The data are stored in /content/drive/My Drive/ in the subfolders
1. LoRA
2. LoRA-afterAd;j
Please see the Zipped files named:
- LoRA-20250813T1055332-1-001.zip
- LoRA-afterAdj-20250813T105534Z-1-001.zip

Codes (run using Jupyter Notebook on Google Colab)

- A1 PSNR Lz

- A1 SSIM YaIuAaY row wag weas col

- AN Saliency Maps

Lﬁa@mmmiauuazmmﬁw uane 1y % anuwilounseanuuanang u
- ﬁfgﬂm’mwmwmm Ju spider graph

- ayUamumnevesAine Wu chart 3 7

- 95UreAMMLNELTU text in English

import pandas as pd

import os

import numpy as np

from PIL import Image

Removed tensorflow and tensorflow_hub as they are no longer needed for FID
from skimage.metrics import structural_similarity as ssim

from skimage.metrics import peak_signal_noise_ratio as psnr

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import cv2 # OpenCV for Saliency Maps

import plotly.graph_objects as go # Import plotly for interactive 3D scatter plot

Mount Google Drive
from google.colab import drive

drive.mount('/content/drive’)

Define the directory containing the images
image_dir = '/content/drive/My Drive/LoRA'
rows = 5

cols =5

Define target image size

target_size = (256, 256)

Function to load and resize image
def load_and _resize_image(filepath):
try:
img = Image.open(filepath).convert(RGB') # Ensure RGB format
img_resized = img.resize(target_size)
return np.array(img_resized)
except Exception as e:
print(f"Error loading or resizing image {filepath}: {e}")

return None

Load and resize images

images = {}

for rin range(1, rows + 1):

for ¢ in range(1, cols + 1):
filename = fr{ric{c}.jpg'
filepath = os.path.join(image_dir, filename)
if os.path.exists(filepath):
images|(r,)] = load_and resize_image(filepath)

else:

print(f'image not found: {filepath}")

Remove None values (for images that failed to load)

images = {k: v for k, v in images.items() if v is not None}

-—— PSNR and SSIM Calculation ---

def calculate psnr_ssim(imgl, img2):
PSNR requires integer input (0-255 range)
imgl_int = (img1 * 255).astype(np.uint8) if imgl.max() <= 1.0 else imgl.astype(np.uint8)
img2_int = (img2 * 255).astype(np.uint8) if img2.max() <= 1.0 else img2.astype(np.uint8)

SSIM works best with grayscale for simplicity, or with multichannel=True
For color images, calculating per channel and averaging or using multichannel=True is common

ssim_val = ssim(img1_int, img2_int, multichannel=True, channel_axis=2, data_range=img1_int.max() - imgl_int.min())

PSNR

psnr_val = psnr(imgl_int, img2_int, data_range=imgl_int.max() - img1_int.min())

return psnr_val, ssim_val

--- Calculate Metrics ---
row_metrics = {}
col_metrics = {}

Removed saliency maps initialization as it's in a separate cell

Calculate Row-wise Metrics (compare each image in a row to the first image in that row)
print("Calculating Row-wise Metrics...")
for rin range(1, rows + 1):
row_images = [images((r, 0)] for c in range(l, cols + 1) if (r, ¢) in images]
if len(row_images) > 1:
ref_image = row_images[0]
row_psnrs = []
row_ssims = [J
for i in range(1, len(row_images)):
img = row_images|i]
psnr_val, ssim_val = calculate_psnr_ssim(ref_image, img)
row_psnrs.append(psnr_val)

row_ssims.append(ssim_val)

Calculate average metrics for the row (excluding comparison of the first image to itself)
row_metrics[frow {r}] = {
'PSNR': np.mean(row_psnrs) if row_psnrs else np.nan,
'SSIM": np.mean(row_ssims) if row_ssims else np.nan
}
else:
row_metrics[frow {r}] = {PSNR": np.nan, 'SSIM": np.nan}

print(f"Not enough images in row {1} to calculate metrics.")

Calculate Column-wise Metrics (compare each image in a column to the first image in that column)
print("Calculating Column-wise Metrics...")
for ¢ in range(1, cols + 1):
col_images = [images((r, ¢)] for r in range(1, rows + 1) if (r, ¢) in images]
if len(col_images) > 1:
ref image = col_images[0]
col_psnrs = (]
col_ssims =[]
for i in range(1, len(col_images)):
img = col_imagesl[i]
psnr_val, ssim_val = calculate_psnr_ssim(ref_image, img)
col_psnrs.append(psnr_val)
col_ssims.append(ssim_val)
Calculate average metrics for the column (excluding comparison of the first image to itself)
col_metrics[f'col_{c}] = {
'PSNR': np.mean(col_psnrs) if col_psnrs else np.nan,
'SSIM": np.mean(col_ssims) if col_ssims else np.nan
}
else:
col_metrics[fcol {c}] = {PSNR": np.nan, 'SSIM": np.nan}

print(f"Not enough images in column {c} to calculate metrics.")

