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1 Proof of Theorem V-A: Packet Delivery Probability Bound
Theorem(Restated). Consider a network of N vehicles and R available resource blocks (subchannels) per
Reservation Interval (RRI). Assume that each vehicle generates one packet per RRI and that the proposed
RL-based scheduling algorithm has converged to an optimal (or near-optimal) allocation. Then, if N ≤ R, the
Packet Delivery Ratio (PDR) approaches 1 (discounting channel errors). For N > R, the PDR is bounded
as

PDR ≥ R

N
(1− pmax

e ) , (1)

where pmax
e is the maximum (worst-case) packet error probability induced by channel conditions.

Proof. We assume the following:

1. Optimal Resource Allocation: In steady state, the RL scheduler converges so that vehicles are
allocated distinct resource blocks whenever possible. Thus, when N ≤ R each vehicle is assigned a
unique subchannel and no collision occurs.

2. Time-sharing under Congestion: When N > R the best possible allocation (by the pigeonhole
principle) is to partition the N vehicles into ⌈N/R⌉ groups such that in each RRI only one group (with
approximately R vehicles) is scheduled. Hence, in steady state, each vehicle transmits once every N

R
RRIs.

3. Channel Errors: Independent of scheduling, each transmission is decoded successfully with proba-
bility at least 1− pe, and in the worst-case pe ≤ pmax

e .

Denote by Si the event that vehicle i transmits successfully in a given RRI. Then, under ideal collision-free
scheduling, if N ≤ R we have:

P (Si) ≥ 1− pmax
e .

For N > R, each vehicle is active in any given RRI with probability R
N . Conditioning on the vehicle

actually transmitting, the success probability is at least 1−pmax
e . By the law of total probability, the overall

per-vehicle PDR is
P (Si) ≥

R

N
· (1− pmax

e ) .

This completes the proof. ■

2 Rigorous Proof of Theorem V-B: Collision Probability Bound
Theorem(Restated). Assume that in steady state the vehicles implement an ϵ-greedy exploration policy in
the RL-based scheduler, where ϵresel denotes the probability that an agent selects a resource randomly (i.e.,
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explores) rather than using its learned (optimal) resource. Then, the steady-state collision probability Pc for
a given vehicle satisfies

Pc ≤
ϵresel

N
+O

(
1

Tlearn

)
, (2)

where Tlearn is a measure of the convergence time of the learning algorithm, and the term O(1/Tlearn) accounts
for transient effects during the learning phase.

Proof. In the proposed RL-based scheduling framework, we assume that once convergence is achieved
the following hold:

1. Deterministic Allocation in Steady State: Each vehicle is assigned a unique resource block in
each RRI so that if all vehicles followed their learned policy (i.e., exploited rather than explored),
collisions would be eliminated.

2. Exploration-Induced Collisions: Collisions occur only when one or more vehicles deviate from
their optimal actions due to exploration. Under an ϵ-greedy policy, each vehicle independently chooses
to explore with probability ϵresel.

Fix a vehicle i that is assigned a resource ri in the optimal allocation. For any other vehicle j ̸= i,
if vehicle j explores, then it selects a resource uniformly at random from the R available resources. The
probability that j chooses ri is therefore

P
(
j chooses ri | exploration

)
= 1

R
.

Thus, the probability that a specific vehicle j ̸= i causes a collision with vehicle i in a given RRI is

P
(
Aj→ri

)
= ϵresel ·

1
R

.

Assuming that the exploration decisions of the N −1 other vehicles are independent, the probability that
none of them selects resource ri is at least∏

j ̸=i

(
1− ϵresel ·

1
R

)
≥ 1− (N − 1)ϵresel ·

1
R

,

where the inequality follows from the union bound (valid for small ϵresel/R).
Thus, the probability that at least one other vehicle chooses resource ri (i.e., a collision occurs) is bounded

by
P (Ci) ≤ (N − 1) · ϵresel

R
.

In a well-converged system, the resource allocation is nearly optimal so that the effective relation is R ≈ N
(or, more generally, the scheduler partitions the vehicles among the R resources as evenly as possible). Under
this condition, we have

P (Ci) ≤
ϵresel(N − 1)

N
≤ ϵresel

N
· (1 + o(1)).

Finally, to account for the transient behavior during the learning phase (when the resource allocation may
not be optimal), we include an additional term that decays at a rate O(1/Tlearn). Combining these yields

Pc ≤
ϵresel

N
+O

(
1

Tlearn

)
.

This completes the proof. ■

3 Convergence Analysis of Multi-Agent Reinforcement Learning
This appendix provides a rigorous justification for the convergence behavior of the proposed decentralized
Q-learning algorithm when deployed across multiple vehicles in the NR V2X Mode 2 system. Each vehicle
acts as an autonomous agent making resource decisions based on local observations.
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3.1 Learning Setup
LetN = {1, 2, . . . , N} denote the set of vehicles (agents), each operating in an environment with R orthogonal
resource blocks. Each agent i ∈ N maintains a Q-function Qi(si, ai), where si is the local state and ai ∈ Ai

is the resource selection action. The Q-learning update for agent i is:

Qi(si, ai)← Qi(si, ai) + αt

[
ri + γ max

a′
i

Qi(s′
i, a′

i)−Qi(si, ai)
]

, (3)

where αt ∈ (0, 1) is the learning rate, γ ∈ [0, 1) is the discount factor, and ri is the observed reward,
which includes penalties for collisions and bonuses for successful transmissions.

