

1 **Supplementary Information**

2 **Title:** Pangenome of U.S. ex-PVP and Wild Sorghum Reveals Structural Variants and
3 Selective Sweeps Shaping Adaptation and Trait Improvement

4

5 **Running Title:** Pangenome of U.S. ex-PVP and Wild Sorghum

6 **Authors**

7 Justine K. Kitony¹, Emily R. Murray¹, Kelly Colt¹, Ryan C. Lynch¹, Nicholas Allsing¹, Nolan
8 T. Hartwick¹, Tiffany Duong¹, Jocelyn Saxton², Nadia Shakoor², Todd P. Michael^{1,3}

9

10 **Affiliation**

- 11 1. Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies,
12 La Jolla, CA, USA
13 2. Donald Danforth Plant Science Center, Olivette, MO, USA
14 3. Science and Conservation, San Diego Botanical Garden, Encinitas, CA, USA

15

16

17 **Corresponding Author**

18 Todd P. Michael, toddpmichael@gmail.com, tmichael@salk.edu

19

20 **Key Words**

21 Plant Variety Protection (ex-PVP), sorghum pangenome, selective sweep, structural variants
22 (SVs), long-read sequencing, chromosome-level assemblies, presence–absence variation
23 (PAVs), and copy number variation (CNVs)

24

25

26

27

28 **Supplementary Notes**..... 2-6

29 **Supplementary Figures**..... 7-10

30 **Supplementary Tables**..... 11-19

31 **Supplementary References**..... 20-21

32

33

34

35

36

37

38

39

40

41 **Supplementary Notes**42 **Sample Selection**

43 We assembled a panel comprising 46 elite sorghum lines formerly protected under the U.S.
 44 Plant Variety Protection (ex-PVP) system, which confers protection for 20 years, together
 45 with a set of diverse wild accessions. The ex-PVP lines, registered between 1976 and 1992,
 46 were sourced from the USDA Germplasm Resources Information Network (GRIN) and
 47 reflect historical commercial breeding efforts by Pioneer Hi-Bred International, Inc. (n = 39),
 48 Novartis Seeds, Inc. (n = 1), Cargill Wheat Research Farm (n = 1), Holden's Foundation
 49 Seeds, Inc. (n = 1), Walter Moss Seed Company, LLC (n = 1), Ring Around Products, Inc. (n
 50 = 1), and Northrup, King & Company (n = 2). Agronomically, the ex-PVP lines represented a
 51 broad range of tillering phenotypes, from low-tillering genotypes optimized for grain
 52 production to moderately and highly tillering types with potential forage or dual-purpose
 53 utility.

54 The ex-PVP phenotypic diversity underscores their relevance for investigating the genomic
 55 underpinnings of sorghum's adaptation to different cropping systems. To enable comparative
 56 genomic analyses, we also included wild sorghum accessions from GRIN, selected to
 57 maximize both phylogenetic and geographic diversity (Supplementary Fig. 2). Among these,
 58 *Sorghum bicolor* subsp. *verticilliflorum* accession 'PI 156549', originating from Zimbabwe,
 59 was selected for Hi-C scaffolding and inclusion in pangenome construction. This Rhodesian
 60 sudangrass type has historically contributed to the development of male-sterile lines with
 61 superior forage potential and may represent one of the ancestral contributors to elite hybrid
 62 forage sorghums ^{1,2}.

63 **Genome Assembly and Annotation**

64 We generated chromosome-scale genome assemblies for 46 ex-PVP lines and several wild
 65 Sorghum accessions to support pangenome construction and comparative genomic
 66 analyses. Ex-PVP genomes were assembled using long-read ONT data with hybrid
 67 polishing, while wild accessions were assembled using PacBio HiFi reads. Scaffolding was
 68 reference-guided using RagTag with the 'BTx623' reference ^{3,4}. One wild accession, 'PI
 69 156549', was additionally scaffolded with Hi-C data and manually curated, resulting in a
 70 high-quality representative genome for the wild group ⁵.

71 Assembly quality was assessed using BUSCO (embryophyta_odb10) to evaluate
 72 completeness ⁶, and the LTR Assembly Index (LAI) to assess repeat continuity ⁷. Gene
 73 prediction was performed using Helixer, providing consistent structural annotations across
 74 accessions ⁸. Transposable elements (TEs) were annotated using the EDTA pipeline,
 75 integrating structure-based and homology-based repeat identification ⁹. Custom repeat
 76 libraries were used with RepeatMasker to mask interspersed and tandem repeats. These
 77 annotations support downstream analyses of gene content variation, structural variants, and
 78 repeat dynamics analyses within the sorghum pangenome.

79 **Gene Family Inference and Pangenome Stratification**

80 We constructed orthologous gene families across 50 sorghum genomes using OrthoFinder
 81 (v2.5.4), leveraging sequence similarity and gene tree inference to group genes into
 82 orthogroups. This analysis identified 36,004 gene families, which were classified into four
 83 categories based on their distribution across genomes: core (present in ≥49 genomes;
 84 71.5%), soft-core (47–48 genomes; 2.2%), dispensable (7–46 genomes; 16.7%), and private
 85 (<7 genomes; 9.6%) (Fig. 2a). These classifications capture a spectrum of gene
 86 conservation and variation, with core genes reflecting essential functions, while dispensable

87 and private genes likely represent adaptations to specific breeding objectives or
88 environmental niches.

89 Gene space dynamics were evaluated by generating collector's curves through random
90 sampling of genome combinations. The core genome curve declined asymptotically, while
91 the pangenome curve plateaued, suggesting saturation of novel gene families with the
92 inclusion of additional accessions (Fig. 2b). A power law model of novel gene family
93 discovery ($a = 4.13$, $R^2 = 0.999$) confirmed the closed nature of the gene-based sorghum
94 pangenome (Fig. 2c). This contrasts with the K-mer-based analysis (Supplementary Fig. 1e),
95 which indicated ongoing K-mer accumulation, reflecting structural and non-genic variation
96 not captured at the gene family level.

97

98 Comparison to the 'BTx623' reference genome revealed 6,389 orthogroups absent from the
99 reference but present in the broader pangenome (Fig. 2d). These include gene families with
100 annotated KEGG orthologs involved in stress response, such as GLUTATHIONE S-
101 TRANSFERASE TAU 1 (GSTU1) and ABSCISIC ALDEHYDE OXIDASE 3 (AAO3);
102 specialized metabolism, such as FLAVONOID 3'-HYDROXYLASE (F3'H), SALICYLIC ACID
103 CARBOXYL METHYLTRANSFERASE (SAMT), and TREHALOSE-6-PHOSPHATE
104 SYNTHASE 1 (TPS1); energy metabolism, such as ATP SYNTHASE SUBUNIT BETA
105 (ATPB), NADH DEHYDROGENASE SUBUNIT H (NDHH), and NADH DEHYDROGENASE
106 SUBUNIT F (NDHF); and carbohydrate biosynthesis, such as STARCH BRANCHING
107 ENZYME 1 (SBE1)—many of which may have been selected during breeding for grain
108 quality or digestibility traits.