--- Display Results -

print("\n--—- Row Metrics ---")
for row, metrics in row_metrics.items():
print(f"{row}.")
print(f" Average PSNR: {metrics[PSNR]:.2f}")
print(f" Average SSIM: {metrics['SSIM'] * 100:.2f}%") # SSIM is typically 0-1, convert to %

print("\n-—- Column Metrics ---")
for col, metrics in col_metrics.items():
print(f'"{col}:")
print(f" Average PSNR: {metrics[PSNR]:.2f}")
print(f" Average SSIM: {metrics['SSIM'] * 100:.2f}%") # SSIM is typically 0-1, convert to %

Removed Saliency Map display section

--- Summarize Metrics in % Similarity/Difference ---

def get_similarity percentage(metric_name, value):

if pd.isna(value):
return np.nan

elif metric_name == 'PSNR":
Higher PSNR means higher similarity (lower noise/difference).
PSNR is in dB. A PSNR of 20-25 dB is typically considered low quality, 30-40 dB good.
Let's map PSNR to a 0-100% scale. This is also heuristic.
A PSNR of 40+ could be considered near 100% similarity.
A PSNR of 10 could be considered low similarity.
max_plausible_psnr = 40.0 # Adjusted max plausible PSNR
min_plausible_psnr = 10.0 # Adjusted min plausible PSNR
similarity = max(0, min(100, 100 * (value - min_plausible_psnr) / (max_plausible_psnr - min_plausible_psnr)))
return similarity

elif metric_name == 'SSIM":
SSIM is already on a scale of 0-1, representing similarity.
return value * 100

else:

return np.nan

row_sim_percent = {}

col_sim_percent = {}

for row, metrics in row_metrics.items():
row_sim_percent[row] = {
'PSNR': get_similarity_percentage(PSNR', metrics[PSNR'),
'SSIM': get_similarity_percentage('SSIM', metrics['SSIM'])

for col, metrics in col_metrics.items():
col_sim_percent[col] = {
'PSNR': get_similarity_percentage(PSNR', metrics[PSNR'),
'SSIM': get_similarity_percentage('SSIM', metrics['SSIM'])

print("\n--- Row Similarity/Difference (%) ---")

for row, sim in row_sim_percent.items():
print(f"{row}.")
print(f" Average PSNR Similarity: {sim['PSNR:.2f}%")
print(f" Average SSIM Similarity: {sim['SSIM:.2f}%")

print("\n--—- Column Similarity/Difference (%) --")

for col, sim in col_sim_percent.items():
print(f'"{col}:")
print(f" Average PSNR Similarity: {sim['PSNR:.2f}%")
print(f" Average SSIM Similarity: {sim['SSIM:.2f}%")

--- Data Preparation for Plotting ---

Prepare data for Spider Graph and 3D Scatter Plot
metrics_labels = ['PSNR Similarity', 'SSIM Similarity']

Data for Row Spider Graph

row_spider_values = [np.nanmean({m['PSNR] for m in row_sim_percent.values()]),
np.nanmean([m['SSIM] for m in row_sim_percent.values()])]

Ensure values are within 0-100 range for plotting

row_spider_values = [max(0, min(100, v)) if not np.isnan(v) else 0 for v in row_spider_values]

row_spider_values += row_spider_values[:1] # Close the circle

Data for Column Spider Graph

col_spider_values = [np.nanmean((m['PSNR'] for m in col_sim_percent.values()]),
np.nanmean([m(['SSIM for m in col_sim_percent.values()])]

Ensure values are within 0-100 range for plotting

col_spider_values = [max(0, min(100, v)) if not np.isnan(v) else 0 for v in col_spider_values]

col_spider values += col_spider values[:1] # Close the circle

Data for 3D Scatter Plot
scatter data =[]
for row_label, metrics in row_sim_percent.items():
scatter data.append({
'Group': row_label,
'PSNR Similarity': metrics[PSNRT if not np.isnan(metrics[PSNR) else 0,
'SSIM Similarity': metrics['SSIMT if not np.isnan(metrics['SSIM']) else 0,

Type': 'Row'

for col_label, metrics in col_sim_percent.items():
scatter_data.append({
'Group': col_label,
'PSNR Similarity': metrics[PSNRT if not np.isnan(metrics[PSNR) else 0,
'SSIM Similarity': metrics['SSIMT if not np.isnan(metrics['SSIM']) else 0,

Type': 'Column'’

scatter_df = pd.DataFrame(scatter data)

--- Generate Spider Graphs -

print("\n-- Spider Graph Summary ---")

angles = np.linspace(0, 2 * np.pi, len(metrics_labels), endpoint=False).tolist()

angles += angles[:1] # Close the circle

Row Spider Graph
fig_row_spider = go.Figure(
data=go.Scatterpolar(
r=row_spider_values,
theta=metrics_labels + [metrics_labels[0]],
fill="toself,
name="'Average Row Similarity'
),
layout=go.Layout(
polar=dict(
radialaxis=dict(
visible=True,

range=[0, 100] # Percentage range

),
title="Average Row Similarity Metrics (Spider Graph)

)

fig_row_spider.show()

Column Spider Graph
fig_col_spider = go.Figure(
data=go.Scatterpolar(
r=col_spider_values,
theta=metrics_labels + [metrics_labels[0]],
fill="toself,
name="'Average Column Similarity’
),
layout=go.Layout(
polar=dict(
radialaxis=dict(
visible=True,

range=[0, 100] # Percentage range

),
title='Average Column Similarity Metrics (Spider Graph)'

)
fig_col_spider.show()

--- Generate Interactive 3D Scatter Plot -

print("\n-- 3D Scatter Plot Summary ---")

fig_scatter = go.Figure(data=[go.Scatter3d(
x=scatter_dff PSNR Similarity'],
y=scatter dff'SSIM Similarity'],
z=scatter_df[Type'l, # Using Type for the third dimension (categorical)
mode="markers’,
marker=dict(
size=8,
color=scatter_dff' PSNR Similarity'], # Color by PSNR similarity
colorscale="Viridis',
opacity=0.8
),
text=scatter dff'Group'], # Label points with Row/Column name
hoverinfo="text+x+y+z'

)

Update layout for 3D scatter plot
fig_scatter.update_layout(
title='"PSNR vs SSIM Similarity by Row/Column (3D Scatter Plot),
scene=dict(
xaxis_title='"PSNR Similarity (%)’
yaxis_title='SSIM Similarity (%),
zaxis_title='Group Type' # Label for the categorical z-axis
),
margin=dict(l=0, r=0, b=0, t=40)

fig_scatter.show()

