Table 4 and Fig. 26 Data Analysis

The data stored in

/content/drive/My Drive/ShanShui/

1. guo_xi.jpg

2. Picture27a.jpg

3. Picture27b.jpg

4.

Please see the Zipped file named: ShanShui-20250813T111616Z-1-001.zip

from google.colab import drive

from PIL import Image

import matplotlib.pyplot as plt

import cv2

import numpy as np

import os

from skimage.metrics import structural_similarity as ssim
import pandas as pd

import math

# \Foude Goosgle Drive

drive.mount('/content/drive’)

# Install required libraries

Ipip install Pillow matplotlib opencv-python numpy scikit-image

# Define the directory containing the images

drive_dir = '/content/drive/My Drive/ShanShui'

# Define the list of Shanshui backbone candidates

backbone candidates = [Picture5.jpg', 'Picture22.jpg', 'Picture24.jpg']

# Define a reference image (example: guo_xi.jpg)
reference_image_name = 'suo_xijpg'

reference_image_path = os.path.join(drive_dir, reference_image name)

# Define a target size for resizing (adjust as needed)

target_size = (800, 600) # width, height

# Function to resize and load images
def load_and resize image(image_path, target_size):
try:
img = Image.open(image_path).convert('RGB") # Ensure image is in RGB format
img_resized = img.resize(target_size)
return img_resized
except FileNotFoundError:
print(f"Error: Image not found at {image_path}")

return None



except Exception as e:
print(f"Error loading or resizing image {image_path}: {e}")

return None

# Load and resize the reference image

reference_img_resized pil = load_and_resize_image(reference_image_path, target_size)

if reference_img_resized_pil:

print(f"Loaded and resized reference image: {reference_image_name}")

# Load, resize, and store backbone candidates
resized_candidates_pil = {}
print("\nLoading and resizing backbone candidates:")
for img_name in backbone_candidates:
img_path = os.path.join(drive_dir, img_name)
img_resized = load_and_resize_image(img_path, target_size)
if img_resized:
resized_candidates_pillimg_name] = img_resized

print(f" - {img_name}")

# Display the resized images for comparison
if resized_candidates_pil:
fig, axes = plt.subplots(1, len(resized_candidates_pil) + 1, figsize=(20, 5))
axes[0l.imshow(reference_img_resized_pil)
display_ref name = reference_image name
if reference_image _name == "guo xi.jpg":
display_ref_name = "Guo Xi's Shanshui"
axes[0].set_title(fReference: {display_ref nameN\n({target_size[O]}x{target size[1]}))

axes[0].axis('off)

for i, (name, img) in enumerate(resized_candidates_pil.items()):
axesli+1].imshow(img)
display_name = name
if name == "Picture5.jpg":
display_name = "Ours, LoRA Fine-tuned Backbone (Fig. 5)"
elif name == "Picture22.jpg":
display_name = "LoRA 2nd Session Backbone (Fig. 22)"
elif name == "Picture24.jpg":
display_name = "LoRA 3rd Session Backbone (Fig. 24)"
axesli+1].set_title(fCandidate: {display_nameRn({target_size[0]}x{target size[1]}))

axes[i+1].axis('off")

plt.tight layout()
plt.show()

# Convert PIL images to OpenCV format (numpy arrays) for metric calculations
reference_img_resized cv2 = cv2.cvtColor(np.array(reference_img resized pil), cv2.COLOR_RGB2BGR)

resized_candidates_cv2 = {name: cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) for name, img in resized_candidates_pil.items()}

# --- Image Metric Calculations ---



# Function to calculate MSE
def calculate_mse(img1, img2):
# The images must have the same dimension
if img1.shape != img2.shape:
raise ValueError("lImages must have the same dimensions for MSE calculation.”)
err = np.sum((imgl.astype(*float”) - img2.astype(*float")) ** 2)
err /= float(imgl.shape[0] * imgl.shape[1] * imgl.shape[2])

return err

# Function to calculate PSNR
def calculate_psnr(imgl, img2):
mse = calculate_mse(img1, img2)
if mse == 0: # MSE is zero means no noise, the images are identical
return float('inf)
max_pixel = 255.0 # For 8-bit images
psnr = 20 * math.log10(max_pixel / math.sgrt(mse))

return psnr

# Function to calculate SSIM
def calculate ssim(img1, img2):
# SSIM requires images to be grayscale or have the same channel count
# Ensure channel count matches or convert to grayscale
if imgl.shape[-1] == 3 and img2.shape[-1] ==
# Calculate SSIM on each channel and take the average
ssim_value = ssim(img1, img2, channel_axis=-1) # Use channel axis for multichannel images
elif imgl.shape == img2.shape:
# Assume grayscale
ssim_value = ssim(img1, img2)
else:
raise ValueError("lmages must have compatible dimensions and channels for SSIM.")