109

110 Gene presence-absence patterns showed consistent clustering among ex-PVP lines (Fig.
111 2e), and a genome-wide genespace visualization confirmed conservation of genic regions
112 across accessions, with occasional lineage-specific rearrangements (Fig. 2f). These findings
113 demonstrate how gene-based pangenomics complements reference-guided analyses by
114 uncovering lineage-specific diversity and capturing functional variation shaped by breeding
115 and domestication.

116 **Structural Variant (SVs) Detection and Synteny Analysis**

117 SVs represent a critical yet underexplored layer of genomic variation in crop species, where
118 reliance on single reference genomes obscures much of the intraspecific diversity shaped by
119 domestication, environmental adaptation, and breeding ¹⁰. Advances in long-read
120 sequencing and multi-assembly pangenomics now enable the detection of SVs at nucleotide
121 to megabase scale, revealing their functional importance in agronomic traits such as yield,
122 defense, and stress response ¹¹. In this study, we leveraged a haplotype-resolved
123 pangenome comprising 46 elite U.S. ex-PVP lines and one wild accession (PI156549) to
124 systematically characterize SVs using both reference-guided and de novo assembly-based
125 approaches. This framework allowed us to resolve a broad spectrum of SVs, ranging from
126 short INDELs to large chromosomal rearrangements that alter gene collinearity and synteny.

127

128 SVs were detected using two complementary workflows:

129 1. Assembly-based SV Calling:

130 Long-read genome assemblies were aligned using Minimap2 (v2.29-r1283), and
131 structural variants were identified with Svim-asm (v1.0.3), which is optimized for high-
132 contiguity assemblies and can resolve complex SVs including insertions, deletions,

133 and translocations. Additionally, CuteSV (v2.1.2) was employed to extract specific SV
134 types such as duplications (DUP), inversions (INV), and breakends (BND),
135 expanding the scope of detection to include more complex rearrangements.

136
137 2. Reference-guided Detection:

138 Whole-genome alignments were input to SYRI
139 (<https://github.com/schneebergerlab/syri>), a tool designed to identify large-scale
140 chromosomal rearrangements, including inversions, translocations, and duplications,
141 by comparing each accession to the reference genome BTx623. This reference-
142 based perspective complements the assembly-based approach by capturing lineage-
143 specific differences in genome organization.

144
145 SVIM-asm and CuteSV outputs were filtered and benchmarked using Truvari (v5.3.0) to
146 increase confidence in structural variant (SV) calls and reduce redundancy. High-confidence
147 SVs were subsequently merged with SURVIVOR (v1.0.7), generating a unified SV catalog
148 across the dataset. This workflow minimized tool-specific inconsistencies and improved
149 sensitivity to both shared and accession-specific variants.

150
151 A graph-based pangenome was constructed using PGGB (v0.6.0), enabling visualization of
152 the structural landscape and exploration of SV breakpoints in the context of sequence
153 continuity. This graph representation allowed for the detection of allelic variation and
154 sequence-specific loss or gain across the population, particularly for loci implicated in
155 defense or stress response, such as a 105 bp deletion in the *GLUCAN ENDO-1,3-β-*
156 *GLUCOSIDASE A6* gene (*Sobic.001G445700*), which disrupts a conserved domain and is
157 enriched in elite lines but absent in wild accessions.

158
159 In parallel, we explored genome collinearity and synteny conservation at both the
160 chromosome and gene levels. Whole-genome synteny was assessed using D-GENIES
161 (v1.4) with Minimap2 alignments (v2.22), revealing largely conserved macro-synteny
162 punctuated by lineage-specific inversions and structural breaks. For gene-level analysis,
163 MCScan from the JCVI toolkit (v1.2.7) was applied to CDS alignments based on the longest
164 isoforms, generated using LAST (v1418). This approach enabled high-resolution mapping of
165 orthologous gene blocks and allowed us to distinguish conserved versus rearranged
166 segments.

167
168 Together, these complementary pipelines revealed that structural variants are pervasive
169 across the sorghum pangenome, with functional implications ranging from altered gene
170 dosage and regulatory landscapes to potential loss of defense genes under relaxed
171 selection in modern breeding. This structural layer adds crucial context to SNP-based and
172 gene presence/absence analyses, underscoring the value of graph-based and multi-genome
173 frameworks in capturing hidden genomic diversity.

174
175 **Population Structure and Selection Signatures**

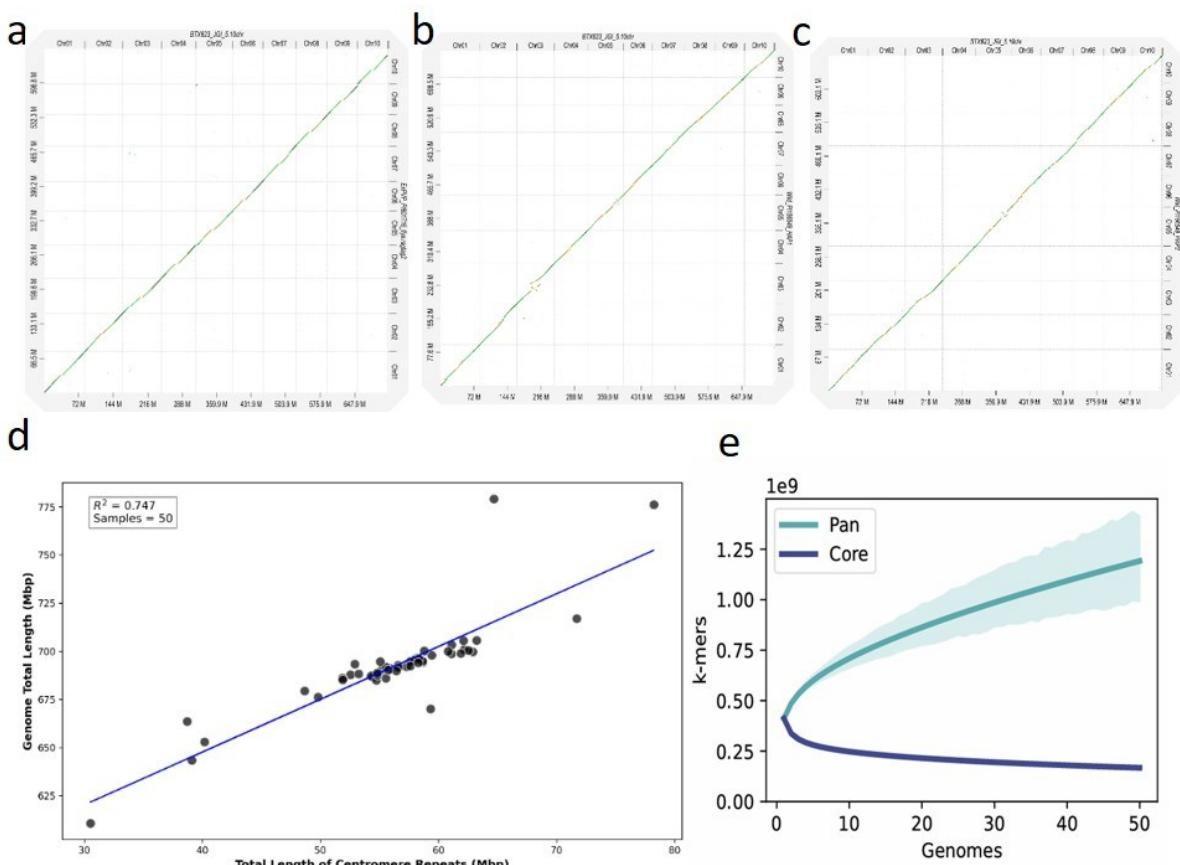
176 We first performed variant discovery using long-read genome alignments against the
177 'BTx623' v5 reference. Variant calling with FreeBayes (v1.3.6) yielded ~500k raw SNPs and
178 INDELs. After stringent filtering for biallelic SNPs with high confidence (QUAL > 30), minor
179 allele frequency (0.01 ≤ MAF ≤ 0.99), and ≤10% missing data, we retained 34,035 high-
180 quality SNPs suitable for population-level inference.