--- Explanation in English -

print("\n-— Explanation of Results ---")

print("English Explanation:")

print("\nimage Loading and Resizing:")
print(f"- Images from '/content/drive/My Drive/LoRA" were loaded and resized to {target_size[0]}x{target_size[1]} pixels to ensure consistent dimensions for metric

calculations.")

print("\nMetrics Calculated:")

Updated explanation to only include PSNR and SSIM

print("- **PSNR (Peak Signal-to-Noise Ratio):** Quantifies the difference between two images by measuring the ratio of maximum possible power of a signal to the power
of corrupting noise that affects the fidelity of its representation. A *higher* PSNR value indicates a higher quality image relative to a reference image, and thus greater
similarity.")

print("- **SSIM (Structural Similarity Index Measure):** Evaluates the similarity between two images based on three key factors: luminance, contrast, and structure. SSIM is

designed to be a better measure of perceived similarity than PSNR. A value closer to 1 (or 100%) indicates higher structural similarity.")

Removed FID and Saliency Maps from explanation

print("\\nRow and Column Metrics Summary:")

print("- The tables for 'Row Metrics' and 'Column Metrics' show the average values of PSNR, and SSIM for each row and column, respectively. For rows/columns with
more than one image, these metrics are calculated by comparing each image in that row/column to the first image in that row/column, and then averaging the results.")
print(f'- PSNR and SSIM values are presented, with SSIM converted to percentage for easier interpretation (higher percentage is better).")

print("- The 'Row Similarity/Difference (%) and 'Column Similarity/Difference (%)' tables provide a summary where PSNR and SSIM are shown as percentages of similarity.")

print("\nSpider Graph Summary:")
Updated explanation and metrics labels and separate graphs
print("- Two spider graphs are presented: one for the average row similarity metrics and one for the average column similarity metrics. These graphs visually summarize

the average PSNR and SSIM similarity scores, allowing for a quick comparison of overall similarity levels between rows and columns.")

print("\n3D Scatter Plot Summary:")

Updated explanation and metrics labels and separate graphs

print("- A 3D scatter plot visualizes the PSNR and SSIM similarity scores for each individual row and column. Each point represents a row or column, with its position
determined by its PSNR and SSIM similarity percentages. The third dimension (z-axis) separates the points by group type (Row or Column). This plot allows you to see the

distribution and potential clustering of similarity scores for each group.")

print("\nOverall Interpretation:")
Updated explanation
print("- By examining these metrics and visualizations, you can gain insights into the visual similarity and differences between the images in your dataset, both within rows

and within columns. Higher PSNR, and higher SSIM values suggest greater similarity.")

Mounted at /content/drive
Calculating Row-wise Metrics...

Calculating Column-wise Metrics...

- Row Metrics —
row_1:

Average PSNR: 12.75

Average SSIM: 45.69%
row_2:

Average PSNR: 11.59

Average SSIM: 37.93%
row_3:

Average PSNR: 11.10

Average SSIM: 36.03%
row_4:

Average PSNR: 9.97

Average SSIM: 32.53%
row_5:

Average PSNR: 10.37

Average SSIM: 31.98%

--- Column Metrics ---
col_1:
Average PSNR: 10.88
Average SSIM: 38.75%
col_2:
Average PSNR: 11.07
Average SSIM: 34.81%

col_3:
Average PSNR: 11.19
Average SSIM: 35.50%
col_4:
Average PSNR: 11.88
Average SSIM: 41.08%
col_5:
Average PSNR: 12.33
Average SSIM: 36.56%

--- Row Similarity/Difference (%) ---
row_1:

Average PSNR Similarity: 9.15%

Average SSIM Similarity: 45.69%
row_2:

Average PSNR Similarity: 5.29%

Average SSIM Similarity: 37.93%
row_3:

Average PSNR Similarity: 3.68%

Average SSIM Similarity: 36.03%
row_4:

Average PSNR Similarity: 0.00%

Average SSIM Similarity: 32.53%
row_5:

Average PSNR Similarity: 1.22%

Average SSIM Similarity: 31.98%

- Column Similarity/Difference (%) ---
col_1:

Average PSNR Similarity: 2.93%

Average SSIM Similarity: 38.75%
col_2:

Average PSNR Similarity: 3.56%

Average SSIM Similarity: 34.81%
col_3:

Average PSNR Similarity: 3.96%

Average SSIM Similarity: 35.50%
col_4:

Average PSNR Similarity: 6.25%

Average SSIM Similarity: 41.08%
col_5:

Average PSNR Similarity: 7.75%

Average SSIM Similarity: 36.56%

--- Spider Graph Summary ---

Average Column Similarity Metrics (Spider Graph)

SSIM Similarity — PSNR Similarity
0 20 40 60 80 100

Average Row Similarity Metrics (Spider Graph)

SSIM Similarity ”— PSNR Similarity
0O 20 40 60 80 100

- 3D Scatter Plot Summary ---
PSNR vs SSIM Similarity by Row/Column (3D Scatter Plot)

@(\
® .. ®
G’\é []
% ° ° &
2 2 &
el 6‘\;\/ >
> < >
3 ¢+ F
S 2
6 £
Ssy, o &5
i, v 8 &
Yy g 5
%) ®

--- Explanation of Results ---

English Explanation:

Image Loading and Resizing:

- Images from '/content/drive/My Drive/LoRA" were loaded and resized to 256x256 pixels to ensure consistent dimensions for metric calculations.

Metrics Calculated:

- **PSNR (Peak Signal-to-Noise Ratio):** Quantifies the difference between two images by measuring the ratio of maximum possible power of a signal to the power of
corrupting noise that affects the fidelity of its representation. A *higher* PSNR value indicates a higher quality image relative to a reference image, and thus greater
similarity.

