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Supporting Information

S1. Data description

The annual average daily traffic (AADT) data for England and Wales is sourced from publicly available
road traffic estimates in the UK'. These estimates reflect the number of vehicles passing designated
“count point” locations. In 2021, the source dataset included 19,720 count points, categorised into major
roads (A roads and motorways) and minor roads (B, C, and unclassified roads). To associate AADT
data with road attributes and account for network distance, each AADT count point is linked to a
corresponding road segment based on geographical location, road class, and road name. Road
segment information is obtained from Ordnance Survey Open Roads?, which provides geographical
information and road attributes for all road segments within the UK. After data merging and excluding
points located on islands without direct road connections to the mainland (such as the Isles of Scilly),

the final dataset includes 19,560 count points.

S1.1 Feature design

To predict AADT at unmeasured locations, we extract 905 contextual features from various open-source
government datasets, capturing both on-network and off-network characteristics for individual count
points. The design of the contextual feature set mainly follows Sfyridis & Agnolucci®. To represent the
spatial autocorrelation structure of AADT, 144 supplementary spatial statistical features were created.
Table S1-1 shows the data sources and descriptions of these features. A feature is included in the

analysis only if at least 75% of the count points have valid data.

Table S1-1. Spatial resolution and source of variables used in the AADT prediction model.

Category @ Description Original data Source

resolution ®)
Rural/Urban Categorical label indicating Lower Layer Super  Department for
classification (1) rural or urban classification Output Area Environment Food &

(10 levels)

(LSOA) (34,753)

Rural Affairs*

Built-up area
(BUA) (1)

Boolean indicator for
presence in a BUA

BUAs (7,723)

Office for National
Statistics®

Access to major
towns and cities (4)

- Accessibility metrics to
major towns and cities
using population weights
and different impedance
functions

- Boolean indicator for
presence within a major
town or city

Major towns and
cities (112)

Office for National
Statistics®’

Access to
functional urban
areas (FUA) (5)

- Boolean indicator for
presence within an FUA
- Distance to the nearest

FUA boundary (0 if inside)

FUAs (41)

Office for National
Statistics®

- Accessibility metrics to
FUAs using population
weights and different
impedance functions

Local administrative
units level 1 (348);
FUAs (41)

Office for National
Statistics’8




Road attributes (6)

Road class Road segments Ordnance Survey?
Road function (3,503,488)

Primary road (boolean)

Trunk road (boolean)

- Form of way

- Road length
Access to Number of motorway Motorway junctions  Ordnance Survey?
motorway junctions  junctions within service areas (579)
(6) at multiple radii
Business counts Calculated within service Middle Layer Super Office for National
(390) areas at multiple radii: Output Area Statistics®

- Business counts by (MSOA,) (7,201)

employment size band and
industry sector ©9

- Total business counts by
employment size band and
by industry sector

- Mutual proportions
between employment size
bands and industry sectors

Earnings (48) - Median gross annual Parliamentary Office for National
earnings by place of constituency (573)  Statistics'%-""
residence and workplace,
calculated within service
areas at multiple radii

- Earnings inequality ratios Local authority Office for National
(P90/10, P80/20, P75/25) (331) Statistics 0!
by place of residence and
workplace, calculated
within service areas at

multiple radii
Employment (306)  Calculated within service LSOA (34,753) Office for National
areas at multiple radii: Statistics2

- Total employment

- Employment by industry
section and by industry
sector

- Proportion of each industry
sector and industry section
relative to total employment

Population (60) Calculated within service LSOA (35,672) Office for National
areas at multiple radii Statistics3
- Population total
- Population density
- Number of households

- Population by age group ®  LSOA (34,753) Office for National
(count and proportion), Statistics”
calculated within service
areas at multiple radii

Car ownership (42)  Car ownership by body type LSOA (34,753) Department for
® (count and proportion), Transport & Driver
calculated within service and Vehicle Licensing

areas at multiple radii Agency™




Accessibility to
public transport
stations (24)

Number of public transport
stations within service areas
at multiple radii, by type of
stop @

Public Transport
Access Nodes
(436,503)

Department for
Transport!?

