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Supporting Information  

S1. Data description 

The annual average daily traffic (AADT) data for England and Wales is sourced from publicly available 

road traffic estimates in the UK1. These estimates reflect the number of vehicles passing designated 

“count point” locations. In 2021, the source dataset included 19,720 count points, categorised into major 

roads (A roads and motorways) and minor roads (B, C, and unclassified roads). To associate AADT 

data with road attributes and account for network distance, each AADT count point is linked to a 

corresponding road segment based on geographical location, road class, and road name. Road 

segment information is obtained from Ordnance Survey Open Roads2, which provides geographical 

information and road attributes for all road segments within the UK. After data merging and excluding 

points located on islands without direct road connections to the mainland (such as the Isles of Scilly), 

the final dataset includes 19,560 count points.  

S1.1 Feature design 

To predict AADT at unmeasured locations, we extract 905 contextual features from various open-source 

government datasets, capturing both on-network and off-network characteristics for individual count 

points. The design of the contextual feature set mainly follows Sfyridis & Agnolucci3. To represent the 

spatial autocorrelation structure of AADT, 144 supplementary spatial statistical features were created. 

Table S1-1 shows the data sources and descriptions of these features. A feature is included in the 

analysis only if at least 75% of the count points have valid data. 

Table S1-1. Spatial resolution and source of variables used in the AADT prediction model. 

Category (a) Description Original data 
resolution (b) 

Source 

Rural/Urban 
classification (1) 

Categorical label indicating 
rural or urban classification 
(10 levels) 

Lower Layer Super 
Output Area 
(LSOA) (34,753) 

Department for 
Environment Food & 
Rural Affairs4 

Built-up area  

(BUA) (1) 

Boolean indicator for 
presence in a BUA 

BUAs (7,723) Office for National 
Statistics5 

Access to major 
towns and cities (4) 

- Accessibility metrics to 
major towns and cities 
using population weights 
and different impedance 
functions 

- Boolean indicator for 
presence within a major 
town or city 

Major towns and 
cities (112) 

Office for National 
Statistics6,7 

Access to 
functional urban 
areas (FUA) (5) 

- Boolean indicator for 
presence within an FUA 

- Distance to the nearest 
FUA boundary (0 if inside) 

FUAs (41) Office for National 
Statistics8 

- Accessibility metrics to 
FUAs using population 
weights and different 
impedance functions 

Local administrative 
units level 1 (348); 
FUAs (41) 

Office for National 
Statistics7,8 
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Road attributes (6) - Road class 
- Road function 
- Primary road (boolean) 
- Trunk road (boolean) 
- Form of way 
- Road length 

Road segments 
(3,503,488) 

Ordnance Survey2 

Access to 
motorway junctions 
(6) 

Number of motorway 
junctions within service areas 
at multiple radii 

Motorway junctions 
(579) 

Ordnance Survey2 

Business counts  

(390) 

Calculated within service 
areas at multiple radii: 

- Business counts by  
employment size band and 
industry sector (c,d) 

- Total business counts by 
employment size band and 
by industry sector 

- Mutual proportions 
between employment size 
bands and industry sectors 

Middle Layer Super 
Output Area 
(MSOA) (7,201) 

Office for National 
Statistics9 

Earnings (48) - Median gross annual 
earnings by place of 
residence and workplace, 
calculated within service 
areas at multiple radii 

Parliamentary 
constituency (573) 

Office for National 
Statistics10,11 

- Earnings inequality ratios 
(P90/10, P80/20, P75/25) 
by place of residence and 
workplace, calculated 
within service areas at 
multiple radii 

Local authority 
(331) 

Office for National 
Statistics10,11 

Employment (306) Calculated within service 
areas at multiple radii: 

- Total employment 
- Employment by industry 

section and by industry 
sector (d) 

- Proportion of each industry 
sector and industry section 
relative to total employment 

LSOA (34,753) Office for National 
Statistics12 

Population (60) Calculated within service 
areas at multiple radii  

- Population total 
- Population density 
- Number of households  

LSOA (35,672) Office for National 
Statistics13 

- Population by age group (e) 

(count and proportion), 
calculated within service 
areas at multiple radii 

LSOA (34,753) Office for National 
Statistics7 

Car ownership (42) Car ownership by body type 
(f) (count and proportion), 
calculated within service 
areas at multiple radii 