- **SSIM (Structural Similarity Index Measure):** Evaluates the similarity between two images based on three key factors: luminance, contrast, and structure. SSIM is

designed to be a better measure of perceived similarity than PSNR. A value closer to 1 (or 100%) indicates higher structural similarity.

Row and Column Metrics Summary:

- The tables for 'Row Metrics' and 'Column Metrics' show the average values of PSNR, and SSIM for each row and column, respectively. For rows/columns with more than
one image, these metrics are calculated by comparing each image in that row/column to the first image in that row/column, and then averaging the results.

- PSNR and SSIM values are presented, with SSIM converted to percentage for easier interpretation (higher percentage is better).

- The 'Row Similarity/Difference (%) and 'Column Similarity/Difference (%)' tables provide a summary where PSNR and SSIM are shown as percentages of similarity.

Spider Graph Summary:
- Two spider graphs are presented: one for the average row similarity metrics and one for the average column similarity metrics. These graphs visually summarize the

average PSNR and SSIM similarity scores, allowing for a quick comparison of overall similarity levels between rows and columns.

3D Scatter Plot Summary:
- A 3D scatter plot visualizes the PSNR and SSIM similarity scores for each individual row and column. Each point represents a row or column, with its position
determined by its PSNR and SSIM similarity percentages. The third dimension (z-axis) separates the points by group type (Row or Column). This plot allows you to see the

distribution and potential clustering of similarity scores for each group.

Overall Interpretation:
- By examining these metrics and visualizations, you can gain insights into the visual similarity and differences between the images in your dataset, both within rows and

within columns. Higher PSNR, and higher SSIM values suggest greater similarity.

import os

import numpy as np

import cv2

from skimage.metrics import peak_signal_noise_ratio, structural_similarity
from scipy.spatial import distance

from google.colab import drive

import plotly.express as px

import pandas as pd

from PIL import Image

Mount Google Drive

drive.mount('/content/drive’)

Define the directory
image_dir = '/content/drive/My Drive/LoRA'

Define target size for resizing

target_size = (256, 256)

Function to resize images
def resize_image(img_path, target size):
img = cv2.imread(img_path)
if img is None:
return None

return cv2.resize(img, target_size)

Function to calculate Color Histogram Cosine Distance

def color_hist distance(imgl, img2):
histl = cv2.calcHist(fimg1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist1 = cv2.normalize(hist1, hist1).flatten()
hist2 = cv2.normalize(hist2, hist2).flatten()

return distance.cosine(hist1, hist2)

Function to calculate Edge Feature Cosine Distance (using Canny edge detection)
def edge feature distance(imgl, img2):
edgesl = cv2.Canny(cv2.cvtColor(imgl, cv2.COLOR BGR2GRAY), 100, 200)
edges2 = cv2.Canny(cv2.cvtColor(img2, cv2.COLOR BGR2GRAY), 100, 200)
edgesl = edgesl.flatten()
edges2 = edges2.flatten()
Pad with zeros if lengths are different (can happen with Canny)
max_len = max(len(edges1), len(edges2))
edgesl = np.pad(edges1, (0, max_len - len(edges1)), 'constant’)
edges2 = np.pad(edges2, (0, max_len - len(edges2)), 'constant’)

return distance.cosine(edges!, edges2)

Load and resize images

images = {}

for rin range(1, 6):

for ¢ in range(1, 6):
img_name = f'r{r}c{c}.jpg’
img_path = os.path.join(image_dir, img_name)
resized_img = resize_image(img_path, target_size)
if resized_img is not None:
images|(r, c)] = resized img

else:

print(f"Warning: Could not load or resize {img_name}")

Calculate metrics for each row and column
row_metrics = {}

col_metrics = {}

Calculate metrics for rows
for rin range(1, 6):
row_images = [images((r, 0)] for c in range(l, 6) if (r, ¢) in images]
if len(row_images) > 1:
psnr_list =[]
ssim_list =[]

mse_list = []

color_hist_list =[]

edge feature list = []

for i in range(len(row_images)):

for jin range(i + 1, len(row_images)):

imgl = row_imagesli]
img2 = row_images][j]
psnr_list.append(peak_signal noise_ratio(img1, img2))
ssim_list.append(structural_similarity(img1, img2, channel_axis=2))
mse_list.append(np.mean((imgl - img2)**2))
color_hist_list.append(color_hist_distance(imgl, img2))

edge feature_list.append(edge feature distance(imgl, img2))

Aggregate metrics for the row (e.g., average)
row_metrics[fRow {r}] = {
'PSNR': np.mean(psnr_list) if psnr_Llist else np.nan,
'SSIM': np.mean(ssim_list) if ssim_list else np.nan,
'MSE": np.mean(mse_Llist) if mse_list else np.nan,
'Color Hist_Dist': np.mean(color_hist_list) if color_hist_list else np.nan,

'Edge Feature Dist: np.mean(edge feature list) if edge feature_list else np.nan

Calculate metrics for columns
for ¢ in range(l, 6):
col_images = [images((r, 0)] for r in range(1, 6) if (r,) in images]
if len(col_images) > 1:
psnr_list =[]
ssim_list =[]
mse_list = []
color_hist_list =[]
edge feature list = []
for i in range(len(col_images)):
for j in range(i + 1, len(col_images)):
imgl = col_imagesl[i]
img2 = col_imagesl[j]
psnr_list.append(peak_signal noise_ratio(img1, img2))
ssim_list.append(structural_similarity(img1, img2, channel_axis=2))
mse_list.append(np.mean((imgl - img2)**2))
color_hist_list.append(color_hist_distance(imgl, img2))
edge feature_listappend(edge feature distance(imgl, img2))

Aggregate metrics for the column (e.g., average)
col_metrics[fCol {c}] = {
'PSNR': np.mean(psnr_list) if psnr_Llist else np.nan,
'SSIM': np.mean(ssim_list) if ssim_list else np.nan,
'MSE": np.mean(mse_Llist) if mse_list else np.nan,
'Color Hist_Dist': np.mean(color_hist_list) if color_hist_list else np.nan,

'Edge Feature Dist: np.mean(edge feature list) if edge feature_list else np.nan

Combine row and column metrics

all_metrics = {**row_metrics, **col_metrics}

Normalize metrics to be between 0 and 1
Note: PSNR and SSIM are typically higher for more similarity, MSE and distances are lower.
We'll normalize similarity metrics (PSNR, SSIM) directly, and inverse distance metrics (MSE, distances) for consistency in spider plot.