return ssim_value

# Function to calculate Color Histogram Cosine Distance
def calculate _color histogram_cosine_distance(imgl, img2):
# Calculate color histograms
histl = cv2.calcHist([img1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
# Normalize histograms
histl = cv2.normalize(hist1, hist1).flatten()
hist2 = cv2.normalize(hist2, hist2).flatten()
# Calculate cosine similarity
cosine_similarity = np.dot(hist1, hist2) / (np.linalg.norm(hist1) * np.linalg.norm(hist2))
# Cosine distance is 1 - cosine similarity
cosine_distance = 1 - cosine_similarity

return cosine_distance

# Function to calculate Edge Feature Cosine Distance (using Canny edges)

def calculate edge feature cosine_distance(imgl, img2):



# Convert to grayscale

grayl = cv2.cvtColor(imgl, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# Apply Canny edge detection

edges! = cv2.Canny(gray1, 100, 200)

edges2 = cv2.Canny(gray2, 100, 200)

# Flatten edge images to vectors

edgesl flat = edges!.flatten().astype(float)

edges?2 flat = edges2.flatten().astype(float)

# Calculate cosine similarity

# Handle cases where one or both edge images are all zeros (no edges detected)
norm1 = np.linalg.norm(edges1 flat)

norm2 = np.linalg.norm(edges2_flat)

if norm1 == 0 and norm2 == 0:

cosine_similarity = 1.0 # Identical (no edges)
elif norm1 == 0 or norm2 == 0:

cosine_similarity = 0.0 # One has edges, the other doesn't
else:

cosine_similarity = np.dot(edges! flat, edges2 flat) / (norm1 * norm2)

# Cosine distance is 1 - cosine similarity
cosine_distance = 1 - cosine_similarity

return cosine_distance

# Store results

results = {}

print("\n--- Calculating Image Similarity Metrics ---")

for name, img_candidate_cv2 in resized_candidates_cv2.items():
print(f\nComparing {name} with {reference_image _name}:")
# Ensure the candidate image is also in BGR format (OpenCV default)

# (already handled during conversion)

# Calculate metrics

mse = calculate_mse(reference_img_resized_cv2, img_candidate_cv2)

psnr = calculate_psnr(reference_img_resized_cv2, img_candidate_cv2)

ssim_val = calculate_ssim(reference_img_resized_cv2, img_candidate_cv2)

color_hist_dist = calculate_color_histogram_cosine_distance(reference_img_resized_cv2, img_candidate_cv2)

edge feat dist = calculate_edge feature cosine_distance(reference img_resized cv2, img_candidate_cv2)

print(f" MSE: {mse:.4f}")

print(f" PSNR: {psnr:.4f} dB")

print(f" SSIM: {ssim_val:.4f}")

print(f" Color Histogram Cosine Distance: {color_hist_dist:.4f}")
print(f" Edge Feature Cosine Distance: {edge_feat_dist:.4f}")

# Store results

resultsname] = {



'MSE": mse,

'PSNR': psnr,

'SSIM': ssim_val,
'Color_Hist_Cosine_Dist': color_hist_dist,

'Edge_Feat_Cosine Dist": edge_feat_dist

# -— Normalize and Prepare for Spider Graph ---

# We want all values between 0 and 1 for the spider graph.

# For SSIM and PSNR (similarity metrics), higher is better, scale directly.

# For MSE, Color Hist Distance, Edge Feat Distance (distance metrics), lower is better.

# We need to invert them or scale them such that higher value means more similar.

# Option: 1 - distance for distance metrics.

# Option: Normalize SSIM (already 0-1), PSNR needs scaling (log scale?), MSE needs scaling.

# Let's normalize all metrics to be between 0 and 1, where 1 means perfect similarity to the reference.

normalized_results = {}

# Collect all values for normalization

all_mse = [resMSE] for res in results.values()]

all_psnr = [res[PSNR1 for res in results.values() if res['PSNR I= float('inf)] # Exclude inf for normalization
all_ssim = [res['SSIMT for res in results.values()] # SSIM is already 0-1

all_color_dist = [res['Color_Hist_Cosine_Dist] for res in results.values()]

all_edge dist = [res[Edge Feat_Cosine_Dist'] for res in results.values()]