LSOA (34,753) Department for 
Transport & Driver 
and Vehicle Licensing 
Agency14 
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Accessibility to 
public transport 
stations (24) 

Number of public transport 
stations within service areas 
at multiple radii, by type of 
stop (g) 

Public Transport 
Access Nodes 
(436,503) 

Department for 
Transport15 

Accessibility to 
major ports (6) 

Accessibility metrics to major 
ports, calculated using 
different impedance functions 
and weightings (overall 
goods and unitised goods) 

Major ports (h)  

(36) 

Department for 
Transport16 

Accessibility to 
major airports (6) 

Accessibility metrics to major 
airports, calculated using 
different impedance functions 
and weightings (terminal 
passenger volume and 
freight volume) 

Major airports (h) 
(27) 

Civil Aviation 
Authority17; 

Borsetti18 

Coordinates (28) - Geographical coordinates 
(Northing and Easting) of 
count points  

- Rotated coordinate 
transformations of count 
points using multiple 
oblique angles 

AADT count points 
(19,560) 

Department for 
Transport1 

Spatial smooth 
surface (j) (1) 

Fitted spatial trend of AADT 
using a generalised additive 
model (GAM) with smooth 
functions of Northing and 
Easting 

AADT count points 
(19,560) 

Department for 
Transport1 

Eigenvector spatial 
filtering (100) 

Selected eigenvectors of 
spatial weights matrix 
capturing spatial structure 
among count points 

AADT count points 
(19,560) 

Department for 
Transport1 

Spatial lag of target 
variable (j) (2) 

- Weighted average of AADT 
from spatially nearby count 
points 

- The number of effective 
neighbours (k) contributing 
to the lag calculation  

AADT count points 
(19,560) 

Department for 
Transport1 

Local Moran’s I of 
key predictors (10) 

Local Moran’s I statistic and 
cluster label for  

- Population density 
- Total employment 
- Median income by place of 

residence and workplace 
- Total business counts  

Same as base 
variables listed 
above 

Same as base 
variables listed above 

Traversable total 
road length (3) 

Total length of road 
segments reachable within 
fixed distances (500 m, 800 
m, 1 km) from each count 
point 

Road segments 
(3,503,488) 

Ordnance Survey2 

(a) The number of features within each category is shown in the bracket.  

(b) The number of spatial units within England and Wales is shown in the bracket.  

(c) Employment size band: Micro (0 to 9), Small (10 to 49), Medium-sized (50 to 249), Large (250+).  

(d) Industry section: 21 sections (highest level) in the UK Standard Industrial Classification (SIC) hierarchy. 

Industry sector: Agriculture, Production, Construction, and Service; aggregated based on SIC code.  
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(e) Age group: Aged 0 to 15, 16 to 64, 65+. Mid-year population estimates in 2020 was used due to data 

availability by the time of analysis. 

(f) Vehicle body types: cars, motorcycles, others.  

(g) Public transport station type: bus stop, bus/coach station, railway station, metro/tram station. 

(h) Accessibility to ports is calculated only for ports with available and non-zero freight data. 

(i) Accessibility to airports is calculated only for airports that report data to Civil Aviation Authority and have 

available and non-zero passenger or freight volume. 

(j) This feature is fitted using only the training set in cross-validation and then predicted for both training and test 

sets. 

(k) Effective neighbours: nearby count points within a maximum distance threshold whose weights (based on 

road class compatibility and Gaussian distance decay) exceed a minimal influence threshold. 

S1.2 Assignment of contextual features 

Contextual features are categorised into two types based on the method used to assign feature values 

from the spatial units in the source datasets to individual AADT count points (see Figure S1-1).  

 

Figure S1-1. Assignement methods of contextual features used in AADT prediction. Features are 

assigned to count points based on either the precise coordinates of point location or service areas 

constructed using network distance buffers.  

Location-based features 

Several features are assigned based on the geographical location of the count points. These include 

settlement context features, accessibility to different tiers of urban areas, road attributes, and proximity 

to ports and airports. 

Our study incorporates a range of accessibility features that go beyond simple distance calculations. 

