
Table 4 and Fig. 26 Data Analysis 

 

The data stored in  

/content/drive/My Drive/ShanShui/ 

1. guo_xi.jpg 

2. Picture27a.jpg 

3. Picture27b.jpg 

4…  

Please see the Zipped file named: ShanShui-20250813T111616Z-1-001.zip 

 

 
from google.colab import drive 

from PIL import Image 

import matplotlib.pyplot as plt 

import cv2 

import numpy as np 

import os 

from skimage.metrics import structural_similarity as ssim 

import pandas as pd 

import math 

 

# เช่ือมตSอ Google Drive 

drive.mount('/content/drive') 

 

# Install required libraries 

!pip install Pillow matplotlib opencv-python numpy scikit-image 

 

# Define the directory containing the images 

drive_dir = '/content/drive/My Drive/ShanShui' 

 

# Define the list of Shanshui backbone candidates 

backbone_candidates = ['Picture5.jpg', 'Picture22.jpg', 'Picture24.jpg'] 

 

# Define a reference image (example: guo_xi.jpg) 

reference_image_name = 'guo_xi.jpg' 

reference_image_path = os.path.join(drive_dir, reference_image_name) 

 

# Define a target size for resizing (adjust as needed) 

target_size = (800, 600)  # width, height 

 

# Function to resize and load images 

def load_and_resize_image(image_path, target_size): 

    try: 

        img = Image.open(image_path).convert("RGB") # Ensure image is in RGB format 

        img_resized = img.resize(target_size) 

        return img_resized 

    except FileNotFoundError: 

        print(f"Error: Image not found at {image_path}") 

        return None 



    except Exception as e: 

        print(f"Error loading or resizing image {image_path}: {e}") 

        return None 

 

# Load and resize the reference image 

reference_img_resized_pil = load_and_resize_image(reference_image_path, target_size) 

 

if reference_img_resized_pil: 

    print(f"Loaded and resized reference image: {reference_image_name}") 

 

    # Load, resize, and store backbone candidates 

    resized_candidates_pil = {} 

    print("\nLoading and resizing backbone candidates:") 

    for img_name in backbone_candidates: 

        img_path = os.path.join(drive_dir, img_name) 

        img_resized = load_and_resize_image(img_path, target_size) 

        if img_resized: 

            resized_candidates_pil[img_name] = img_resized 

            print(f"  - {img_name}") 

 

    # Display the resized images for comparison 

    if resized_candidates_pil: 

        fig, axes = plt.subplots(1, len(resized_candidates_pil) + 1, figsize=(20, 5)) 

        axes[0].imshow(reference_img_resized_pil) 

        display_ref_name = reference_image_name 

        if reference_image_name == "guo_xi.jpg": 

          display_ref_name = "Guo Xi's Shanshui" 

        axes[0].set_title(f'Reference: {display_ref_name}\n({target_size[0]}x{target_size[1]})') 

        axes[0].axis('off') 

 

        for i, (name, img) in enumerate(resized_candidates_pil.items()): 

            axes[i+1].imshow(img) 

            display_name = name 

            if name == "Picture5.jpg": 

              display_name = "Ours, LoRA Fine-tuned Backbone (Fig. 5)" 

            elif name == "Picture22.jpg": 

              display_name = "LoRA 2nd Session Backbone (Fig. 22)" 

            elif name == "Picture24.jpg": 

              display_name = "LoRA 3rd Session Backbone (Fig. 24)" 

            axes[i+1].set_title(f'Candidate: {display_name}\n({target_size[0]}x{target_size[1]})') 

            axes[i+1].axis('off') 

 

        plt.tight_layout() 

        plt.show() 

 

        # Convert PIL images to OpenCV format (numpy arrays) for metric calculations 

        reference_img_resized_cv2 = cv2.cvtColor(np.array(reference_img_resized_pil), cv2.COLOR_RGB2BGR) 

        resized_candidates_cv2 = {name: cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) for name, img in resized_candidates_pil.items()} 

