized_mse[i],

 'SSIM': all_ssim[i], # SSIM is already similarity

 'Normalized_PSNR': normalized_psnr[i],

 'Color_Hist_Similarity': normalized_color_dist[i], # 1 - distance = similarity

 'Edge_Feat_Similarity': normalized_edge_dist[i] # 1 - distance = similarity

 }

 normalized_results_list.append([

 normalized_mse[i],

 all_ssim[i],

 normalized_psnr[i],

 normalized_color_dist[i],

 normalized_edge_dist[i]

])

 # Convert to DataFrame for easier handling

 df_normalized = pd.DataFrame.from_dict(normalized_results, orient='index')

 print("\n--- Normalized Similarity Metrics (0-1, 1 is perfect similarity) ---")

 print(df_normalized)

 # --- Plotting Spider Graph ---

 categories = list(df_normalized.columns)

 N = len(categories)

 # Calculate angle for each axis

 angles = [n / float(N) * 2 * np.pi for n in range(N)]

 angles += angles[:1] # Complete the circle

 fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))

 # Plot data

 for i, (candidate_name, row) in enumerate(df_normalized.iterrows()):

 values = row.values.flatten().tolist()

 values += values[:1] # Complete the circle

 # Use display names for the legend

 display_name = candidate_name

 if candidate_name == "Picture5.jpg":

 display_name = "Ours, LoRA Fine-tuned Backbone (Fig. 5)"

 elif candidate_name == "Picture22.jpg":

 display_name = "LoRA 2nd Session Backbone (Fig. 22)"

 elif candidate_name == "Picture24.jpg":

 display_name = "LoRA 3rd Session Backbone (Fig. 24)"

 ax.plot(angles, values, linewidth=2, linestyle='solid', label=display_name)

 ax.fill(angles, values, alpha=0.25)

 # Set labels and title

 ax.set_thetagrids(np.degrees(angles[:-1]), categories)

 ax.set_title("Image Similarity Metrics vs. Reference Image", va='bottom')

 ax.grid(True)

 ax.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))

 # Set y-limits for the scale 0 to 1

 ax.set_ylim(0, 1)

 ax.set_yticks(np.arange(0, 1.1, 0.2)) # Set y-ticks at 0, 0.2, 0.4, ... 1.0

 ax.set_yticklabels([f'{y:.1f}' for y in np.arange(0, 1.1, 0.2)]) # Label y-ticks

 plt.show()

 # --- Summarize Meaning of Spider Graph in a Table ---

 print("\n--- Summary of Spider Graph Interpretation ---")

 summary_data = {

 'Metric': metric_names,

 'Interpretation (Higher Value = More Similar)': [

 'Normalized Mean Squared Error (Lower MSE -> Higher Similarity)',

 'Structural Similarity Index (Higher SSIM -> More Similar)',

 'Normalized Peak Signal-to-Noise Ratio (Higher PSNR -> More Similar)',

 'Color Histogram Similarity (Lower distance -> Higher Similarity)',

 'Edge Feature Similarity (Lower distance -> Higher Similarity)'

],

 'Range': ['0 - 1', '0 - 1', '0 - 1', '0 - 1', '0 - 1']

 }

 df_summary = pd.DataFrame(summary_data)

 print(df_summary.to_markdown(index=False))

 # --- Explain Interpretation in English Text ---

 print("\n--- Interpretation of the Spider Graph (English Text) ---")

 print("The spider graph visualizes the similarity of the candidate images (Picture5.jpg, Picture24.jpg, Picture26.jpg) to the reference image (guo_xi.jpg) based on

several image metrics.")

 print("Each axis represents a different similarity metric, normalized to a range between 0 and 1.")

 print("- A value closer to 1 on any axis indicates higher similarity to the reference image according to that specific metric.")

 print("- A value closer to 0 indicates lower similarity (or higher difference).")

 print("\nHere's what each metric represents:")

 print("- **Normalized MSE (Mean Squared Error):** Measures the average squared difference between the pixel values of the two images. The value is inverted and

normalized, so a higher value means lower error and thus higher similarity.")

 print("- **SSIM (Structural Similarity Index):** Measures similarity in terms of structural information, luminance, and contrast. A higher SSIM value means the images

are perceived as more similar by the human visual system.")

 print("- **Normalized PSNR (Peak Signal-to-Noise Ratio):** Measures the ratio between the maximum possible power of a signal and the power of corrupting noise

that affects the fidelity of its representation. The value is normalized, so a higher value generally indicates higher quality and similarity, often used for assessing lossy

compression.")

 print("- **Color Histogram Similarity:** Measures the similarity of the distribution of colors in the two images using the cosine similarity of their color histograms. A

higher value means the images have a more similar overall color composition.")

 print("- **Edge Feature Similarity:** Measures the similarity of the prominent edge patterns in the two images, calculated using the cosine similarity of flattened

Canny edge maps. A higher value suggests similar structural outlines and features.")

 print("\nBy observing the shape and area covered by each candidate's line on the spider graph, you can compare their overall similarity profile to the reference

image across multiple dimensions. A candidate with a larger area covered by its line and values closer to the outer edge (1) is generally more similar to the reference

image across the evaluated metrics.")

 print("This helps identify which candidate images share more visual characteristics with the reference painting, providing quantitative insights into their

resemblance.")

 else:

 print("No backbone candidates were successfully loaded.")

else:

 print(f"Could not load the reference image: {reference_image_name}. Please check the path.")