The accessibility of a count point 𝑖 to a set of infrastructure locations or urban areas {𝑗: 𝑗 = 1,2, … , 𝑛} is 

derived by  
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𝜌𝑖 =
1

𝑛
∑ 𝑤𝑗𝑓(𝑑𝑖𝑗)

𝑛

𝑗=1

 

where 𝑤𝑗  is the weight of location 𝑗 , 𝑑𝑖𝑗  is the Euclidean distance between 𝑖  and 𝑗 , and 𝑓(∙)  is a 

decreasing function of distance, commonly referred to as an impedance function19. In this study, three 

widely used impedance functions are applied: inverse distance 𝑓(𝑑𝑖𝑗) = 1 𝑑𝑖𝑗⁄ , inverse squared 

distance 𝑓(𝑑𝑖𝑗) = 1 𝑑𝑖𝑗
2⁄ , and negative exponential 𝑓(𝑑𝑖𝑗) = exp (−𝑑𝑖𝑗). The weights 𝑤𝑗 depend on the 

context of the accessibility calculation. For accessibility to urban areas, 𝑤𝑗  corresponds to the 

population at location 𝑗; for airports, it reflects either terminal passenger volume or freight volume; and 

for ports, it is derived from reported throughput of overall goods or unitised goods. 

Service area-based features 

Assigning off-network characteristics, such as socioeconomic and demographic factors, to roads for 

AADT estimation commonly involves defining buffers around count points20. Following Sfyridis & 

Agnolucci3, we compute six service areas with varying sizes (500 m, 800 m, 1,000 m, 1,600 m, 2,000 

m, and 3,200 m) around each count point. Unlike conventional Euclidian distance-based buffers, these 

service areas are generated using network-based distance, providing a more realistic representation 

under real-world road conditions21.  

Particularly, the service area of count point  at radius  is derived by generating a surrounding polygon 

of the road segments traversable within a network distance  from that point. A polygon enclosing these 

traversable roads is then formed using Delaunay triangulation of road endpoints and subsequently 

trimmed to remain within 100 meters of the traversable road network. This trimming process holds 

particular value when dealing with sparse networks by preventing unrealistic and biased coverage. The 

process mainly follow the service area function in ArcGIS Pro. However, given the extensive scale of 

the road network under consideration, our implementation is fully conducted in python. Specifically, the 

identification of traversable roads is implemented with the NetworkX library22. Subsequent steps 

involving the generation of surrounding polygons are implemented using the Shapely library23.  

Once the service areas are created, we overlay them onto the spatial units of the source datasets to 

assign feature values to count points. For polygon-based datasets, such as those representing 

socioeconomic or demographic characteristics, feature values are computed as area-weighted 

averages based on the intersecting areas between polygons and the service area. For point-based 

datasets, such as public transport stations, features are assigned by counting the number of points that 

fall within each service area. An illustrative example of the service area construction is provided in 

Figure S1-2. 
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Figure S1-2. Illustrative example of service area construction. Panel (a) indicate the shape of the 

service area of a particular count point (red point) before trimming (blue polygon). The trimming process 

involves generating and merging a 100-meter buffer (green polygon) around all traversable roads 

(yellow lines). Panel (b) shows the resulting service area after trimming (purple polygon), which is the 

intersection of the blue and green polygons in Panel (a). 

S1.3 Methods on spatial statistical features 

The spatial statistical features supplement the contextual data by capturing spatial dependencies and 

latent structures that may influence traffic volumes. This subsection provides technical details on 

generating some of these features not fully described in the manuscript.  

Oblique coordinate transformation 

In our study, we include a set of oblique coordinate transformations to capture directional spatial trends 

and anisotropic patterns that may not align with standard cardinal directions. These transformations are 

computed by projecting coordinates onto rotated axes across 26 distinct angles24. The angles are 

determined by the 180° semicircle into 28 equal segments, excluding the standard directions of 0°, 90°, 

and 180°. The features are calculated by: 

OGC𝜃 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 

where 𝑥 and 𝑦 are Easting and Northing coordinates, respectively, and 𝜃 is the oblique angle.   

Spatial lag 

To reflect local spatial dependencies, we incorporate spatial lag features, computed as weighted 

averages of AADT values from nearby points. For a particular count point 𝑖, the lag feature is derived 

as 

lag𝑖 =
∑ 𝑤𝑖𝑗𝑦𝑗𝑗𝜖𝑁𝑖

∑ 𝑤𝑖𝑗𝑗𝜖𝑁𝑖
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where 𝑁𝑖 is the set of neighbouring count points within a maximum distance 𝑑max, 𝑦𝑗 is the AADT value 

at count point 𝑗, and 𝑤𝑖𝑗 is the weight between count point 𝑖 and 𝑗.  