- 181 Population structure was assessed using two complementary approaches:
- 182 • ADMIXTURE analysis (v1.3.0) was performed with cross-validation for $K = 1-10$,
183 identifying $K = 2$ as the optimal number of ancestral populations. This partitioning
184 revealed a deep divergence between wild and cultivated accessions, consistent with
185 strong genetic bottlenecks during domestication and improvement.
- 186 • Principal Component Analysis (PCA) using PLINK (v1.90b7.7) further separated the
187 71 accessions into three distinct clusters: one representing the ex-PVP lines and two
188 subgroups within the wild accessions (wild1 and wild2). PC1 and PC2 together
189 explained over 40% of the total variation, highlighting the major axes of sorghum
190 diversification.
- 191 To identify genomic regions under selection, we applied three independent but
192 complementary metrics across four pairwise population comparisons:
- 193 1. Ex-PVP vs. all wild accessions
- 194 2. Ex-PVP vs. wild1
- 195 Ex-PVP vs. wild2
- 196 3. Wild1 vs. wild2
- 197 Each comparison was assessed for selective sweep signals using:
- 198 • FST (fixation index):
199 Calculated using VCFtools in 100 kb windows with 10 kb steps. Windows with
200 $FST > 0.3$ were considered strongly differentiated, representing likely targets of
201 directional selection.
- 202 • π -ratio (nucleotide diversity):
203 We computed π for each population independently using VCFtools and calculated
204 the $\pi_{\text{ExPVP}} / \pi_{\text{Wild}}$ ratio. A π -ratio < 0.5 indicated local reductions in diversity
205 among ex-PVPs, suggesting recent or ongoing selection in cultivated lines.
- 206 • XP-CLR (Cross-Population Composite Likelihood Ratio):
207 XP-CLR (v1.1.2) was applied using 100 kb windows with 10 kb steps and
208 recombination rates estimated from a genetic map. Windows in the top 1% of XP-
209 CLR scores were classified as candidate regions under selection.
- 210 To improve specificity, we intersected sweep candidates across methods. Regions
211 overlapping in FST & XP-CLR, or FST & π -ratio & XP-CLR, were retained as high-
212 confidence sweeps, filtering out noise from any single approach.
- 213 Genes within ± 100 kb of sweep windows were extracted using PyRanges and cross-
214 referenced with the 'BTx623' v5.1 annotation. These gene sets were functionally annotated
215 via eggNOG-mapper and tested for GO term enrichment using the GOATOOLS package.
216 We used a background of all 'BTx623' genes with GO annotations, and adjusted p-values
217 using Benjamini-Hochberg FDR correction.
- 218 Enrichment analysis revealed functional themes consistent with domestication and
219 improvement. Candidate sweep regions were enriched for:
- 220 • Auxin transport, seed dormancy, and amino acid biosynthesis – pathways implicated
221 in plant architecture, reproductive timing, and seed development.
- 222 • Innate immune signaling and xenobiotic detoxification, suggesting shifts in defense
223 strategies during breeding.
- 224 • Phospholipase and RNA export activity, indicative of metabolic rewiring under
225 agronomic selection pressures.

228 In addition to canonical loci, such as SHATTERING1 (SH1), MATURITY1 (MA1), and
 229 SORGHUM GRAIN SIZE 3 (SBGS3), we also identified sweeps overlapping circadian and
 230 flowering regulators such as PSEUDO-RESPONSE REGULATOR 7 (PRR7),
 231 PHOTOTROPIN 1 (PHOT1), CONSTANS (CO), and VERNALIZATION 3B (VRN3B), as well
 232 as metabolic integrators like TARGET OF RAPAMYCIN (TOR), REGULATORY-
 233 ASSOCIATED PROTEIN OF TOR 1A (RAPTORA), and XAP5 CIRCADIAN
 234 TIMEKEEPER (XCT) ¹².

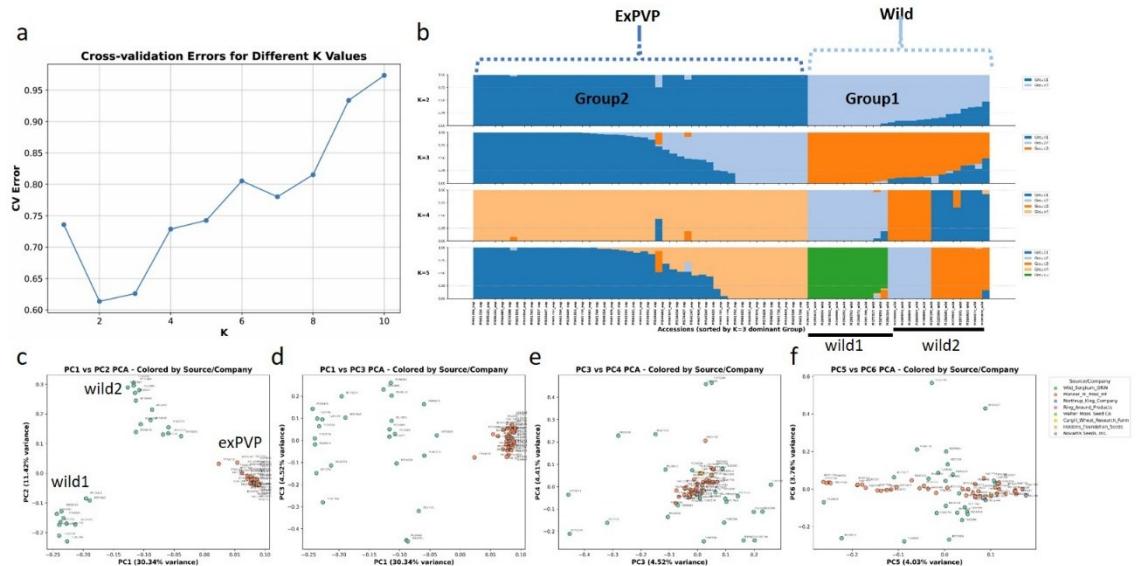
235 Our approach highlights the power of combining population structure inference with
 236 multilayered selection metrics to dissect the genomic architecture of domestication and
 237 breeding. By filtering for concordant signals across methods and anchoring functional
 238 insights in GO enrichment, we prioritized biologically relevant loci for further investigation.
 239