 

        # --- Image Metric Calculations --- 



 

        # Function to calculate MSE 

        def calculate_mse(img1, img2): 

            # The images must have the same dimension 

            if img1.shape != img2.shape: 

                raise ValueError("Images must have the same dimensions for MSE calculation.") 

            err = np.sum((img1.astype("float") - img2.astype("float")) ** 2) 

            err /= float(img1.shape[0] * img1.shape[1] * img1.shape[2]) 

            return err 

 

        # Function to calculate PSNR 

        def calculate_psnr(img1, img2): 

            mse = calculate_mse(img1, img2) 

            if mse == 0:  # MSE is zero means no noise, the images are identical 

                return float('inf') 

            max_pixel = 255.0  # For 8-bit images 

            psnr = 20 * math.log10(max_pixel / math.sqrt(mse)) 

            return psnr 

 

        # Function to calculate SSIM 

        def calculate_ssim(img1, img2): 

            # SSIM requires images to be grayscale or have the same channel count 

            # Ensure channel count matches or convert to grayscale 

            if img1.shape[-1] == 3 and img2.shape[-1] == 3: 

                 # Calculate SSIM on each channel and take the average 

                ssim_value = ssim(img1, img2, channel_axis=-1) # Use channel_axis for multichannel images 

            elif img1.shape == img2.shape: 

                 # Assume grayscale 

                ssim_value = ssim(img1, img2) 

            else: 

                 raise ValueError("Images must have compatible dimensions and channels for SSIM.") 

            return ssim_value 

 

        # Function to calculate Color Histogram Cosine Distance 

        def calculate_color_histogram_cosine_distance(img1, img2): 

            # Calculate color histograms 

            hist1 = cv2.calcHist([img1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) 

            hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) 

            # Normalize histograms 

            hist1 = cv2.normalize(hist1, hist1).flatten() 

            hist2 = cv2.normalize(hist2, hist2).flatten() 

            # Calculate cosine similarity 

            cosine_similarity = np.dot(hist1, hist2) / (np.linalg.norm(hist1) * np.linalg.norm(hist2)) 

            # Cosine distance is 1 - cosine similarity 

            cosine_distance = 1 - cosine_similarity 

            return cosine_distance 

 

        # Function to calculate Edge Feature Cosine Distance (using Canny edges) 

        def calculate_edge_feature_cosine_distance(img1, img2): 



            # Convert to grayscale 

            gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) 

            gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) 

            # Apply Canny edge detection 

            edges1 = cv2.Canny(gray1, 100, 200) 

            edges2 = cv2.Canny(gray2, 100, 200) 

            # Flatten edge images to vectors 

            edges1_flat = edges1.flatten().astype(float) 

            edges2_flat = edges2.flatten().astype(float) 

            # Calculate cosine similarity 

            # Handle cases where one or both edge images are all zeros (no edges detected) 

            norm1 = np.linalg.norm(edges1_flat) 

            norm2 = np.linalg.norm(edges2_flat) 

 

            if norm1 == 0 and norm2 == 0: 

                cosine_similarity = 1.0 # Identical (no edges) 

            elif norm1 == 0 or norm2 == 0: 

                cosine_similarity = 0.0 # One has edges, the other doesn't 

            else: 

                cosine_similarity = np.dot(edges1_flat, edges2_flat) / (norm1 * norm2) 

 

            # Cosine distance is 1 - cosine similarity 

            cosine_distance = 1 - cosine_similarity 

            return cosine_distance 

 

        # Store results 

        results = {} 

 

        print("\n--- Calculating Image Similarity Metrics ---") 

        for name, img_candidate_cv2 in resized_candidates_cv2.items(): 

            print(f"\nComparing {name} with {reference_image_name}:") 

            # Ensure the candidate image is also in BGR format (OpenCV default) 

            # (already handled during conversion) 

 