A higher value on the spider plot means more *similarity*.

normalized_metrics = {}

metrics_df = pd.DataFrame.from_dict(all_metrics, orient='index)

Normalize metrics to be between 0 and 1 (higher = more similar)

For PSNR and SSIM, directly normalize (min-max scaling)

metrics_ dfPSNR_norm’] = (metrics_dfl'PSNR'] - metrics_dff' PSNR].min() / (metrics_dfl'PSNR.max() - metrics_df['PSNR].min())
metrics_df['SSIM_norm'] = metrics_dff'SSIM] # SSIM is already 0-1

For MSE, Color_Hist_Dist, Edge_Feature_Dist, inverse normalize (higher distance/error means less similar)

We'll use 1 - normalized distance/error, so a higher value indicates more similarity

metrics_dfMSE _norm’] = 1 - (metrics_dff MSE'] - metrics_dfl'MSE'].min()) / (metrics_dfl' MSE'].max() - metrics_dfl' MSE'.min())

metrics_dff'Color_Hist_Sim] = 1 - (metrics_dff'Color_Hist_Dist'] - metrics_dfl'Color_Hist_Dist].min()) / (metrics_dff'Color_Hist_Dist'l.max() - metrics_dff'Color_Hist_Dist].min())
metrics_df[Edge Feature_Sim = 1 - (metrics_dfl'Edge_Feature_Dist] - metrics_dfl'Edge_Feature_Dist].min()) / (metrics_df[Edge_Feature_Dist].max() -
metrics_df[Edge_Feature_Dist].min())

Select normalized similarity columns and rename for spider plot
spider_df = metrics_df[[[PSNR_norm’, 'SSIM_norm', '"MSE_norm', 'Color_Hist_Sim', 'Edge_Feature_SimT].copy()
spider_df.columns = ['PSNR Similarity', 'SSIM Similarity', 'MSE Similarity', 'Color Histogram Similarity’, 'Edge Feature Similarity']

spider_df = spider_df.reset_index().rename(columns={'index": 'Group'})

Convert to long format for Plotly Express spider plot

spider_long_df = spider_df.melt(id_vars='Group', var_name='Metric', value_name='Similarity)

Create Spider Graph

fig_spider = px.line_polar(spider_long_df, r="Similarity", theta="Metric", color="Group", line_close=True,
title="Image Similarity Metrics (Normalized)")

fig_spider.update_traces(fill="toself)

fig_spider.show()

Summarize Spider Graph meaning in a table
spider_summary = {
"Metric": [PSNR Similarity’, 'SSIM Similarity', 'MSE Similarity’, 'Color Histogram Similarity’, 'Edge Feature Similarity’],
"Meaning (Higher Value)": [
"Higher Peak Signal-to-Noise Ratio (better image quality, less noise/loss from compression/processing)”,
"Higher Structural Similarity Index (more similar perceived structure/texture)",
"Lower Mean Squared Error (less average pixel difference, higher similarity)", # Note: MSE_norm is 1-MSE, so higher means lower MSE
"Lower Color Histogram Cosine Distance (more similar color distribution, higher similarity)", # Note: Color Hist_Sim is 1-dist, so higher means lower distance
"Lower Edge Feature Cosine Distance (more similar edge patterns, higher similarity)" # Note: Edge Feature Sim is 1-dist, so higher means lower distance
1
"Interpretation": [
"Measures pixel-level difference, sensitive to noise.",

"Measures structural similarity based on luminance, contrast, and structure.”,

"Measures average squared difference between pixels.",
"Compares the overall distribution of colors.",

"Compares the patterns of edges in the images."

}

spider_summary_df = pd.DataFrame(spider_summary)
print("\n-- Spider Graph Metric Summary ---")

from IPython.display import display
display(spider_summary_df)

Create 3D Scatter Plot
We can choose three relevant metrics to plot in 3D
scatter_df = metrics_df.reset_index().rename(columns={index’: 'Group'})
fig_scatter_3d = px.scatter_3d(scatter df,
x='PSNR_norm’,
y='SSIM_norm’,
z='Color_Hist_Sim',
color='Group/,
hover_name='Group',

title="3D Scatter Plot of Image Similarity Metrics (Normalized)')

fig_scatter_3d.update_layout(scene = dict(
xaxis_title="PSNR Similarity’,
yaxis_title='SSIM Similarity’,

zaxis_title='Color Histogram Similarity))

fig_scatter_3d.show()

Explanation of the 3D Scatter Plot

print("\n-— 3D Scatter Plot Explanation ---")

print("This 3D scatter plot visualizes the relationships between three different image similarity metrics (PSNR Similarity, SSIM Similarity, and Color Histogram Similarity) for
each row and column of images.")

print("- Each point represents a specific row or column (e.g., 'Row 1', 'Col 5'.")

print("- The position of the point along the X-axis indicates its PSNR Similarity score (normalized 0-1).")

print("- The position along the Y-axis indicates its SSIM Similarity score (normalized 0-1).")

print("- The position along the Z-axis indicates its Color Histogram Similarity score (normalized 0-1).")

print("- Points that are clustered together in the 3D space represent rows or columns where the images within them are similarly related across these three metrics.")
print("- The color of each point distinguishes the specific row or column.")

print("- You can interact with the plot by rotating it, zooming in/out, and hovering over points to see their exact values and associated row/column.")

print("- This plot helps to identify groups of rows or columns that exhibit similar patterns of variation across the chosen metrics. For example, if all column points cluster
separately from all row points, it might suggest that the images within columns are more similar to each other than images within rows, or vice versa, based on these

metrics.")