Accessibility to
major ports (6)

Accessibility metrics to major
ports, calculated using
different impedance functions
and weightings (overall
goods and unitised goods)

Major ports (M
(36)

Department for
Transport!®

Accessibility to
major airports (6)

Accessibility metrics to major
airports, calculated using
different impedance functions
and weightings (terminal
passenger volume and
freight volume)

Major airports ¢
(27)

Civil Aviation
Authority7;
Borsetti’®

Coordinates (28)

- Geographical coordinates
(Northing and Easting) of
count points

- Rotated coordinate
transformations of count
points using multiple
oblique angles

AADT count points
(19,560)

Department for
Transport’

Spatial smooth
surface 0 (1)

Fitted spatial trend of AADT
using a generalised additive
model (GAM) with smooth
functions of Northing and
Easting

AADT count points
(19,560)

Department for
Transport!

Eigenvector spatial

filtering (100)

Selected eigenvectors of
spatial weights matrix
capturing spatial structure
among count points

AADT count points
(19,560)

Department for
Transport’

Spatial lag of target

variable 0) (2)

- Weighted average of AADT
from spatially nearby count
points

- The number of effective
neighbours & contributing
to the lag calculation

AADT count points
(19,560)

Department for
Transport’

Local Moran’s | of

key predictors (10)

Local Moran’s | statistic and
cluster label for

- Population density

- Total employment

- Median income by place of
residence and workplace

- Total business counts

Same as base
variables listed
above

Same as base

variables listed above

Traversable total
road length (3)

Total length of road
segments reachable within
fixed distances (500 m, 800
m, 1 km) from each count
point

Road segments
(3,503,488)

Ordnance Survey?

(@) The number of features within each category is shown in the bracket.

(b) The number of spatial units within England and Wales is shown in the bracket.

(c) Employment size band: Micro (0 to 9), Small (10 to 49), Medium-sized (50 to 249), Large (250+).

(d) Industry section: 21 sections (highest level) in the UK Standard Industrial Classification (SIC) hierarchy.
Industry sector: Agriculture, Production, Construction, and Service; aggregated based on SIC code.



(e) Age group: Aged 0 to 15, 16 to 64, 65+. Mid-year population estimates in 2020 was used due to data
availability by the time of analysis.

(f)  Vehicle body types: cars, motorcycles, others.

(g) Public transport station type: bus stop, bus/coach station, railway station, metro/tram station.

(h) Accessibility to ports is calculated only for ports with available and non-zero freight data.

(i) Accessibility to airports is calculated only for airports that report data to Civil Aviation Authority and have
available and non-zero passenger or freight volume.

(i) This feature is fitted using only the training set in cross-validation and then predicted for both training and test
sets.

(k) Effective neighbours: nearby count points within a maximum distance threshold whose weights (based on
road class compatibility and Gaussian distance decay) exceed a minimal influence threshold.

$1.2 Assignment of contextual features

Contextual features are categorised into two types based on the method used to assign feature values

from the spatial units in the source datasets to individual AADT count points (see Figure S$1-1).

Assigned via point location Assigned via service area

Location Socioeconomic & demographic
Rural/Urban label (1)

Within built-up areas (1)

Business counts (390)
Earnings (amount) (12)

Access to functional Earnings (inequality ratios) (36)

urban areas (5) Employment (306)
Access to major towns & cities (4) Population (60)
Road Road
Road attributes (6) Access to motorway junctions (6)
Transport Transport
Access to ports (6) Car ownership (42)

Access to airports (6) Access to public trans. stations (6)

Count Point Locations

Figure S1-1. Assignement methods of contextual features used in AADT prediction. Features are
assigned to count points based on either the precise coordinates of point location or service areas

constructed using network distance buffers.