240 **Circadian and Photoperiodic Gene Networks Underlying Adaptation in Sorghum**


241 Circadian rhythms in sorghum exhibit regulatory complexity comparable to that of well-
 242 studied model plants, integrating light, temperature, and hormonal cues to coordinate key
 243 developmental processes ^{13–16}. In the morning, the *SHAKKYF*-type *MYB* transcription factor
 244 *LATE ELONGATED HYPOCOTYL* (*LHY*) is activated by *LIGHT-REGULATED WD1* (*LWD1*)
 245 and *TEOSINTE BRANCHED1/CYCLOIDEA/PCF* (*TCP*) transcription factors. *LHY* represses
 246 the expression of midday and evening genes, including *PSEUDO-RESPONSE*
 247 *REGULATORS* (*PRR7*, *PRR9*) and *TIMING OF CAB EXPRESSION 1* (*TOC1/PRR1*) ¹⁴.
 248 Notably, *LWD* and *TCP* factors also contribute to *PRR* activation, underscoring their dual
 249 role in regulating the circadian clock.
 250

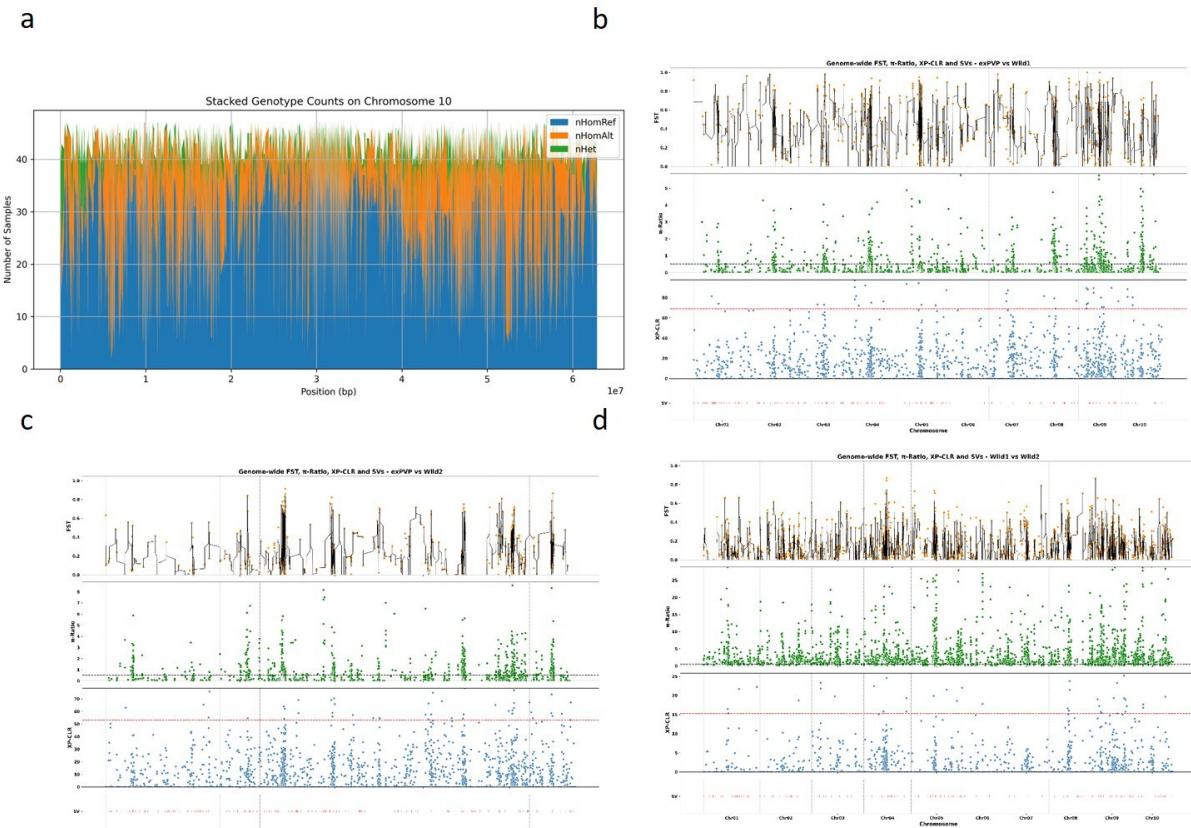
251 By midday, *REVEILLE* transcription factors (*RVE4*, *RVE8*) and their cofactors *NIGHT*
 252 *LIGHT-INDUCIBLE AND CLOCK-REGULATED* proteins (*LNK1*, *LNK2*) promote the
 253 expression of *PRRs* and the evening complex genes: *EARLY FLOWERING 3* (*ELF3*), *ELF4*,
 254 and *LUX ARRHYTHMO* (*LUX*). These evening genes are expressed at night and repress
 255 morning-expressed genes, forming a feedback loop that stabilizes daily circadian
 256 oscillations.
 257

258 After dusk, the blue-light photoreceptor *ZEITLUPE* (*ZTL*)—which contains a *LOV* (*Light*,
 259 *Oxygen*, *Voltage*) domain—interacts with *GIGANTEA* (*GI*) to target *PRR5* and *TOC1* for
 260 degradation, linking environmental light cues to post-translational regulation of clock
 261 components.


262 In parallel, blue light signaling also influences flowering time by modulating *CONSTANS*
 263 (*CO*) and *FLOWERING LOCUS T* (*FT*) expression, while *PHYTOCHROME B* (*PHYB*)
 264 perceives red light and regulates growth through *PHYTOCHROME-INTERACTING*
 265 *FACTORS* (*PIFs*).
 266

267 At night, *COLD-REGULATED* genes (*COR27* and *COR28*) help integrate temperature cues
 268 by suppressing *ELONGATED HYPOCOTYL 5* (*HY5*) activity. Natural variation in core clock
 269 genes—particularly *PRR*, *GI*, and *ELF3*—has been associated with adaptation to temperate
 270 climates, through changes in photoperiod sensitivity and flowering time ¹⁷. Furthermore,
 271 circadian gating of stomatal activity may enhance water-use efficiency and influence
 272 herbicide uptake, underscoring the clock’s potential applications in precision agriculture and
 273 climate-resilient crop design ¹⁵.
 274