# Simple min-max scaling for metrics that are not already 0-1
def min_max_scale(values, min_val, max_val):
if max_val - min_val == 0:
return [0.5] * len(values) # Avoid division by zero, assign a neutral value

return [(v - min_val) / (max_val - min_val) for v in values]

# Normalize MSE (lower is better, so invert after scaling)
min_mse, max_mse = minall_mse), max(all_mse)
scaled_mse = min_max_scale(all_mse, min_mse, max_mse)

normalized_mse = [1 - s for s in scaled_mse] # Inverted: 1 is perfect similarity (0 MSE)

# Normalize PSNR (higher is better)

min_psnr = min(all_psnr) if all_psnr else 0

max_psnr = max(all_psnr) if all_psnr else 1 # Avoid division by zero if only one image or all inf
scaled_psnr = min_max_scale(all_psnr, min_psnr, max_psnr)

# Handle inf PSNR: assign 1 (perfect similarity)

normalized_psnr = [1.0 if resultslist(results.keysO)iI'PSNR] == float(inf') else scaled_psnr[i] for i in range(len(all_psnr))]

# Normalize SSIM (already 0-1, higher is better) - no scaling needed

# Normalize Color Hist Distance (lower is better, so invert)
min_color_dist, max_color_dist = min(all_color_dist), max(all_color_dist)
scaled_color_dist = min_max_scale(all_color dist, min_color_dist, max_color_dist)

normalized_color_dist = [1 - s for s in scaled_color_dist] # Inverted: 1 is perfect similarity (0 distance)



# Normalize Edge Feat Distance (lower is better, so invert)
min_edge_dist, max_edge_dist = min(all_edge_dist), max(all_edge_dist)
scaled_edge_dist = min_max_scale(all_edge_dist, min_edge_dist, max_edge_dist)

normalized_edge_dist = [1 - s for s in scaled_edge_dist] # Inverted: 1 is perfect similarity (0 distance)

# Populate normalized results dictionary
metric_names = ['Normalized MSE', 'SSIM', 'Normalized_PSNR!, ‘Color_Hist_Similarity', 'Edge_Feat_Similarity']
# Rename distance metrics to similarity for clarity in the spider graph
normalized results_list =[]
for i, name in enumerate(results.keys():
normalized_results[name] = {
'Normalized MSE": normalized _msel[i],
'SSIM': all_ssim[i], # SSIM is already similarity
'Normalized PSNR': normalized _psnrli],
'Color_Hist_Similarity": normalized_color_dist[i], # 1 - distance = similarity
'Edge_Feat_Similarity': normalized_edge_dist[i] # 1 - distance = similarity
}
normalized_results_list.append([
normalized_mseli],
all_ssiml[i],
normalized_psnr(i],
normalized color_dist[i],

normalized_edge dist[i]

# Convert to DataFrame for easier handling

df_normalized = pd.DataFrame.from_dict(normalized_results, orient='"index’)

print("\n--- Normalized Similarity Metrics (0-1, 1 is perfect similarity) ---")

print(df_normalized)

# --- Plotting Spider Graph ---
categories = list(df_normalized.columns)

N = len(categories)

# Calculate angle for each axis
angles = [n / float(N) * 2 * np.pi for n in range(N)]

angles += angles[:1] # Complete the circle

fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))

# Plot data
for i, (candidate_name, row) in enumerate(df normalized.iterrows()):
values = row.values flatten().tolist()
values += values[:1] # Complete the circle
# Use display names for the legend
display_name = candidate_name
if candidate_name == "Picture5.jpg":

"

display_name = "Ours, LoRA Fine-tuned Backbone (Fig. 5)



elif candidate_name == "Picture22.jpg":
display_name = "LoRA 2nd Session Backbone (Fig. 22)"
elif candidate_name == "Picture24.jpg":
display_name = "LoRA 3rd Session Backbone (Fig. 24)"
ax.plot(angles, values, linewidth=2, linestyle='solid', label=display_name)

axfill@angles, values, alpha=0.25)

# Set labels and title

ax.set_thetagrids(np.degrees(angles[:-1]), categories)

ax.set_title("Image Similarity Metrics vs. Reference Image", va='bottom’)
ax.grid(True)

ax.legend(loc="upper right', bbox_to_anchor=(1.3, 1.1))