Location-based features
Several features are assigned based on the geographical location of the count points. These include
settlement context features, accessibility to different tiers of urban areas, road attributes, and proximity

to ports and airports.

Our study incorporates a range of accessibility features that go beyond simple distance calculations.
The accessibility of a count point i to a set of infrastructure locations or urban areas {j:j = 1,2, ...,n} is

derived by



1 n
pi = Ez w;f (dij)
j=1

where w; is the weight of location j, d;; is the Euclidean distance between i and j, and f(-) is a
decreasing function of distance, commonly referred to as an impedance function. In this study, three

widely used impedance functions are applied: inverse distance f(dl-j) =1/d;;, inverse squared

ij s
distance f(d;;) = 1/d};, and negative exponential f(d;;) = exp (—d,;). The weights w; depend on the
context of the accessibility calculation. For accessibility to urban areas, w; corresponds to the
population at location j; for airports, it reflects either terminal passenger volume or freight volume; and

for ports, it is derived from reported throughput of overall goods or unitised goods.

Service area-based features

Assigning off-network characteristics, such as socioeconomic and demographic factors, to roads for
AADT estimation commonly involves defining buffers around count points20. Following Sfyridis &
Agnolucci®, we compute six service areas with varying sizes (500 m, 800 m, 1,000 m, 1,600 m, 2,000
m, and 3,200 m) around each count point. Unlike conventional Euclidian distance-based buffers, these
service areas are generated using network-based distance, providing a more realistic representation

under real-world road conditions?!,

Particularly, the service area of count point i at radius r is derived by generating a surrounding polygon
of the road segments traversable within a network distance r from that point. A polygon enclosing these
traversable roads is then formed using Delaunay triangulation of road endpoints and subsequently
trimmed to remain within 100 meters of the traversable road network. This trimming process holds
particular value when dealing with sparse networks by preventing unrealistic and biased coverage. The
process mainly follow the service area function in ArcGIS Pro. However, given the extensive scale of
the road network under consideration, our implementation is fully conducted in python. Specifically, the
identification of traversable roads is implemented with the NetworkX library?2. Subsequent steps

involving the generation of surrounding polygons are implemented using the Shapely library?3.

Once the service areas are created, we overlay them onto the spatial units of the source datasets to
assign feature values to count points. For polygon-based datasets, such as those representing
socioeconomic or demographic characteristics, feature values are computed as area-weighted
averages based on the intersecting areas between polygons and the service area. For point-based
datasets, such as public transport stations, features are assigned by counting the number of points that
fall within each service area. An illustrative example of the service area construction is provided in
Figure S1-2.



a. Before trimming b. After trimming

1 ©

Figure S1-2. lllustrative example of service area construction. Panel (a) indicate the shape of the
service area of a particular count point (red point) before trimming (blue polygon). The trimming process
involves generating and merging a 100-meter buffer (green polygon) around all traversable roads
(yellow lines). Panel (b) shows the resulting service area after trimming (purple polygon), which is the

intersection of the blue and green polygons in Panel (a).

S$1.3 Methods on spatial statistical features

The spatial statistical features supplement the contextual data by capturing spatial dependencies and
latent structures that may influence traffic volumes. This subsection provides technical details on

generating some of these features not fully described in the manuscript.

Oblique coordinate transformation

In our study, we include a set of oblique coordinate transformations to capture directional spatial trends
and anisotropic patterns that may not align with standard cardinal directions. These transformations are
computed by projecting coordinates onto rotated axes across 26 distinct angles?*. The angles are
determined by the 180° semicircle into 28 equal segments, excluding the standard directions of 0°, 90°,

and 180°. The features are calculated by:
0GC? = xcosf + ysinf
where x and y are Easting and Northing coordinates, respectively, and @ is the oblique angle.

Spatial lag
To reflect local spatial dependencies, we incorporate spatial lag features, computed as weighted
averages of AADT values from nearby points. For a particular count point i, the lag feature is derived

as

_ ZjeNi WiYj

lag; =
ZjeNi Wij



where N; is the set of neighbouring count points within a maximum distance d,,, y; is the AADT value

at count point j, and w;; is the weight between count point i and ;.