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

/usr/local/lib/python3.11/dist-packages/scipy/spatial/distance.py:682: RuntimeWarning:

overflow encountered in scalar multiply

Image Similarity Metrics (Normalized)

PSNR Similarity

Edge Feature Similarity

SSIM Similarity
06 08 1
Color Histogram Similarity MSE Similarity
Image Similarity Metrics (Normalized)
PSNR Similarity
Edge Feature Similarity SSIM Similarity
06 08 1
Color Histogram Similarity MSE Similarity
Image Similarity Metrics (Normalized)
PSNR Similarity
Edge Feature Similarity SSIM Similarity

.4 06 08 1

Color Histogram Similarity MSE Similarity

Group
m=== Row 1
=== Row 2
=== Row 3
=== Row 4
== Row 5
=== Col 1
=== Col 2
== Col 3
“ Col 4
“ Col 5

Group
=== Row 1
=== Row 2
=== Row 3
=== Row 4
T Row 5
Col 1
Col 2
Col 3
Col 4
Col 5

Group
m=== Row 1
=== Row 2
Row 3
m=== Row 4
Row 5
== Col 1
=== Col 2
“ Col3
w7 Col 4
“ Col5

--- Spider Graph Metric Summary -

Metric Meaning (Higher Value) Interpretation
0 PSNR Similarity Higher Peak Signal-to-Noise Ratio (better imag... Measures pixel-level difference, sensitive to ...
1 SSIM Similarity Higher Structural Similarity Index (more simil... Measures structural similarity based on lumina...
2 MSE Similarity

Lower Mean Squared Error (less average pixel d... Measures average squared difference between pi...

3 Color Histogram Similarity ~ Lower Color Histogram Cosine Distance (more si... Compares the overall distribution of colors.
4 Edge Feature Similarity

Lower Edge Feature Cosine Distance (more simil... Compares the patterns of edges in the images.

3D Scatter Plot of Image Similarity Metrics (Normalized)

Group
® Rowl
® Row 2
® Row3
® Row4
Row 5
Col 1
® Col2
® Col 3
Col 4
Col 5

--- 3D Scatter Plot Explanation ---

This 3D scatter plot visualizes the relationships between three different image similarity metrics (PSNR Similarity, SSIM Similarity, and Color Histogram Similarity) for each
row and column of images.

- Each point represents a specific row or column (e.g., 'Row 1', '‘Col 5').
- The position of the point along the X-axis indicates its PSNR Similarity score (normalized 0-1).
- The position along the Y-axis indicates its SSIM Similarity score (normalized 0-1).

- The position along the Z-axis indicates its Color Histogram Similarity score (normalized 0-1).

- Points that are clustered together in the 3D space represent rows or columns where the images within them are similarly related across these three metrics.
- The color of each point distinguishes the specific row or column.

- You can interact with the plot by rotating it, zooming in/out, and hovering over points to see their exact values and associated row/column.
- This plot helps to identify groups of rows or columns that exhibit similar patterns of variation across the chosen metrics. For example, if all column points cluster

separately from all row points, it might suggest that the images within columns are more similar to each other than images within rows, or vice versa, based on these
metrics.

import os
import numpy as np
import cv2
from skimage.metrics import peak_signal_noise_ratio, structural_similarity
from scipy.spatial import distance
from google.colab import drive
import plotly.express as px
import pandas as pd

from PIL import Image

Mount Google Drive

drive.mount('/content/drive’)

Define the directory
image_dir = '/content/drive/My Drive/LoRA-afterAd]'

Define target size for resizing

target_size = (256, 256)

Function to resize images
def resize_image(img_path, target size):
img = cv2.imread(img_path)
if img is None:
return None

return cv2.resize(img, target_size)

Function to calculate Color Histogram Cosine Distance

def color_hist distance(imgl, img2):
histl = cv2.calcHist(fimg1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist1 = cv2.normalize(hist1, hist1).flatten()
hist2 = cv2.normalize(hist2, hist2).flatten()

return distance.cosine(hist1, hist2)

Function to calculate Edge Feature Cosine Distance (using Canny edge detection)
def edge feature distance(imgl, img2):
edgesl = cv2.Canny(cv2.cvtColor(imgl, cv2.COLOR BGR2GRAY), 100, 200)
edges2 = cv2.Canny(cv2.cvtColor(img2, cv2.COLOR BGR2GRAY), 100, 200)
edgesl = edges! flatten()
edges2 = edges2 flatten()
Pad with zeros if lengths are different (can happen with Canny)
max_len = max(len(edges1), len(edges2))
edgesl = np.pad(edges1, (0, max_len - len(edges1)), 'constant’)
edges2 = np.pad(edges2, (0, max_len - len(edges2)), 'constant’)

return distance.cosine(edges!, edges2)

Load and resize images

images = {}

for rin range(1, 6):

for ¢ in range(1, 6):
img_name = f'r{r}c{c}.jpg’
img_path = os.path.join(image_dir, img_name)
resized_img = resize_image(img_path, target_size)
if resized_img is not None:
images|(r, c)] = resized img

else:

print(f"Warning: Could not load or resize {img_name}")