            # Calculate metrics 

            mse = calculate_mse(reference_img_resized_cv2, img_candidate_cv2) 

            psnr = calculate_psnr(reference_img_resized_cv2, img_candidate_cv2) 

            ssim_val = calculate_ssim(reference_img_resized_cv2, img_candidate_cv2) 

            color_hist_dist = calculate_color_histogram_cosine_distance(reference_img_resized_cv2, img_candidate_cv2) 

            edge_feat_dist = calculate_edge_feature_cosine_distance(reference_img_resized_cv2, img_candidate_cv2) 

 

            print(f"  MSE: {mse:.4f}") 

            print(f"  PSNR: {psnr:.4f} dB") 

            print(f"  SSIM: {ssim_val:.4f}") 

            print(f"  Color Histogram Cosine Distance: {color_hist_dist:.4f}") 

            print(f"  Edge Feature Cosine Distance: {edge_feat_dist:.4f}") 

 

            # Store results 

            results[name] = { 



                'MSE': mse, 

                'PSNR': psnr, 

                'SSIM': ssim_val, 

                'Color_Hist_Cosine_Dist': color_hist_dist, 

                'Edge_Feat_Cosine_Dist': edge_feat_dist 

            } 

 

        # --- Normalize and Prepare for Spider Graph --- 

        # We want all values between 0 and 1 for the spider graph. 

        # For SSIM and PSNR (similarity metrics), higher is better, scale directly. 

        # For MSE, Color Hist Distance, Edge Feat Distance (distance metrics), lower is better. 

        # We need to invert them or scale them such that higher value means more similar. 

        # Option: 1 - distance for distance metrics. 

        # Option: Normalize SSIM (already 0-1), PSNR needs scaling (log scale?), MSE needs scaling. 

        # Let's normalize all metrics to be between 0 and 1, where 1 means perfect similarity to the reference. 

 

        normalized_results = {} 

 

        # Collect all values for normalization 

        all_mse = [res['MSE'] for res in results.values()] 

        all_psnr = [res['PSNR'] for res in results.values() if res['PSNR'] != float('inf')] # Exclude inf for normalization 

        all_ssim = [res['SSIM'] for res in results.values()] # SSIM is already 0-1 

        all_color_dist = [res['Color_Hist_Cosine_Dist'] for res in results.values()] 

        all_edge_dist = [res['Edge_Feat_Cosine_Dist'] for res in results.values()] 

 

        # Simple min-max scaling for metrics that are not already 0-1 

        def min_max_scale(values, min_val, max_val): 

            if max_val - min_val == 0: 

                return [0.5] * len(values) # Avoid division by zero, assign a neutral value 

            return [(v - min_val) / (max_val - min_val) for v in values] 

 

        # Normalize MSE (lower is better, so invert after scaling) 

        min_mse, max_mse = min(all_mse), max(all_mse) 

        scaled_mse = min_max_scale(all_mse, min_mse, max_mse) 

        normalized_mse = [1 - s for s in scaled_mse] # Inverted: 1 is perfect similarity (0 MSE) 

 

        # Normalize PSNR (higher is better) 

        min_psnr = min(all_psnr) if all_psnr else 0 

        max_psnr = max(all_psnr) if all_psnr else 1 # Avoid division by zero if only one image or all inf 

        scaled_psnr = min_max_scale(all_psnr, min_psnr, max_psnr) 

        # Handle inf PSNR: assign 1 (perfect similarity) 

        normalized_psnr = [1.0 if results[list(results.keys())[i]]['PSNR'] == float('inf') else scaled_psnr[i] for i in range(len(all_psnr))] 

 

        # Normalize SSIM (already 0-1, higher is better) - no scaling needed 

 

        # Normalize Color Hist Distance (lower is better, so invert) 

        min_color_dist, max_color_dist = min(all_color_dist), max(all_color_dist) 

        scaled_color_dist = min_max_scale(all_color_dist, min_color_dist, max_color_dist) 

        normalized_color_dist = [1 - s for s in scaled_color_dist] # Inverted: 1 is perfect similarity (0 distance) 