The weight combines a Gaussian distance-decay kernel with a compatibility adjustment based on road
class similarity:

2

wij = 6;jexp (— 2;2)

where d;; is the Euclidean distance between count point i and j, and o is the kernal bandwidth
parameter controlling the spatial decay rate. The adjustment term &;; encodes the similarity between
road classes between point i and j, and takes the value 1 when the road classes are the same, 0.5
when they differ by one level, 0.1 when they differ by two levels, and 0 otherwise. Count point j is

regarded as a effective neighbour of point i if w;; is greater than 1e-8.

The parameters ¢ and d,,., are specific to the road class of each point. For major roads, we set
o =1500 mand d,,., = 4500 m. For minor roads, we set ¢ =1000 m and d,,,, = 2500 m. These values

are determined by empirical variogram analysis of AADT values, see section S2.

Spatial clustering of key predictors

To further account for spatial structure in the predictors themselves, we include spatial clustering
indicators for key contextual variables, including population density, total employment, median gross
annual pay by place of residence and and by workplace, and total business counts. For each selected
predictor, we compute two clustering metrics at their original spatial resolutions: the local Moran’s |
statistic and its associated cluster type. The cluster type (High-High, Low-Low, High-Low, or Low-High)
indicates the relationship between the value at a given location and the values at neighbouring locations.
The local Moran’s | and corresponding cluster type are then assigned to count points according to their

geographical coordinates.

Local Moran’s | is one of the most commonly used metric to quantify spatial autocorrelation2. The local

Moran'’s | statistic for variable x at location i is derived by:

(x; = %) Xi=qwij(x; — %)

I =
l sz

where x and s? are the mean and variance of variable x, and w;; represents the spatial weight between
location i and j. As the spatial units of the selected predictors are polygons, we compute w;; using
Queen’s contiguity spatial weight matrix. A high positive | value indicates a spatial cluster of similar
values (High-High or Low-Low), while a negative value suggests spatial outliers (High-Low or Low-
High).

Eigenvector spatial filtering
In spatial analysis, a spatial weight matrix W is commonly used to represent the dependency between

pairs of locations, capturing both short- and long-distance spatial autocorrelation. However,



incorporating the full n x n spatial weight matrix directly into a model is often infeasible due to its high
dimensionality. To address this, ESF is employed to decompose the spatial weight matrix into a set of
orthogonal eigenvectors. These eigenvectors represent latent spatial patterns at various scales and

can be included in the model to account for spatial autocorrelation while reducing complexity26.
Formally, the matrix to be decomposed is:

C=MWM
where M = [ — % 117 is the centring matrix, 1 is an n x 1 vector of ones, W is the spatial weight matrix2’.

In our study, the spatial weight matrix is constructed separately for major and minor roads using a
Gaussian kernel with a distance cutoff. The kernel bandwidth ¢ and cutoff distance d,,,, are selected
based on empirical variogram analysis (see section S2) and are set larger than those used for spatial
lag features. This is because ESF aims to capture spatial autocorrelation patterns across multiple scales,
including broader regional trends, while spatial lags are inherently more localised. For major roads, we
set 0 =5000mand d,,, = 9000 m. For minor roads, we set ¢ = 1000 mand d,,,, = 500 m. The eigen-

decomposition is performed using the scipy?? library in python.



S2. Analysis of AADT values

In this section, we explore the characteristics of AADT values by analysing their distribution by road
class and evaluating their level of spatial autocorrelation through an empirical variogram analysis.
These analyses inform parameter choices for spatial feature construction and guide model selection by

revealing the scale and structure of spatial dependencies and heterogeneity in traffic volumes.