275 **Supplementary Figures**

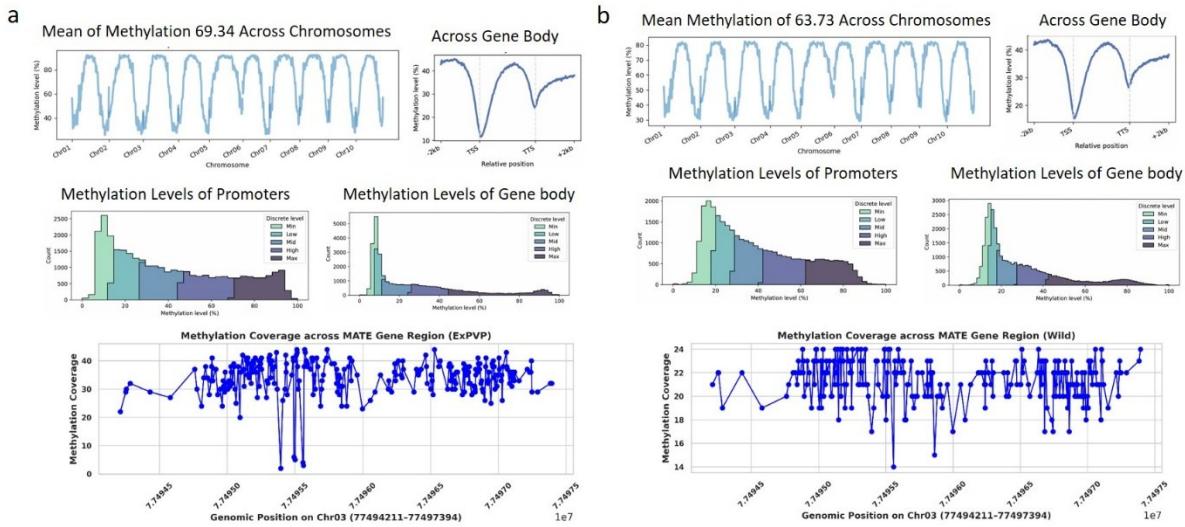

276
277 **Supplementary Fig. 1. High-Quality Assemblies Reveal Conserved Synteny and**
278 **Genome Size Variation Across the Sorghum Pangenome.**
279
280
281
282
283
284
285

280 **a–c**, Synteny comparisons between BTx623 (v5) and three assemblies: Ex-PVP PI601716
281 (a), wild PI156549 haplotype 1 (b), and haplotype 2 (c). Diagonal lines indicate conserved
282 syntenic regions; color intensity reflects sequence identity. **d**, Positive correlation ($R^2 =$
283 0.747) between centromeric tandem repeat length and genome size across accessions. **e**,
284 PanKmer collector's curve showing continued accumulation of novel k-mers, supporting an
285 open sorghum pangenome. Source data are provided in the Source Data file.

286
287288 **Supplementary Fig. 2. Genetic Structure and Admixture in Ex-PVP and Wild Sorghum
289 Accessions.**

290 **a**, Cross-validation errors for different K values, identifying K = 2 as the optimal number of
291 ancestral populations. **b**, Stacked bar plots showing the inferred population structure of 71
292 sorghum accessions at K = 2, 3, 4, and 5. Colors indicate the proportion of ancestry from
293 each inferred cluster. Accessions are ordered across all K values based on their dominant
294 cluster assignment at K = 3 to facilitate direct comparison. **c**, Principal component analysis
295 (PCA) of 71 sorghum accessions showing PC1 (30.34%) versus PC2 (11.42%). Wild
296 accessions form two major clusters (wild 1 and wild 2), while the ex-PVP accessions form a
297 distinct cluster. **d**, PCA plot showing PC1 (30.34%) versus PC3 (4.52%), further resolving
298 the separation among the three groups identified in the pangenome. **e**, PC3 (4.52%) versus
299 PC4 (4.41%). **f**, PC5 (4.03%) versus PC6 (3.76%). Different dot colors represent the
300 accession source/company, as shown in the legend. Source data are provided in the Source
301 Data file.

302



303
304
305
306
307
308
309
310
311
312
313
314

Supplementary Fig. 3. Zygosity Patterns and Selection Signals Across Sorghum Chromosomes.

a, Zygosity distribution across the 10 sorghum chromosomes. Blue bars represent the number of samples homozygous for the reference allele, orange bars indicate samples homozygous for the alternate allele, and green bars show heterozygous samples. **b**, Genome-wide selective sweep signals (FST, π , XP-CLR) comparing wild group 1 (see Supplementary Fig. 2c) versus 46 ex-PVP accessions. **c**, Selective sweep signals (FST, π , XP-CLR) comparing wild group 2 versus 46 ex-PVP accessions. **d**, Selective sweep signals between wild group 1 and wild group 2. The bottom track in panels **b-d** shows large structural variants identified across the chromosomes. Source data are provided in the Source Data file.

315

316

317 **Supplementary Fig. 4: Genome-Wide and Gene-Body Methylation Profiles of Ex-PVP**
 318 **and Wild Sorghum Accessions.**

319 a, Genome-wide methylation pattern of a representative ex-PVP line (PI562625) with a
 320 mean methylation level of 69.34%. b, Methylation pattern of a representative wild accession
 321 (PI156549) with a mean methylation level of 63.73%. In both panels, line plots illustrate DNA
 322 methylation levels across all 10 sorghum chromosomes, promoter and gene body regions,
 323 and across the *multidrug and toxic compound extrusion (MATE)* gene on chromosome 3
 324 (Chr03:77,494,151–77,497,397). Notably, segments of the promoter regions show elevated
 325 methylation, and differences between cultivated and wild lines are evident across genomic
 326 contexts. Source data are provided in the Source Data file.

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343 **Supplementary Tables**344 **Supplementary Table 1.** Sorghum Pangenome Accessions, Sequencing Platforms, and
345 Assembly Statistics: <https://doi.org/10.6084/m9.figshare.29261795.v4>346 **Supplementary Table 2.** BUSCO Completeness Statistics for Sorghum Genome
347 Assemblies and Predicted Gene Sets
348