# Set y-limits for the scale 0 to 1

ax.set_ylim(0, 1)

ax.set_yticks(np.arange(0, 1.1, 0.2)) # Set y-ticks at 0, 0.2, 0.4, ... 1.0
ax.set_yticklabels([f{y:.1f} for y in np.arange(0, 1.1, 0.2)]) # Label y-ticks

plt.show()

# -— Summarize Meaning of Spider Graph in a Table ---
print("\n--- Summary of Spider Graph Interpretation ---")
summary_data = {
'Metric": metric_names,
'Interpretation (Higher Value = More Similar)': [
'Normalized Mean Squared Error (Lower MSE -> Higher Similarity),
‘Structural Similarity Index (Higher SSIM -> More Similar),
'Normalized Peak Signal-to-Noise Ratio (Higher PSNR -> More Similar)',
'Color Histogram Similarity (Lower distance -> Higher Similarity)',
'Edge Feature Similarity (Lower distance -> Higher Similarity)'
it
'Range: [0-1,'0-1,'0-1,'0-1,'0- 17
}
df summary = pd.DataFrame(summary_data)

print(df_summary.to_markdown(index=False))

# --- Explain Interpretation in English Text ---

print("\n-— Interpretation of the Spider Graph (English Text) ---")

print("The spider graph visualizes the similarity of the candidate images (Picture5.jpg, Picture24.jpg, Picture26.jpg) to the reference image (guo_xi.jpg) based on
several image metrics.")

print("Each axis represents a different similarity metric, normalized to a range between 0 and 1.")

print("- A value closer to 1 on any axis indicates higher similarity to the reference image according to that specific metric.")

print("- A value closer to 0 indicates lower similarity (or higher difference).”)

print("\nHere's what each metric represents:")

print("- **Normalized MSE (Mean Squared Error):** Measures the average squared difference between the pixel values of the two images. The value is inverted and
normalized, so a higher value means lower error and thus higher similarity.")

print("- **SSIM (Structural Similarity Index):** Measures similarity in terms of structural information, luminance, and contrast. A higher SSIM value means the images

are perceived as more similar by the human visual system.")



"ok

print("-

Normalized PSNR (Peak Signal-to-Noise Ratio):** Measures the ratio between the maximum possible power of a signal and the power of corrupting noise

that affects the fidelity of its representation. The value is normalized, so a higher value generally indicates higher quality and similarity, often used for assessing lossy

compression.")

N %k,

print("-

Color Histogram Similarity:** Measures the similarity of the distribution of colors in the two images using the cosine similarity of their color histograms. A

higher value means the images have a more similar overall color composition.")

print("- **Edge Feature Similarity:** Measures the similarity of the prominent edge patterns in the two images, calculated using the cosine similarity of flattened

Canny edge maps. A higher value suggests similar structural outlines and features.")

print("\nBy observing the shape and area covered by each candidate's line on the spider graph, you can compare their overall similarity profile to the reference

image across multiple dimensions. A candidate with a larger area covered by its line and values closer to the outer edge (1) is generally more similar to the reference

image across the evaluated metrics.")

print("This helps identify which candidate images share more visual characteristics with the reference painting, providing quantitative insights into their

resemblance.”

else:

print("No backbone candidates were successfully loaded.")

else:

print(f"Could not load the reference image: {reference_image_name}. Please check the path.")

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive’, force_remount=True).

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:

Requirement already satisfied:

Pillow in /usr/local/lib/python3.11/dist-packages (11.3.0)

matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)

opencv-python in /usr/local/lib/python3.11/dist-packages (4.12.0.88)

numpy in /usr/local/lib/python3.11/dist-packages (2.0.2)

scikit-image in /usr/local/lib/python3.11/dist-packages (0.25.2)

contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.3)
cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)
fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.59.0)
kiwisolver>=1.3.1 in /ust/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)
packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (25.0)
pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.3)
python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (2.9.0.post0)
scipy>=1.11.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (1.16.1)
networkx>=3.0 in /ust/local/lib/python3.11/dist-packages (from scikit-image) (3.5)
imageiol=2.35.0,>=2.33 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2.37.0)
tifffile>=2022.8.12 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (2025.6.11)
lazy-loader>=0.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image) (0.4)

six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)

Loaded and resized reference image: guo_xi.jpg

Loading and resizing backbone candidates:

- Pictureb.jpg
- Picture22.jpg
- Picture24.jpg



Reference: Guo Xi's Shanshui Candidate: Ours, LoRA Fine-tuned Backbone (Fig. 5) Candidate: LoRA 2nd Session Backbone (Fig. 22) Candidate: LoRA 3rd Session Backbone (Fig. 24)
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- Calculating Image Similarity Metrics -

Comparing Pictureb.jpg with guo_xi.jpg:
MSE: 26329.5265
PSNR: 3.9264 dB
SSIM: 0.2140
Color Histogram Cosine Distance: 0.9998

Edge Feature Cosine Distance: 0.9001

Comparing Picture22.jpg with guo_xi.jpg:
MSE: 24373.5166
PSNR: 4.2616 dB
SSIM: 0.1833
Color Histogram Cosine Distance: 0.9999

Edge Feature Cosine Distance: 0.8906

Comparing Picture24.jpg with guo_xi.jpg:
MSE: 21400.7392
PSNR: 4.8265 dB
SSIM: 0.1967
Color Histogram Cosine Distance: 1.0000

Edge Feature Cosine Distance: 0.9116

--- Normalized Similarity Metrics (0-1, 1 is perfect similarity) ---
Normalized MSE ~ SSIM Normalized PSNR \
Picture5.jpg 0.000000 0.213994 0.000000
Picture22.jpg 0.396854 0.183331 0.372439
Picture24.jpg 1.000000 0.196690 1.000000

Color_Hist_Similarity Edge Feat Similarity
Picture5.jpg 1.000000 0.547626
Picture22.jpg 0.374746 1.000000
Picture24.jpg 0.000000 0.000000



= 0urs, LoRA Fine-tuned Backbone (Fig. 5)

Image Similarity Metrics vs. Reference Im~—— LoRA 2nd Session Backbone (Fig. 22)
SSIM ——— LORA 3rd Session Backbone (Fig. 24)

Normalized PSNR

alized_MSE

Color_Hist_Sil

dge_Feat_Similarity

-~ Summary of Spider Graph Interpretation ---

| Metric | Interpretation (Higher Value = More Similar) | Range |

: : [—

| Normalized MSE | Normalized Mean Squared Error (Lower MSE -> Higher Similarity) | 0-1 |
| SSIM | Structural Similarity Index (Higher SSIM -> More Similar) [0-1 |

| Normalized PSNR | Normalized Peak Signal-to-Noise Ratio (Higher PSNR -> More Similar) [0 - 1 |

| Color Hist_Similarity | Color Histogram Similarity (Lower distance -> Higher Similarity) |0-1 |
| Edge Feat Similarity | Edge Feature Similarity (Lower distance -> Higher Similarity) [0-1 |

--- Interpretation of the Spider Graph (English Text) ---

The spider graph visualizes the similarity of the candidate images (Picture5.jpg, Picture24.jpg, Picture26.jpg) to the reference image (guo_xi.jpg) based on several image
metrics.

Each axis represents a different similarity metric, normalized to a range between 0 and 1.

- A value closer to 1 on any axis indicates higher similarity to the reference image according to that specific metric.

- A value closer to 0 indicates lower similarity (or higher difference).

Here's what each metric represents:

- **Normalized MSE (Mean Squared Error):** Measures the average squared difference between the pixel values of the two images. The value is inverted and normalized,
so a higher value means lower error and thus higher similarity.

- **SSIM (Structural Similarity Index):** Measures similarity in terms of structural information, luminance, and contrast. A higher SSIM value means the images are
perceived as more similar by the human visual system.

- **Normalized PSNR (Peak Signal-to-Noise Ratio):** Measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects
the fidelity of its representation. The value is normalized, so a higher value generally indicates higher quality and similarity, often used for assessing lossy compression.

- **Color Histogram Similarity:** Measures the similarity of the distribution of colors in the two images using the cosine similarity of their color histograms. A higher value
means the images have a more similar overall color composition.

- **Edge Feature Similarity:** Measures the similarity of the prominent edge patterns in the two images, calculated using the cosine similarity of flattened Canny edge

maps. A higher value suggests similar structural outlines and features.

By observing the shape and area covered by each candidate's line on the spider graph, you can compare their overall similarity profile to the reference image across
multiple dimensions. A candidate with a larger area covered by its line and values closer to the outer edge (1) is generally more similar to the reference image across the
evaluated metrics.

This helps identify which candidate images share more visual characteristics with the reference painting, providing quantitative insights into their resemblance.