Figure S$2-1 shows that AADT distributions are highly skewed and heterogeneous across road classes.
Motorways exhibit a relatively broad and near-symmetric distribution, while A roads display a clear right-
skewed distribution with a long tail extending toward very high traffic volumes. Both road classes
demonstrate relatively good coverage across medium to high traffic levels. In contrast, B roads, C roads,
and especially unclassified roads tend to have lower AADT values, with steep drop-offs, heavier skew,
and sparse high-volume observations. This increased skewness and heterogeneity present challenges
for accurately learning and predicting outliers. These differences in distributional shape and scale
motivate the use of stratified modelling approaches and justify applying a logarithm transformation to
stabilise variance and improve model robustness. The distribution of AADT values after logarithm
transformation is shown in Figure S2-2. The log-transformed AADT distributions show clear
improvements in symmetry and shape across all road classes compared to the raw scale, especially

for major roads.
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Figure S2-1. Distribution of AADT values by road class. Histograms and kernel density estimates of
AADT (in thousands) are shown separately for motorways, A roads, B roads, C roads, and unclassified

roads.
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Figure $2-2. Distribution of log-transformed AADT values by road class. Histograms and kernel density
estimates of log-transformed AADT values are shown separately for motorways, A roads, B roads, C

roads, and unclassified roads.

To support the specification of spatial weight matrices for AADT observations, we analyse the spatial
structure of AADT separately for motorways, A roads, and minor roads by fitting empirical variograms
to grouped data using the scikit-gstat library2? in python. We experiment with different combinations of
theoretical models, binning strategies, and maximum lag distances, and apply Cressie’s robust
estimator to mitigate the influence of outliers. For each road type, the final variogram model is selected
based on the highest pseudo-R? score, indicating the best fit to the empirical semivariances. After model
selection, variograms for A roads and motorways are computed using the exponential model with a
maximum lag of 9 km and uniform binning, while for minor roads, the Gaussian model is used with the
same lag setting but ward binning strategy. The resulting fitted variograms are presented in Figure

S$2-3, Figure S2-4, and Figure S2-5 for motorways, A roads, and minor roads, respectively.

These variograms generally demonstrate increasing spatial dissimilarity with distance, indicating
positive spatial autocorrelation in AADT values. For motorways and A roads, the fitted theoretical
models closely follow the empirical semivariances, showing strong spatial correlation at short distances
and a smooth, gradual increase up to ~ 9 km. In contrast, the variogram for minor roads flattens much

earlier, suggesting that spatial correlation diminishes rapidly beyond short distances.
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Figure S2-3. Empirical variogram of AADT for motorways. The variogram is fitted with an exponential
model using Cressie’s robust estimator. Blue points represent empirical semivariances calculated
across 20 lag bins with approximately uniform sample sizes, up to a maximum lag distance of 9 km.
The green curve indicates the fitted theoretical variogram. Red bars show the number of point pairs

contributing to each bin.
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Figure S2-4. Empirical variogram of AADT for A roads. The variogram is fitted with an exponential
model using Cressie’s robust estimator. Blue points represent empirical semivariances calculated
across 20 lag bins with approximately uniform sample sizes, up to a maximum lag distance of 9 km.
The green curve indicates the fitted theoretical variogram. Red bars show the number of point pairs

contributing to each bin.
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Figure S2-5. Empirical variogram of AADT for minor roads. The variogram is fitted with a Gaussian
model using Cressie’s robust estimator. Blue points represent empirical semivariances calculated
across 20 lag bins derived using a ward-based binning strategy, with a maximum lag distance of 9 km.
The green curve indicates the fitted theoretical variogram. Red bars show the number of point pairs

contributing to each bin.
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S3. Additional model results and diagnostics

This section presents additional results to complement the main manuscript. The first subsection reports
summary statistics such as the number of selected features and the performance gap between training
and test sets, providing insight into model complexity and generalisation. The second subsection
includes supplementary figures based on spatial block cross-validation (CV), where training and test
sets are spatially disjoint. These results are provided in addition to the main manuscript, which primarily

focuses on results from sampling-intensity-weighted CV.