 

        # Normalize Edge Feat Distance (lower is better, so invert) 

        min_edge_dist, max_edge_dist = min(all_edge_dist), max(all_edge_dist) 

        scaled_edge_dist = min_max_scale(all_edge_dist, min_edge_dist, max_edge_dist) 

        normalized_edge_dist = [1 - s for s in scaled_edge_dist] # Inverted: 1 is perfect similarity (0 distance) 

 

        # Populate normalized results dictionary 

        metric_names = ['Normalized_MSE', 'SSIM', 'Normalized_PSNR', 'Color_Hist_Similarity', 'Edge_Feat_Similarity'] 

        # Rename distance metrics to similarity for clarity in the spider graph 

        normalized_results_list = [] 

        for i, name in enumerate(results.keys()): 

            normalized_results[name] = { 

                'Normalized_MSE': normalized_mse[i], 

                'SSIM': all_ssim[i], # SSIM is already similarity 

                'Normalized_PSNR': normalized_psnr[i], 

                'Color_Hist_Similarity': normalized_color_dist[i], # 1 - distance = similarity 

                'Edge_Feat_Similarity': normalized_edge_dist[i]   # 1 - distance = similarity 

            } 

            normalized_results_list.append([ 

                normalized_mse[i], 

                all_ssim[i], 

                normalized_psnr[i], 

                normalized_color_dist[i], 

                normalized_edge_dist[i] 

            ]) 

 

        # Convert to DataFrame for easier handling 

        df_normalized = pd.DataFrame.from_dict(normalized_results, orient='index') 

 

        print("\n--- Normalized Similarity Metrics (0-1, 1 is perfect similarity) ---") 

        print(df_normalized) 

 

        # --- Plotting Spider Graph --- 

        categories = list(df_normalized.columns) 

        N = len(categories) 

 

        # Calculate angle for each axis 

        angles = [n / float(N) * 2 * np.pi for n in range(N)] 

        angles += angles[:1] # Complete the circle 

 

        fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True)) 

 

        # Plot data 

        for i, (candidate_name, row) in enumerate(df_normalized.iterrows()): 

            values = row.values.flatten().tolist() 

            values += values[:1] # Complete the circle 

            # Use display names for the legend 

            display_name = candidate_name 

            if candidate_name == "Picture5.jpg": 

              display_name = "Ours, LoRA Fine-tuned Backbone (Fig. 5)" 



            elif candidate_name == "Picture22.jpg": 

              display_name = "LoRA 2nd Session Backbone (Fig. 22)" 

            elif candidate_name == "Picture24.jpg": 

              display_name = "LoRA 3rd Session Backbone (Fig. 24)" 

            ax.plot(angles, values, linewidth=2, linestyle='solid', label=display_name) 

            ax.fill(angles, values, alpha=0.25) 

 

        # Set labels and title 

        ax.set_thetagrids(np.degrees(angles[:-1]), categories) 

        ax.set_title("Image Similarity Metrics vs. Reference Image", va='bottom') 

        ax.grid(True) 

        ax.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1)) 

 

        # Set y-limits for the scale 0 to 1 

        ax.set_ylim(0, 1) 

        ax.set_yticks(np.arange(0, 1.1, 0.2)) # Set y-ticks at 0, 0.2, 0.4, ... 1.0 

        ax.set_yticklabels([f'{y:.1f}' for y in np.arange(0, 1.1, 0.2)]) # Label y-ticks 

 

        plt.show() 

 

        # --- Summarize Meaning of Spider Graph in a Table --- 

        print("\n--- Summary of Spider Graph Interpretation ---") 

        summary_data = { 

            'Metric': metric_names, 

            'Interpretation (Higher Value = More Similar)': [ 

                'Normalized Mean Squared Error (Lower MSE -> Higher Similarity)', 

                'Structural Similarity Index (Higher SSIM -> More Similar)', 

                'Normalized Peak Signal-to-Noise Ratio (Higher PSNR -> More Similar)', 

                'Color Histogram Similarity (Lower distance -> Higher Similarity)', 

                'Edge Feature Similarity (Lower distance -> Higher Similarity)' 