Calculate metrics for each row and column
row_metrics = {}

col_metrics = {}

Calculate metrics for rows
for rin range(1, 6):
row_images = [images((r, 0)] for c in range(l, 6) if (r, ¢) in images]
if len(row_images) > 1:
psnr_list = (]
ssim_list =[]
mse_list = []
color_hist_list =[]
edge feature list = []
for i in range(len(row_images)):
for jin range(i + 1, len(row_images)):
imgl = row_imagesli]
img2 = row_images][j]
psnr_list.append(peak_signal noise_ratio(img1, img2))
ssim_list.append(structural_similarity(img1, img2, channel_axis=2))
mse_list.append(np.mean((imgl - img2)**2))
color_hist_list.append(color_hist_distance(imgl, img2))
edge feature_listappend(edge feature distance(imgl, img2))

Aggregate metrics for the row (e.g., average)
row_metrics[fRow {r}] = {
'PSNR': np.mean(psnr_list) if psnr_Llist else np.nan,
'SSIM': np.mean(ssim_list) if ssim_list else np.nan,
'MSE": np.mean(mse_Llist) if mse_list else np.nan,
'Color Hist_Dist': np.mean(color_hist_list) if color_hist_list else np.nan,

'Edge Feature Dist: np.mean(edge feature list) if edge feature_list else np.nan

Calculate metrics for columns
for ¢ in range(1, 6):
col_images = [images((r, 0)] for r in range(1, 6) if (r,) in images]
if len(col_images) > 1:
psnr_list = (]
ssim_list =[]
mse_list = []
color_hist_list =[]
edge feature list = []
for i in range(len(col_images)):
for j in range(i + 1, len(col_images)):
imgl = col_imagesl[i]
img2 = col_imagesl[j]
psnr_list.append(peak_signal noise_ratio(img1, img2))
ssim_list.append(structural_similarity(img1, img2, channel_axis=2))
mse_list.append(np.mean((imgl - img2)**2))
color_hist_list.append(color_hist_distance(imgl, img2))
edge feature_list.append(edge feature distance(imgl, img2))

Aggregate metrics for the column (e.g., average)
col_metrics[f'Col {c}] = {
'PSNR': np.mean(psnr_list) if psnr_Llist else np.nan,
'SSIM": np.mean(ssim_list) if ssim_list else np.nan,
'MSE": np.mean(mse_list) if mse_list else np.nan,
'Color_Hist_Dist": np.mean(color_hist_list) if color_hist_list else np.nan,

'Edge_Feature Dist: np.mean(edge_feature_list) if edge_feature_list else np.nan

Combine row and column metrics

all_metrics = {**row_metrics, **col_metrics}

Normalize metrics to be between 0 and 1
Note: PSNR and SSIM are typically higher for more similarity, MSE and distances are lower.
We'll normalize similarity metrics (PSNR, SSIM) directly, and inverse distance metrics (MSE, distances) for consistency in spider plot.

A higher value on the spider plot means more *similarity*.

normalized_metrics = {}

metrics_df = pd.DataFrame.from_dict(all_metrics, orient="index’)

Normalize metrics to be between 0 and 1 (higher = more similar)

For PSNR and SSIM, directly normalize (min-max scaling)

metrics_ dfPSNR_norm'] = (metrics_dfl'PSNR'] - metrics_dff'PSNR1.min() / (metrics_dfl'PSNR.max() - metrics_df['PSNR].min())
metrics_df['SSIM_norm'] = metrics_dff'SSIM] # SSIM is already 0-1

For MSE, Color_Hist_Dist, Edge_Feature_Dist, inverse normalize (higher distance/error means less similar)

We'll use 1 - normalized distance/error, so a higher value indicates more similarity

metrics_dfMSE _norm’] = 1 - (metrics_dff MSE'] - metrics_dfl'MSE'].min()) / (metrics_dfl' MSE'].max() - metrics_dfl' MSEl.min())

metrics_dff'Color_Hist_Sim] = 1 - (metrics_dff'Color_Hist_Dist'] - metrics_dfl'Color_Hist_Distl.min()) / (metrics_dff'Color_Hist_Dist'l.max() - metrics_dff'Color_Hist_Dist].min())
metrics_df[Edge Feature_Sim = 1 - (metrics_dfl'Edge_Feature_Dist] - metrics_dfl'Edge_Feature_Dist].min()) / (metrics_df[Edge_Feature_Dist].max() -
metrics_df[Edge_Feature_Dist].min())

Select normalized similarity columns and rename for spider plot
spider_df = metrics_df[[PSNR_norm', 'SSIM_norm', 'MSE_norm', 'Color_Hist_Sim', 'Edge_Feature_SimT].copy()
spider_df.columns = ['PSNR Similarity', 'SSIM Similarity', 'MSE Similarity', 'Color Histogram Similarity’, 'Edge Feature Similarity']

spider_df = spider_df.reset_index().rename(columns={'index": 'Group'})

Convert to long format for Plotly Express spider plot

spider_long_df = spider_df.melt(id_vars='Group', var_name='Metric', value_name='Similarity’)

Create Spider Graph

fig_spider = px.line_polar(spider_long_df, r="Similarity", theta="Metric", color="Group", line_close=True,
title="Image Similarity Metrics (Normalized)")

fig_spider.update_traces(fill="toself)

fig_spider.show()

Summarize Spider Graph meaning in a table
spider_summary = {
"Metric": [PSNR Similarity’, 'SSIM Similarity', 'MSE Similarity', 'Color Histogram Similarity’, 'Edge Feature Similarity’],
"Meaning (Higher Value)": [
"Higher Peak Signal-to-Noise Ratio (better image quality, less noise/loss from compression/processing)”,
"Higher Structural Similarity Index (more similar perceived structure/texture)",
"Lower Mean Squared Error (less average pixel difference, higher similarity)", # Note: MSE_norm is 1-MSE, so higher means lower MSE
"Lower Color Histogram Cosine Distance (more similar color distribution, higher similarity)", # Note: Color Hist_Sim is 1-dist, so higher means lower distance
"Lower Edge Feature Cosine Distance (more similar edge patterns, higher similarity)" # Note: Edge Feature Sim is 1-dist, so higher means lower distance
1
"Interpretation”: [
"Measures pixel-level difference, sensitive to noise.",
"Measures structural similarity based on luminance, contrast, and structure.”,
"Measures average squared difference between pixels.",
"Compares the overall distribution of colors.",

"Compares the patterns of edges in the images."