S$3.1 Summary statistics on model complexity and generalisation

Table S$3-1 summarises the performance gap across a range of model configurations. By comparing
the difference in performance between training and test sets for each configuration, we assess the
model's ability to generalise. These statistics complement model selection by highlighting the trade-offs

between complexity, accuracy, and generalisability.

Table S3-2 reports the number of features selected for models of major and minor roads under two CV
strategies. Results are shown for models using only spatial features, only contextual features, and a
combined feature set prior to feature selection. Across both road types, models using combined
contextual and spatial features retain the largest number of features, suggesting additive value in
combining both types of information. Minor road models generally require more contextual features than
major road models, reflecting the increased heterogeneity and complexity of local environments

associated with less prominent road classes.

Table S3-1. Performance gap across model configurations.

Configuration Performance gap (@

Custom  Spatial

ID  Tuning Encoding CVtype nRMSE (%) R? (%) MAPE (%)

loss features

0 Spatial -20.9 17.0 -30.2
Weighted -12.0 9.1 -24.3
1 y Spatial -27.3 22.8 -28.4
Weighted -12.5 9.1 -24.2
Spatial -26.9 22.5 -28.2

2 - v - v .
Weighted -12.4 9.0 -24.1
Spatial -27.2 21.7 -27.6

3 - v v v .
Weighted -13.4 9.4 -25.3
Spatial -36.9 274 -36.0

4 v v - v .
Weighted -32.7 17.6 -36.5
5 y y y y Spatial -29.1 22.7 -27.9
Weighted -17.3 114 -26.5

(a) The performance gap is defined as the difference between the performance metric on the training set and that
on the test set.
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Table S3-2. Number of selected features by model group, feature set, and CV strategy.

Number of features

Model group CV type

Spatial only Contextual only Contextual + Spatial

. weighted 47 221 272
Major road -

spatial 49 223 264

. weighted 39 338 378
Minor road -

spatial 38 338 378

$3.2 Additional results under spatial block CV

Figure S3-1 illustrates the predictive performance by road class under spatial block CV. Compared with
Figure 2 in the manuscript, which presents corresponding results under sampling-intensity-weighted
CV, model performance generally declines under spatial block CV, as expected. The reduction in
predictive performance reflects the challenge of spatial extrapolation to regions that are entirely disjoint
from the training data. The performance drop is particularly significant for major roads, with test R?
decreased by ~ 25 percentage points. This highlights the spatial heterogeneity and complexity of traffic
patterns on these networks. In contrast, minor road classes show smaller performance differences
between the two CV strategies, suggesting more locally stable or spatially consistent traffic patterns.
Overall, spatial block CV provides a conservative benchmark for evaluating model robustness under

the most stringent generalisation conditions.

Figure S3-2 shows the contribution evaluation of spatial features associated with spatial block CV.
Consistent with the results observed under sampling-intensity-weighted CV (c.f. Figure 3 and Figure 4
in manuscript), spatial features primarily act as complements to contextual features and the benefits of
incorporating spatial features vary notably across road types. Interestingly, the contextual-only scenario
achieves the best performance for major roads under spatial block CV, as opposed to results under
weighted CV. Additionally, the relative importance of local dependency features diminishes under
spatial block CV, implying reduced effectiveness when training and test regions are spatially disjoint. In
contrast, ESF features remains valuable for major roads and coordinates-based features still contribute

for minor roads.