            ], 

            'Range': ['0 - 1', '0 - 1', '0 - 1', '0 - 1', '0 - 1'] 

        } 

        df_summary = pd.DataFrame(summary_data) 

        print(df_summary.to_markdown(index=False)) 

 

        # --- Explain Interpretation in English Text --- 

        print("\n--- Interpretation of the Spider Graph (English Text) ---") 

        print("The spider graph visualizes the similarity of the candidate images (Picture5.jpg, Picture24.jpg, Picture26.jpg) to the reference image (guo_xi.jpg) based on 

several image metrics.") 

        print("Each axis represents a different similarity metric, normalized to a range between 0 and 1.") 

        print("- A value closer to 1 on any axis indicates higher similarity to the reference image according to that specific metric.") 

        print("- A value closer to 0 indicates lower similarity (or higher difference).") 

        print("\nHere's what each metric represents:") 

        print("- **Normalized MSE (Mean Squared Error):** Measures the average squared difference between the pixel values of the two images. The value is inverted and 

normalized, so a higher value means lower error and thus higher similarity.") 

        print("- **SSIM (Structural Similarity Index):** Measures similarity in terms of structural information, luminance, and contrast. A higher SSIM value means the images 

are perceived as more similar by the human visual system.") 



        print("- **Normalized PSNR (Peak Signal-to-Noise Ratio):** Measures the ratio between the maximum possible power of a signal and the power of corrupting noise 

that affects the fidelity of its representation. The value is normalized, so a higher value generally indicates higher quality and similarity, often used for assessing lossy 

compression.") 

        print("- **Color Histogram Similarity:** Measures the similarity of the distribution of colors in the two images using the cosine similarity of their color histograms. A 

higher value means the images have a more similar overall color composition.") 

        print("- **Edge Feature Similarity:** Measures the similarity of the prominent edge patterns in the two images, calculated using the cosine similarity of flattened 

Canny edge maps. A higher value suggests similar structural outlines and features.") 

        print("\nBy observing the shape and area covered by each candidate's line on the spider graph, you can compare their overall similarity profile to the reference 

image across multiple dimensions. A candidate with a larger area covered by its line and values closer to the outer edge (1) is generally more similar to the reference 

image across the evaluated metrics.") 

        print("This helps identify which candidate images share more visual characteristics with the reference painting, providing quantitative insights into their 

resemblance.") 

 

    else: 

        print("No backbone candidates were successfully loaded.") 

 

else: 

    print(f"Could not load the reference image: {reference_image_name}. Please check the path.") 

 

 

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). 

Requirement already satisfied: Pillow in /usr/local/lib/python3.11/dist-packages (11.3.0) 

Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0) 

Requirement already satisfied: opencv-python in /usr/local/lib/python3.11/dist-packages (4.12.0.88) 

Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (2.0.2) 

Requirement already satisfied: scikit-image in /usr/local/lib/python3.11/dist-packages (0.25.2) 

Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.3) 

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1) 

Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.59.0) 

Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8) 

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (25.0) 

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.3) 

Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (2.9.0.post0) 

Requirement already satisfied: scipy>=1.11.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (1.16.1) 

Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (3.5) 

Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2.37.0) 

Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2025.6.11) 

Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (0.4) 

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib) (1.17.0) 

Loaded and resized reference image: guo_xi.jpg 

 

Loading and resizing backbone candidates: 

  - Picture5.jpg 

  - Picture22.jpg 

  - Picture24.jpg 

 



 
 

--- Calculating Image Similarity Metrics --- 

 

Comparing Picture5.jpg with guo_xi.jpg: 

  MSE: 26329.5265 

  PSNR: 3.9264 dB 

  SSIM: 0.2140 

  Color Histogram Cosine Distance: 0.9998 

  Edge Feature Cosine Distance: 0.9001 

 