3.2 Convergence Conditions
Let the global state space be S = S1 × · · · × SN , and action space A = A1 × · · · × AN . The joint policy
π = (π1, . . . , πN ) governs the interaction among agents.

We assume the following conditions:

1. Each agent updates its Q-function asynchronously and independently.

2. The learning rate satisfies the Robbins-Monro conditions:
∑

t αt =∞,
∑

t α2
t <∞.

3. The underlying Markov Decision Process (MDP) is stationary or slowly changing with bounded re-
wards.

4. Exploration is maintained via an ϵ-greedy strategy with decaying ϵ→ 0.

Under these conditions, the individual Q-functions converge almost surely to the optimal Q-values for a
stationary environment (Watkins and Dayan, 1992). However, in our multi-agent setting, the environment
is non-stationary due to mutual interference.

3.3 Potential Game Approximation
The resource allocation problem can be cast as a congestion game, a subclass of potential games, where each
agent selects a resource and receives negative utility if the resource is shared. The game admits a potential
function Φ : A → R such that for any unilateral change in action by agent i,

Φ(a′
i, a−i)− Φ(ai, a−i) = ui(a′

i, a−i)− ui(ai, a−i), (4)

where ui is the utility (reward) of agent i, and a−i denotes the actions of all other agents. Such games
have at least one pure-strategy Nash equilibrium, and under better-reply dynamics or log-linear learning,
convergence to an equilibrium is guaranteed (Monderer and Shapley, 1996).

In our RL-based scheduler, the empirical Q-values guide agents to better-performing actions. Over time,
agents implicitly perform better-reply updates, and the overall learning process approximates best-response
dynamics in a potential game.

3.4 Asymptotic Convergence Under Joint Policy Evolution
Let Qt

i be the Q-function of agent i at time t, and assume all agents follow a time-varying policy πt
i . Following

Borkar and Meyn (2000), we can model the update process as a stochastic approximation:

Qt
i(s, a) = Q0

i (s, a) +
t∑

k=1
αk

(
h(Qk−1

i ) + Mk
i

)
, (5)

where h(Q) is the expected Bellman update and Mk
i is a martingale difference noise sequence. Conver-

gence to a locally optimal policy occurs if the induced ODE Q̇i = h(Qi) has a globally asymptotically stable
equilibrium.
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Theorem (Asymptotic Convergence): Let each agent i update its Q-function using independent Q-
learning with asynchronous updates, diminishing step sizes, and an ϵ-greedy exploration policy with ϵ → 0.
Then, under bounded reward and finite state/action spaces, the joint policy πt converges almost surely to a
stationary point of a potential game induced by the reward structure.

3.5 Convergence Rate and Transient Collisions
Let Tlearn denote the number of iterations required for Q-values to converge within δ-optimality, i.e.,

max
s,a
|Qt

i(s, a)−Q∗
i (s, a)| < δ, ∀t ≥ Tlearn.

Empirically, for tabular Q-learning with learning rate αt = 1
t , convergence rate is sublinear: O(1/t).

During the initial Tlearn, exploration and uncoordinated choices may cause transient collisions. The expected
collision probability during learning can be bounded as:

Pc(t) ≤ ϵ(t)
N

+O
(

1
t

)
,

where ϵ(t) is the exploration probability at time t. As t→∞, Pc(t)→ 0.

3.6 Implication
The RL agents, through independent learning and bounded exploration, converge to a collision-averse re-
source configuration that approximates a Nash equilibrium in the induced potential game. This explains the
near-zero collision probability observed in simulations beyond the learning phase and justifies the analytical
bound:

Pc ≤
ϵresel

N
+O

(
1

Tlearn

)
.

■

4 Oracle Scheduling: Centralized Benchmark
The Oracle scheduler represents an idealized, centralized benchmark used to upper-bound performance. It
assumes full global knowledge of all vehicles’ SINR, location, and resource usage, and allocates resource blocks
and MCS levels optimally in each Reservation Interval (RRI) to maximize throughput without collisions.

Let:

• N = {1, . . . , N} be the set of vehicles.

• R = {1, . . . , R} be the set of available resource blocks.

• βr
i be the estimated SINR of vehicle i on resource r.

• θm be the SINR threshold required for reliable decoding with MCS level m.

• xi,r ∈ {0, 1} be a binary indicator if vehicle i is assigned resource r.

• mi ∈M be the MCS index assigned to vehicle i.

The Oracle solves the following optimization problem at each RRI:
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max
xi,r,mi

N∑
i=1

log2(1 + SNR(βr(i)
i , mi)) · xi,r(i) (6)

s.t.
N∑

i=1
xi,r ≤ 1, ∀r ∈ R (collision-free) (7)

β
r(i)
i ≥ θmi

, ∀i ∈ N (decoding success) (8)
xi,r ∈ {0, 1}, mi ∈M, ∀i, r. (9)

This formulation ensures:

• No two vehicles share a resource (first constraint).

• Each vehicle is assigned the highest possible MCS that its SINR allows (second constraint).

• Maximum spectral efficiency is achieved (objective).

While this solution is not implementable in distributed Mode 2, it serves as a tight upper bound on
achievable performance.
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