}

spider_summary_df = pd.DataFrame(spider_summary)
print("\n-- Spider Graph Metric Summary ---")

from IPython.display import display
display(spider_summary_df)

Create 3D Scatter Plot
We can choose three relevant metrics to plot in 3D
scatter_df = metrics_df.reset_index().rename(columns={index’: 'Group'})
fig_scatter_3d = px.scatter_3d(scatter df,
x='"PSNR_norm’,
y='SSIM_norm’,
z='Color_Hist_Sim',
color='Group/,
hover_name='Group',

title="3D Scatter Plot of Image Similarity Metrics (Normalized)’)

fig_scatter_3d.update_layout(scene = dict(
xaxis_title="PSNR Similarity’,
yaxis_title='SSIM Similarity’,

zaxis_title='Color Histogram Similarity))

fig_scatter_3d.show()

Explanation of the 3D Scatter Plot

print("\n-- 3D Scatter Plot Explanation ---")

print("This 3D scatter plot visualizes the relationships between three different image similarity metrics (PSNR Similarity, SSIM Similarity, and Color Histogram Similarity) for
each row and column of images.")

print("- Each point represents a specific row or column (e.g., 'Row 1', 'Col 5'.")

print("- The position of the point along the X-axis indicates its PSNR Similarity score (normalized 0-1).")

print("- The position along the Y-axis indicates its SSIM Similarity score (normalized 0-1).")

print("- The position along the Z-axis indicates its Color Histogram Similarity score (normalized 0-1).")

print("- Points that are clustered together in the 3D space represent rows or columns where the images within them are similarly related across these three metrics.")
print("- The color of each point distinguishes the specific row or column.")

print("- You can interact with the plot by rotating it, zooming in/out, and hovering over points to see their exact values and associated row/column.")

print("- This plot helps to identify groups of rows or columns that exhibit similar patterns of variation across the chosen metrics. For example, if all column points cluster
separately from all row points, it might suggest that the images within columns are more similar to each other than images within rows, or vice versa, based on these

metrics.")

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

/usr/local/lib/python3.11/dist-packages/scipy/spatial/distance.py:682: RuntimeWarning:

overflow encountered in scalar multiply

Image Similarity Metrics (Normalized)

PSNR Similarity

Group
=== Row 1
=== Row 2
T Row 3
=== Row 4
" Row 5
Col 1
=== Col 2
Col 3
08 1 Col 4
Col 5

Edge Feature Similarity SSIM Similarity

Color Histogram Similarity MSE Similarity

Image Similarity Metrics (Normalized)

PSNR Similarity

Group
=== Row 1
=== Row 2
=== Row 3
=== Row 4
= Row 5
=== Col 1
m=== Col 2
o Col3
1 w7 Col 4
“ Col5

Edge Feature Similarity SSIM Similarity

Color Histogram Similarity MSE Similarity

Image Similarity Metrics (Normalized)

PSNR Similarity
Group

== Row 1

Row 2
=== Row 3

=== Row 4

Row 5
=== Col 1
=== Col 2
“ Col 3
1 === Col 4
=== Col 5

Edge Feature Similarity SSIM Similarity

Color Histogram Similarity MSE Similarity

--- Spider Graph Metric Summary -

Metric Meaning (Higher Value) Interpretation
0 PSNR Similarity Higher Peak Signal-to-Noise Ratio (better imag... Measures pixel-level difference, sensitive to ...
1 SSIM Similarity Higher Structural Similarity Index (more simil... Measures structural similarity based on lumina...
2 MSE Similarity Lower Mean Squared Error (less average pixel d... Measures average squared difference between pi...
3 Color Histogram Similarity ~ Lower Color Histogram Cosine Distance (more si... Compares the overall distribution of colors.
4 Edge Feature Similarity ~ Lower Edge Feature Cosine Distance (more simil... Compares the patterns of edges in the images.

3D Scatter Plot of Image Similarity Metrics (Normalized)

Group
® Rowl
® Row2
® Row3
® Row4
C‘o@ A Row 5
7s¢, 5 ® Col1
rs. . ® o col2
Ibé‘/;b © Col 3
AN
9P, Col 4
o Col 5
2
)
3 oo @
2 9 @g o ©
) ()]
E o >
2 o © . a(\&\l
. @ W
o

--- 3D Scatter Plot Explanation ---

This 3D scatter plot visualizes the relationships between three different image similarity metrics (PSNR Similarity, SSIM Similarity, and Color Histogram Similarity) for each
row and column of images.

- Each point represents a specific row or column (e.g., 'Row 1', 'Col 5').

- The position of the point along the X-axis indicates its PSNR Similarity score (normalized 0-1).

- The position along the Y-axis indicates its SSIM Similarity score (normalized 0-1).

- The position along the Z-axis indicates its Color Histogram Similarity score (normalized 0-1).

- Points that are clustered together in the 3D space represent rows or columns where the images within them are similarly related across these three metrics.

- The color of each point distinguishes the specific row or column.

- You can interact with the plot by rotating it, zooming in/out, and hovering over points to see their exact values and associated row/column.

- This plot helps to identify groups of rows or columns that exhibit similar patterns of variation across the chosen metrics. For example, if all column points cluster
separately from all row points, it might suggest that the images within columns are more similar to each other than images within rows, or vice versa, based on these

metrics.