Accession	Assembly level						Protein level					
	Complete %	Single %	Duplicated%	Fragm ented %	Miss ing %	Total BUSCOs	Co mplete %	Single %	Duplic ated%	Fragm ented %	Missing %	Total BUSCOs
BTX623	99.10 %	96.70 %	2.40%	0.60%	0.40 %	1614	98.10%	95.70 %	2.40%	1.30%	0.60%	1614
ExPVP_PI54 3243	99.00 %	96.80 %	2.20%	0.60%	0.40 %	1614	98.30%	95.80 %	2.40%	1.20%	0.60%	1614
ExPVP_PI54 3246	99.00 %	96.80 %	2.20%	0.60%	0.40 %	1614	98.10%	95.60 %	2.50%	1.40%	0.60%	1614
ExPVP_PI54 3247	98.90 %	96.60 %	2.40%	0.60%	0.40 %	1614	98.50%	96.00 %	2.50%	0.90%	0.60%	1614
ExPVP_PI54 4069	98.90 %	96.50 %	2.40%	0.60%	0.40 %	1614	98.00%	95.50 %	2.50%	1.40%	0.60%	1614
ExPVP_PI55 4646	98.90 %	96.60 %	2.30%	0.70%	0.40 %	1614	95.00%	92.80 %	2.20%	3.70%	1.30%	1614
ExPVP_PI55 4647	98.90 %	96.50 %	2.50%	0.70%	0.40 %	1614	98.10%	95.70 %	2.40%	1.30%	0.60%	1614
ExPVP_PI55 4648	98.90 %	96.50 %	2.40%	0.70%	0.40 %	1614	97.80%	95.40 %	2.40%	1.50%	0.70%	1614
ExPVP_PI55 4649	99.00 %	96.70 %	2.40%	0.60%	0.40 %	1614	98.30%	95.80 %	2.40%	1.20%	0.60%	1614
ExPVP_PI55 4650	98.90 %	96.50 %	2.50%	0.70%	0.40 %	1614	98.00%	95.50 %	2.50%	1.50%	0.60%	1614
ExPVP_PI55 4652	98.90 %	96.60 %	2.40%	0.70%	0.40 %	1614	98.20%	95.60 %	2.60%	1.20%	0.60%	1614
ExPVP_PI55 4654	98.90 %	96.50 %	2.40%	0.70%	0.40 %	1614	98.00%	95.50 %	2.50%	1.20%	0.70%	1614

Accession	Assembly level						Protein level					
	Complete %	Single %	Duplicated%	Fragm ented %	Missing %	Total BUSCOs	Comple %	Single %	Duplicated%	Fragm ented %	Missing %	Total BUSCOs
ExPVP_PI55 5457	98.90 %	96. 50 %	2.40%	0.70%	0.40 %	1614	98.0 0%	95. 40 %	2.70%	1.30%	0.70%	1614
ExPVP_PI56 1926	98.90 %	96. 60 %	2.40%	0.60%	0.40 %	1614	98.2 0%	95. 90 %	2.30%	1.20%	0.60%	1614
ExPVP_PI56 2621	98.90 %	96. 10 %	2.80%	0.70%	0.40 %	1614	98.0 0%	95. 00 %	3.00%	1.40%	0.60%	1614
ExPVP_PI56 2622	98.90 %	96. 60 %	2.40%	0.60%	0.40 %	1614	98.1 0%	95. 50 %	2.60%	1.20%	0.70%	1614
ExPVP_PI56 2623	99.00 %	96. 60 %	2.40%	0.60%	0.40 %	1614	98.0 0%	95. 50 %	2.40%	1.20%	0.80%	1614
ExPVP_PI56 2624	99.10 %	96. 80 %	2.30%	0.60%	0.40 %	1614	98.3 0%	95. 80 %	2.50%	1.20%	0.40%	1614
ExPVP_PI56 2625	98.90 %	96. 50 %	2.40%	0.70%	0.40 %	1614	98.0 0%	95. 50 %	2.50%	1.30%	0.70%	1614
ExPVP_PI56 4085	99.00 %	96. 70 %	2.40%	0.60%	0.40 %	1614	97.9 0%	95. 40 %	2.50%	1.50%	0.60%	1614
ExPVP_PI57 4398	99.10 %	96. 70 %	2.40%	0.60%	0.40 %	1614	98.3 0%	95. 80 %	2.50%	1.20%	0.60%	1614
ExPVP_PI57 4406	98.90 %	96. 50 %	2.40%	0.70%	0.40 %	1614	97.6 0%	95. 10 %	2.50%	1.60%	0.80%	1614
ExPVP_PI57 4407	98.90 %	96. 30 %	2.60%	0.70%	0.40 %	1614	98.2 0%	95. 40 %	2.80%	1.20%	0.60%	1614
ExPVP_PI59 4354	98.90 %	96. 40 %	2.50%	0.70%	0.40 %	1614	98.3 0%	95. 70 %	2.50%	1.10%	0.60%	1614
ExPVP_PI59 4355	98.90 %	96. 50 %	2.40%	0.70%	0.40 %	1614	97.7 0%	95. 20 %	2.50%	1.70%	0.60%	1614
ExPVP_PI59 5221	98.90 %	96. 50 %	2.40%	0.70%	0.40 %	1614	98.3 0%	96. 20 %	2.20%	1.10%	0.60%	1614

Accession	Assembly level						Protein level					
	Complete %	Single %	Duplicated%	Fragm ented %	Missing %	Total BUSCOs	Comple te %	Single %	Duplicated%	Fragm ented %	Missing %	Total BUSCOs
ExPVP_PI59_6332	98.90 %	96.50 %	2.40%	0.70%	0.40 %	1614	98.40%	95.80 %	2.60%	1.20%	0.40%	1614
ExPVP_PI59_6567	98.80 %	96.40 %	2.40%	0.70%	0.50 %	1614	98.00%	95.60 %	2.40%	1.40%	0.70%	1614
ExPVP_PI60_1264	98.80 %	96.30 %	2.50%	0.80%	0.40 %	1614	98.40%	96.00 %	2.40%	1.20%	0.40%	1614
ExPVP_PI60_1415	98.90 %	96.30 %	2.50%	0.70%	0.40 %	1614	98.40%	96.00 %	2.40%	1.10%	0.60%	1614
ExPVP_PI60_1552	98.90 %	93.90 %	5.00%	0.70%	0.40 %	1614	97.00%	92.40 %	4.60%	2.10%	0.90%	1614
ExPVP_PI60_1553	98.80 %	96.20 %	2.70%	0.80%	0.40 %	1614	98.20%	95.50 %	2.70%	1.10%	0.70%	1614
ExPVP_PI60_1554	99.10 %	96.80 %	2.20%	0.60%	0.40 %	1614	97.80%	95.50 %	2.30%	1.40%	0.80%	1614
ExPVP_PI60_1555	99.10 %	96.70 %	2.40%	0.60%	0.40 %	1614	98.00%	95.60 %	2.40%	1.40%	0.60%	1614
ExPVP_PI60_1556	98.80 %	96.60 %	2.20%	0.70%	0.40 %	1614	98.00%	95.60 %	2.40%	1.40%	0.60%	1614
ExPVP_PI60_1557	98.90 %	96.50 %	2.50%	0.60%	0.40 %	1614	98.30%	95.80 %	2.50%	1.20%	0.60%	1614
ExPVP_PI60_1716	99.00 %	96.50 %	2.50%	0.60%	0.40 %	1614	98.10%	95.50 %	2.50%	1.40%	0.60%	1614
ExPVP_PI60_1717	98.90 %	96.40 %	2.50%	0.70%	0.40 %	1614	98.00%	95.50 %	2.50%	1.40%	0.70%	1614
ExPVP_PI60_1718	99.10 %	96.70 %	2.40%	0.50%	0.40 %	1614	97.10%	94.60 %	2.50%	2.10%	0.70%	1614
ExPVP_PI60_1719	99.10 %	96.50 %	2.60%	0.60%	0.40 %	1614	97.80%	95.20 %	2.50%	1.70%	0.60%	1614