Comparing Picture22.jpg with guo_xi.jpg: 

  MSE: 24373.5166 

  PSNR: 4.2616 dB 

  SSIM: 0.1833 

  Color Histogram Cosine Distance: 0.9999 

  Edge Feature Cosine Distance: 0.8906 

 

Comparing Picture24.jpg with guo_xi.jpg: 

  MSE: 21400.7392 

  PSNR: 4.8265 dB 

  SSIM: 0.1967 

  Color Histogram Cosine Distance: 1.0000 

  Edge Feature Cosine Distance: 0.9116 

 

--- Normalized Similarity Metrics (0-1, 1 is perfect similarity) --- 

               Normalized_MSE      SSIM  Normalized_PSNR  \ 

Picture5.jpg         0.000000  0.213994         0.000000    

Picture22.jpg        0.396854  0.183331         0.372439    

Picture24.jpg        1.000000  0.196690         1.000000    

 

               Color_Hist_Similarity  Edge_Feat_Similarity   

Picture5.jpg                1.000000              0.547626   

Picture22.jpg               0.374746              1.000000   

Picture24.jpg               0.000000              0.000000   



 
--- Summary of Spider Graph Interpretation --- 

| Metric                | Interpretation (Higher Value = More Similar)                        | Range   | 

|:----------------------|:--------------------------------------------------------------------|:--------| 

| Normalized_MSE        | Normalized Mean Squared Error (Lower MSE -> Higher Similarity)      | 0 - 1   | 

| SSIM                  | Structural Similarity Index (Higher SSIM -> More Similar)           | 0 - 1   | 

| Normalized_PSNR       | Normalized Peak Signal-to-Noise Ratio (Higher PSNR -> More Similar) | 0 - 1   | 

| Color_Hist_Similarity | Color Histogram Similarity (Lower distance -> Higher Similarity)    | 0 - 1   | 

| Edge_Feat_Similarity  | Edge Feature Similarity (Lower distance -> Higher Similarity)       | 0 - 1   | 

 

--- Interpretation of the Spider Graph (English Text) --- 

The spider graph visualizes the similarity of the candidate images (Picture5.jpg, Picture24.jpg, Picture26.jpg) to the reference image (guo_xi.jpg) based on several image 

metrics. 

Each axis represents a different similarity metric, normalized to a range between 0 and 1. 

- A value closer to 1 on any axis indicates higher similarity to the reference image according to that specific metric. 

- A value closer to 0 indicates lower similarity (or higher difference). 

 

Here's what each metric represents: 

- **Normalized MSE (Mean Squared Error):** Measures the average squared difference between the pixel values of the two images. The value is inverted and normalized, 

so a higher value means lower error and thus higher similarity. 

- **SSIM (Structural Similarity Index):** Measures similarity in terms of structural information, luminance, and contrast. A higher SSIM value means the images are 

perceived as more similar by the human visual system. 

- **Normalized PSNR (Peak Signal-to-Noise Ratio):** Measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects 

the fidelity of its representation. The value is normalized, so a higher value generally indicates higher quality and similarity, often used for assessing lossy compression. 

- **Color Histogram Similarity:** Measures the similarity of the distribution of colors in the two images using the cosine similarity of their color histograms. A higher value 

means the images have a more similar overall color composition. 

- **Edge Feature Similarity:** Measures the similarity of the prominent edge patterns in the two images, calculated using the cosine similarity of flattened Canny edge 

maps. A higher value suggests similar structural outlines and features. 

 

By observing the shape and area covered by each candidate's line on the spider graph, you can compare their overall similarity profile to the reference image across 

multiple dimensions. A candidate with a larger area covered by its line and values closer to the outer edge (1) is generally more similar to the reference image across the 

evaluated metrics. 

This helps identify which candidate images share more visual characteristics with the reference painting, providing quantitative insights into their resemblance. 



 