Figure S3-3 presents the top 20 most important features for major and minor roads, respectively, based
on mean absolute SHAP values derived from the model under spatial block CV. Notably, the top five
features in each group are consistent with those identified under sampling-intensity-weighted CV,

indicating the stability of key predictors across different validation strategies.
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Figure S3-1. Predictive performance by road class under spatial block CV. Scatter plots (panels a-e)
compare predicted and observed AADT on the training (red) and test (blue) sets for each road class,
based on the final model. The dashed diagonal line indicates perfect prediction. Panel f shows the

cumulative distribution of absolute percentage error by road class.
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Figure S3-2. Test performance across spatial feature combinations by road class using spatial block
CV. Each panel shows the test normalised RMSE (%) for models trained with different combinations of
input features prior to feature selection, evaluated separately by road class under spatial block CV. All
models are trained without hyperparameter tuning, target encoding, or custom loss to isolate the effect
of spatial features. The matrix beneath each bar chart indicates the combinations of input features,
including contextual, eigenvector spatial filtering (ESF), geographical coordinates and oblique
coordinates (Coord), coordinate-based spatial smooth surface (Smth), local dependence including

spatial lag of AADT and local Moran’s | for key predictors (LocDep), and road network topology (Topo).
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Figure S$3-3. Global feature importance for predicting AADT on major roads (motorway and A roads)

and minor roads (B, C, and unclassified roads) under spatial block CV. Bar plots show the top 20

features ranked by mean absolute SHAP value for (a) major roads and (b) minor roads. Spatial features

are grouped by type, with SHAP values aggregated across all constituent features. Asterisks (*) denote

spatial statistical features. ESF includes multiple eigenvector spatial filtering features, LocDep includes

spatial lag of AADT and clustering metrics for key predictors, Smth refers to the coordinate-based

spatial smooth surface, and Topo refers to topological indicators from the road network.
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S4. Custom Loss Function and Hyperparameter Tuning

This section provides details on the custom loss function and the parameter tuning procedures used to

optimise the performance of the LightGBM regression model.

To better reflect the practical objectives of traffic volume prediction, we implement a custom asymmetric
loss function that penalises underestimation more heavily than overestimation. The function is
implemented using the custom objective interface in the lightGBM library in python. The loss function
modifies the standard mean squared error by applying different weights to errors depending on whether
the prediction is higher or lower than the true value:
oy _ (Aunder - P =? if 9 <y
Loss(y, ) = { nder > e
oner'(y_y)z lfyZy
where y and y are the observed and predicted AADT, respectively; A qer @nd A, are the penalty
weights for underestimation and overestimation, respectively. In our study, we set A,,4er = 2 and Ay, =

1, placing twice as much penalty on underestimation.

In addition to specifying a custom loss function, we apply Bayesian optimisation to tune a selected set
of key hyperparameters in the LightGBM model. Specifically, we focus on 8 key hyperparameters, as
shown in Table S4-1. The optimisation objective is to minimise the RMSE of the LightGBM model
evaluated on an internal held-out set. Specifically, for each CV fold, Bayesian optimisation is performed
on an 80/20 split of the training set, ensuring that hyperparameter tuning is conducted independently of
the final test set to avoid information leakage. The optimisation procedure is implemented using the

scikit-learn library in python3'.

In addition to the parameters shown in Table S$4-1, we treat the number of boosted trees (n_estimators)
as a dynamic hyperparameter. Instead of fixing or explicitly tuning its value, we rely on the early stopping
function in the lightGBM library. Particularly, we set early stopping_rounds = 70, meaning the model
stops adding new trees if the RMSE does not improve for 70 consecutive iterations. This adaptive
approach ensures that the ensemble size is optimally chosen based on validation performance,

preventing overfitting while reducing unnecessary computational cost.

Table S4-1. Description and search domain of key hyperparameters for tuning.

Parameter @ Description Search domain
learning_rate Boosting step size 0.005 - 0.1, float
num_leaves Max number of leaf nodes per tree 20— 100, integer
max_depth Maximum depth of each tree 3 —-10, integer
min_child_samples Minimum samples per leaf 20 - 100, integer
subsample Row sampling ratio per tree 0.6 — 1.0, float
colsample_bytree Feature sampling ratio per tree 0.6 — 1.0, float
reg_alpha L1 regularisation strength 1e-8 — 10, float
reg_lambda L2 regularisation strength 1e-8 — 10, float

(a) The name of hyperparameters is aligned with those used in the lightGBM library in python.
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