Accession	Assembly level						Protein level					
	Complete %	Single %	Duplicated%	Fragm ented %	Missing %	Total BUSCOs	Comple te %	Single %	Duplicated%	Fragm ented %	Missing %	Total BUSCOs
ExPVP_PI60_1720	98.90 %	96.70 %	2.30%	0.60%	0.40 %	1614	97.90%	95.60 %	2.30%	1.50%	0.60%	1614
ExPVP_PI60_1721	99.10 %	96.60 %	2.50%	0.60%	0.40 %	1614	98.00%	95.40 %	2.60%	1.50%	0.50%	1614
ExPVP_PI60_1743	98.90 %	96.70 %	2.20%	0.60%	0.50 %	1614	98.20%	95.80 %	2.40%	1.20%	0.60%	1614
ExPVP_PI60_1744	99.00 %	96.60 %	2.40%	0.60%	0.40 %	1614	98.00%	95.50 %	2.50%	1.50%	0.60%	1614
ExPVP_PI60_1756	98.90 %	96.40 %	2.50%	0.70%	0.40 %	1614	97.90%	95.40 %	2.50%	1.50%	0.60%	1614
ExPVP_PI60_2599	99.00 %	96.50 %	2.50%	0.60%	0.40 %	1614	98.50%	95.90 %	2.50%	1.00%	0.60%	1614
ExPVP_PI60_2600	99.10 %	96.80 %	2.30%	0.50%	0.40 %	1614	98.00%	95.50 %	2.50%	1.40%	0.60%	1614
RTx430	98.80 %	96.30 %	2.50%	0.60%	0.60 %	1614	98.20%	95.70 %	2.50%	1.20%	0.60%	1614
Wild_PI1565_49_HAP1	98.80 %	91.60 %	7.10%	0.70%	0.60 %	1614	97.70%	90.50 %	7.20%	1.40%	0.90%	1614
Wild_PI1565_49_HAP2	92.60 %	88.80 %	3.80%	1.20%	6.10 %	1614	91.70%	87.60 %	4.10%	1.70%	6.60%	1614

349

350

351 **Supplementary Table 3.** PanKmer-Based Adjacency Matrix Showing Pairwise Genomic
 352 Distances Among Sorghum Accessions: <https://doi.org/10.6084/m9.figshare.29261795.v4>

353 **Supplementary Table 4.** Orthologous Gene Groups Identified in the Sorghum Pangenome:
 354 <https://doi.org/10.6084/m9.figshare.29261795.v4>

355 **Supplementary Table 5.** KEGG Orthology Annotations for Pangenome-Exclusive Genes in
 356 Sorghum: <https://doi.org/10.6084/m9.figshare.29261795.v4>

357 **Supplementary Table 6.** Structural Variants Identified in the Sorghum Pangenome Using
 358 SVIM-asm and CuteSV: <https://doi.org/10.6084/m9.figshare.29261795.v4>

359 **Supplementary Table 7.** Structural Rearrangements Identified by Whole-Genome
 360 Alignment Using SyRI: <https://doi.org/10.6084/m9.figshare.29261795.v4>

361 **Supplementary Table 8.** Selective sweeps summary

362

Comparison	Metric	mRNAs	Genes
exPVP_vs_wild_all	FST	528	392
exPVP_vs_wild_all	PI_ratio	2736	2010
exPVP_vs_wild_all	XPCLR	3436	2519
exPVP_vs_wild_all	FST & XPCLR	119	91
exPVP_vs_wild_all	FST & PI & XPCLR	71	54
exPVP_vs_wild1	FST	3112	2291
exPVP_vs_wild1	PI_ratio	4900	3619
exPVP_vs_wild1	XPCLR	2788	2023
exPVP_vs_wild1	FST & XPCLR	531	401
exPVP_vs_wild1	FST & PI & XPCLR	412	298
exPVP_vs_wild2	FST	3112	2291
exPVP_vs_wild2	PI_ratio	4900	3619
exPVP_vs_wild2	XPCLR	2788	2023
exPVP_vs_wild2	FST & XPCLR	531	401
exPVP_vs_wild2	FST & PI & XPCLR	412	298
wild1_vs_wild2	FST	2366	1770
wild1_vs_wild2	PI_ratio	1878	1389

Comparison	Metric	mRNAs	Genes
wild1_vs_wild2	XPCLR	3200	2362
wild1_vs_wild2	FST & XPCLR	326	264
wild1_vs_wild2	FST & PI & XPCLR	10	9

363
364
365
366
367
368
369

Supplementary Table 9. Selective Sweeps Annotation:
<https://doi.org/10.6084/m9.figshare.29261795.v4>

Supplementary Table 10. Enriched Circadian Clock and Flowering Time Genes Within Selective Sweep Regions

Gene	ID	Transcript	Comparison
PRR7	Sobic.001G411400	Sobic.001G411400.1.v5.1	clock_genes_in_FST_exPVP_vs_wild1_selective_sweeps_go_enrichment
PRR7	Sobic.001G411400	Sobic.001G411400.2.v5.1	clock_genes_in_FST_exPVP_vs_wild1_selective_sweeps_go_enrichment
CO	Sobic.010G115800	Sobic.010G115800.1.v5.1	clock_genes_in_FST_exPVP_vs_wild2_selective_sweeps_go_enrichment
CO	Sobic.010G115800	Sobic.010G115800.1.v5.1	clock_genes_in_PI_exPVP_vs_wild_all_selective_sweeps_go_enrichment
RAPTORa	Sobic.005G008800	Sobic.005G008800.2.v5.1	clock_genes_in_PI_exPVP_vs_wild_all_selective_sweeps_go_enrichment
VRN2b	Sobic.002G164300	Sobic.002G164300.1.v5.1	clock_genes_in_PI_exPVP_vs_wild_all_selective_sweeps_go_enrichment
TOR	Sobic.009G109200	Sobic.009G109200.1.v5.1	clock_genes_in_PI_exPVP_vs_wild_all_selective_sweeps_go_enrichment
VRN2b	Sobic.002G164300	Sobic.002G164300.1.v5.1	clock_genes_in_PI_exPVP_vs_wild1_selective_sweeps_go_enrichment
CO	Sobic.010G115800	Sobic.010G115800.1.v5.1	clock_genes_in_PI_exPVP_vs_wild1_selective_sweeps_go_enrichment
RAPTORa	Sobic.005G008800	Sobic.005G008800.2.v5.1	clock_genes_in_PI_exPVP_vs_wild1_selective_sweeps_go_enrichment
TOR	Sobic.009G109200	Sobic.009G109200.1.v5.1	clock_genes_in_PI_exPVP_vs_wild1_selective_sweeps_go_enrichment