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Requirement already satisfied: Pillow in /usr/local/lib/python3.11/dist-packages (11.3.0)

Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)

Requirement already satisfied: opencv-python in /usr/local/lib/python3.11/dist-packages (4.12.0.88)

Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (2.0.2)

Requirement already satisfied: scikit-image in /usr/local/lib/python3.11/dist-packages (0.25.2)

Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.3)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.59.0)

Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (25.0)

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.3)

Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (2.9.0.post0)

Requirement already satisfied: scipy>=1.11.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (1.16.1)

Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (3.5)

Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2.37.0)

Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2025.6.11)

Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (0.4)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)

Loaded and resized reference image: guo_xi.jpg

Loading and resizing backbone candidates:

 - Picture5.jpg

 - Picture22.jpg

 - Picture24.jpg

--- Calculating Image Similarity Metrics ---

Comparing Picture5.jpg with guo_xi.jpg:

 MSE: 26329.5265

 PSNR: 3.9264 dB

 SSIM: 0.2140

 Color Histogram Cosine Distance: 0.9998

 Edge Feature Cosine Distance: 0.9001

Comparing Picture22.jpg with guo_xi.jpg:

 MSE: 24373.5166

 PSNR: 4.2616 dB

 SSIM: 0.1833

 Color Histogram Cosine Distance: 0.9999

 Edge Feature Cosine Distance: 0.8906

Comparing Picture24.jpg with guo_xi.jpg:

 MSE: 21400.7392

 PSNR: 4.8265 dB

 SSIM: 0.1967

 Color Histogram Cosine Distance: 1.0000

 Edge Feature Cosine Distance: 0.9116

--- Normalized Similarity Metrics (0-1, 1 is perfect similarity) ---

 Normalized_MSE SSIM Normalized_PSNR \

Picture5.jpg 0.000000 0.213994 0.000000

Picture22.jpg 0.396854 0.183331 0.372439

Picture24.jpg 1.000000 0.196690 1.000000

 Color_Hist_Similarity Edge_Feat_Similarity

Picture5.jpg 1.000000 0.547626

Picture22.jpg 0.374746 1.000000

Picture24.jpg 0.000000 0.000000

--- Summary of Spider Graph Interpretation ---

| Metric | Interpretation (Higher Value = More Similar) | Range |

|:----------------------|:--|:--------|

| Normalized_MSE | Normalized Mean Squared Error (Lower MSE -> Higher Similarity) | 0 - 1 |

| SSIM | Structural Similarity Index (Higher SSIM -> More Similar) | 0 - 1 |

| Normalized_PSNR | Normalized Peak Signal-to-Noise Ratio (Higher PSNR -> More Similar) | 0 - 1 |

| Color_Hist_Similarity | Color Histogram Similarity (Lower distance -> Higher Similarity) | 0 - 1 |

| Edge_Feat_Similarity | Edge Feature Similarity (Lower distance -> Higher Similarity) | 0 - 1 |

--- Interpretation of the Spider Graph (English Text) ---

The spider graph visualizes the similarity of the candidate images (Picture5.jpg, Picture24.jpg, Picture26.jpg) to the reference image (guo_xi.jpg) based on several image

metrics.

Each axis represents a different similarity metric, normalized to a range between 0 and 1.

- A value closer to 1 on any axis indicates higher similarity to the reference image according to that specific metric.

- A value closer to 0 indicates lower similarity (or higher difference).

Here's what each metric represents:

- **Normalized MSE (Mean Squared Error):** Measures the average squared difference between the pixel values of the two images. The value is inverted and normalized,

so a higher value means lower error and thus higher similarity.

- **SSIM (Structural Similarity Index):** Measures similarity in terms of structural information, luminance, and contrast. A higher SSIM value means the images are

perceived as more similar by the human visual system.

- **Normalized PSNR (Peak Signal-to-Noise Ratio):** Measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects

the fidelity of its representation. The value is normalized, so a higher value generally indicates higher quality and similarity, often used for assessing lossy compression.

- **Color Histogram Similarity:** Measures the similarity of the distribution of colors in the two images using the cosine similarity of their color histograms. A higher value

means the images have a more similar overall color composition.

- **Edge Feature Similarity:** Measures the similarity of the prominent edge patterns in the two images, calculated using the cosine similarity of flattened Canny edge

maps. A higher value suggests similar structural outlines and features.

By observing the shape and area covered by each candidate's line on the spider graph, you can compare their overall similarity profile to the reference image across

multiple dimensions. A candidate with a larger area covered by its line and values closer to the outer edge (1) is generally more similar to the reference image across the

evaluated metrics.

This helps identify which candidate images share more visual characteristics with the reference painting, providing quantitative insights into their resemblance.