Gene	ID	Transcript	Comparison
VRN3b	Sobic.003G173032	Sobic.003G173032.2.v5.1	clock_genes_in_PI_exPVP_vs_wild1_selective_sweeps_go_enrichment
RAPTOR a	Sobic.005G008800	Sobic.005G008800.2.v5.1	clock_genes_in_PI_exPVP_vs_wild2_selective_sweeps_go_enrichment
VRN2b	Sobic.002G164300	Sobic.002G164300.1.v5.1	clock_genes_in_PI_exPVP_vs_wild2_selective_sweeps_go_enrichment
TOR	Sobic.009G109200	Sobic.009G109200.1.v5.1	clock_genes_in_PI_exPVP_vs_wild2_selective_sweeps_go_enrichment
FRI	Sobic.001G010500	Sobic.001G010500.1.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild_all_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.1.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild_all_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.2.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild_all_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.3.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild_all_selective_sweeps_go_enrichment
GDH7_ma6	Sobic.006G004400	Sobic.006G004400.3.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild_all_selective_sweeps_go_enrichment
FRI	Sobic.001G010500	Sobic.001G010500.1.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild1_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.1.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild1_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.2.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild1_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.3.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild1_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.1.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.2.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
PHOT1	Sobic.008G001000	Sobic.008G001000.3.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
RAPTOR a	Sobic.005G008800	Sobic.005G008800.2.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
XAP5	Sobic.002G277600	Sobic.002G277600.1.v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment

Gene	ID	Transcript	Comparison
PRR95	Sobic.002G275100	Sobic.002G275100.1 .v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
PRR95	Sobic.002G275100	Sobic.002G275100.2 .v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
PRR95	Sobic.002G275100	Sobic.002G275100.3 .v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment
TOR	Sobic.009G109200	Sobic.009G109200.1 .v5.1	clock_genes_in_XPCLR_exPVP_vs_wild2_selective_sweeps_go_enrichment

370

371 **Supplementary Table 11.** Orthogroups constructed from 46 ex-PVP sorghum lines and two
 372 haplotypes from the wild *Sorghum bicolor* accession PI156549. *Arabidopsis thaliana* (Col-0)
 373 and *Brassica napus* (Westar) were included as dicot outgroups, and *Zea mays* (B73) as a
 374 monocot closely related to sorghum.

375 <https://doi.org/10.6084/m9.figshare.29261795.v4>

376

377

378 **Supplementary Table 12.** RNA-Seq Sample Details for Eight Tissues Collected from Two
 379 Sorghum Accessions (PI329478 and PI510757)

380

Reads Yield	File Names at NCBI	Sample
5702634152	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-391.fastq.gz	PI329478_Seedling
8165931731	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-392.fastq.gz	PI329478_3 Leaf
6138222035	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-393.fastq.gz	PI329478_5 Leaf
4952355721	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-394.fastq.gz	PI329478_Tiller
5299935238	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-395.fastq.gz	PI329478_Boot
3007973866	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-396.fastq.gz	PI329478_Panicle w / Anthers
3738997776	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-397.fastq.gz	PI329478_Root
6463696818	SbicPI329478_20220628.ont_pass_cDNA_RNAseq.R000-401.L001-398.fastq.gz	PI329478_dough stage
8403035872	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-399.fastq.gz	PI510757_Seedling

Reads Yield	File Names at NCBI	Sample
7895491431	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-400.fastq.gz	PI510757_3 Leaf
6534020349	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-401.fastq.gz	PI510757_5 Leaf
6135053379	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-402.fastq.gz	PI510757_Tiller
5261014082	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-403.fastq.gz	PI510757_Boot
2690305273	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-404.fastq.gz	PI510757_Panicle w/Anthers
4054894721	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-405.fastq.gz	PI510757_Root
5145582225	SbicPI510757_20220628.ont_pass_cDNA_RNAseq.R000-403.L001-406.fastq.gz	PI510757_dough stage

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401 **Supplementary References**

- 402 1. Duncan, R. R. Breeding and improvement of forage sorghums for the tropics. in
403 *Advances in Agronomy* 161–185 (Elsevier, 1996).
- 404 2. Craigmiles, J. P. The development, maintenance, and utilization of cytoplasmic male-
405 sterility for hybrid sudangrass seed production¹. *Crop Sci.* **1**, 150–152 (1961).
- 406 3. Alonge, M. *et al.* RaGOO: fast and accurate reference-guided scaffolding of draft
407 genomes. *Genome Biol.* **20**, 224 (2019).
- 408 4. Gladman, N. *et al.* SorghumBase: a web-based portal for sorghum genetic information
409 and community advancement. *Planta* **255**, 35 (2022).
- 410 5. Zeng, X. *et al.* Chromosome-level scaffolding of haplotype-resolved assemblies using
411 Hi-C data without reference genomes. *Nat. Plants* **10**, 1184–1200 (2024).
- 412 6. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update:
413 Novel and streamlined workflows along with broader and deeper phylogenetic coverage
414 for scoring of eukaryotic, prokaryotic, and viral genomes. *Mol. Biol. Evol.* **38**, 4647–4654
415 (2021).
- 416 7. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR
417 Assembly Index (LAI). *Nucleic Acids Res.* **46**, e126 (2018).
- 418 8. Stiehler, F. *et al.* Helixer: cross-species gene annotation of large eukaryotic genomes
419 using deep learning. *Bioinformatics* **36**, 5291–5298 (2021).
- 420 9. Ou, S. *et al.* Benchmarking transposable element annotation methods for creation of a
421 streamlined, comprehensive pipeline. *Genome Biol.* **20**, 275 (2019).
- 422 10. Yuan, Y., Bayer, P. E., Batley, J. & Edwards, D. Current status of structural variation
423 studies in plants. *Plant Biotechnol. J.* **19**, 2153–2163 (2021).
- 424 11. Lynch, R. C. *et al.* Domesticated cannabinoid synthases amid a wild mosaic cannabis
425 pangenome. *Nature* (2025) doi:10.1038/s41586-025-09065-0.
- 426 12. Zhang, H., Kumimoto, R. W., Anver, S. & Harmer, S. L. XAP5 CIRCADIAN
427 TIMEKEEPER regulates RNA splicing and the circadian clock by genetically separable

- 428 pathways. *Plant Physiol.* **192**, 2492–2506 (2023).
- 429 13. Michael, T. P. Time of day analysis over a field grown developmental time course in
430 rice. *Plants* **12**, 166 (2022).
- 431 14. McClung, C. R. Circadian clock components offer targets for crop domestication and
432 improvement. *Genes (Basel)* **12**, 374 (2021).
- 433 15. Bendix, C., Marshall, C. M. & Harmon, F. G. Circadian clock genes universally control
434 key agricultural traits. *Mol. Plant* **8**, 1135–1152 (2015).
- 435 16. Fogelmark, K. & Troein, C. Rethinking transcriptional activation in the *Arabidopsis*
436 circadian clock. *PLoS Comput. Biol.* **10**, e1003705 (2014).
- 437 17. Michael, T. P. Core circadian clock and light signaling genes brought into genetic
438 linkage across the green lineage. *Plant Physiol.* **190**, 1037–1056 (2022).

439