The weight combines a Gaussian distance-decay kernel with a compatibility adjustment based on road 

class similarity: 

𝑤𝑖𝑗 = 𝛿𝑖𝑗exp (−
𝑑𝑖𝑗

2

2𝜎2
) 

where 𝑑𝑖𝑗  is the Euclidean distance between count point 𝑖  and 𝑗 , and 𝜎  is the kernal bandwidth 

parameter controlling the spatial decay rate. The adjustment term 𝛿𝑖𝑗 encodes the similarity between 

road classes between point 𝑖 and 𝑗, and takes the value 1 when the road classes are the same, 0.5 

when they differ by one level, 0.1 when they differ by two levels, and 0 otherwise. Count point 𝑗 is 

regarded as a effective neighbour of point 𝑖 if 𝑤𝑖𝑗 is greater than 1e-8. 

The parameters 𝜎  and 𝑑max are specific to the road class of each point. For major roads, we set 

𝜎 =1500 m and  𝑑max =  4500 m. For minor roads, we set 𝜎 =1000 m and 𝑑max = 2500 m. These values 

are determined by empirical variogram analysis of AADT values, see section S2.  

Spatial clustering of key predictors 

To further account for spatial structure in the predictors themselves, we include spatial clustering 

indicators for key contextual variables, including population density, total employment, median gross 

annual pay by place of residence and and by workplace, and total business counts. For each selected 

predictor, we compute two clustering metrics at their original spatial resolutions: the local Moran’s I 

statistic and its associated cluster type. The cluster type (High-High, Low-Low, High-Low, or Low-High) 

indicates the relationship between the value at a given location and the values at neighbouring locations. 

The local Moran’s I and corresponding cluster type are then assigned to count points according to their 

geographical coordinates.  

Local Moran’s I is one of the most commonly used metric to quantify spatial autocorrelation25. The local 

Moran’s I statistic for variable 𝑥 at location 𝑖 is derived by: 

𝐼𝑖 =
(𝑥𝑖 − 𝑥̅) ∑ 𝑤𝑖𝑗(𝑛

𝑗=1 𝑥𝑗 − 𝑥̅)

𝑠2
 

where 𝑥̅ and 𝑠2 are the mean and variance of variable 𝑥, and 𝑤𝑖𝑗 represents the spatial weight between 

location 𝑖 and 𝑗. As the spatial units of the selected predictors are polygons, we compute 𝑤𝑖𝑗  using 

Queen’s contiguity spatial weight matrix. A high positive I value indicates a spatial cluster of similar 

values (High-High or Low-Low), while a negative value suggests spatial outliers (High-Low or Low-

High). 

Eigenvector spatial filtering 

In spatial analysis, a spatial weight matrix W is commonly used to represent the dependency between 

pairs of locations, capturing both short- and long-distance spatial autocorrelation. However, 
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incorporating the full n × n spatial weight matrix directly into a model is often infeasible due to its high 

dimensionality. To address this, ESF is employed to decompose the spatial weight matrix into a set of 

orthogonal eigenvectors. These eigenvectors represent latent spatial patterns at various scales and 

can be included in the model to account for spatial autocorrelation while reducing complexity26.  

Formally, the matrix to be decomposed is: 

𝐶 = 𝑀𝑊𝑀 

where 𝑀 = 𝐼 −
1

𝑛
11𝑇 is the centring matrix, 1 is an n × 1 vector of ones, W is the spatial weight matrix27.  

In our study, the spatial weight matrix is constructed separately for major and minor roads using a 

Gaussian kernel with a distance cutoff. The kernel bandwidth 𝜎 and cutoff distance 𝑑max are selected 

based on empirical variogram analysis (see section S2) and are set larger than those used for spatial 

lag features. This is because ESF aims to capture spatial autocorrelation patterns across multiple scales, 

including broader regional trends, while spatial lags are inherently more localised. For major roads, we 

set 𝜎 = 5000 m and  𝑑max = 9000 m. For minor roads, we set 𝜎 = 1000 m and 𝑑max =  500 m. The eigen-

decomposition is performed using the scipy28 library in python.   
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S2. Analysis of AADT values 

In this section, we explore the characteristics of AADT values by analysing their distribution by road 

class and evaluating their level of spatial autocorrelation through an empirical variogram analysis. 

These analyses inform parameter choices for spatial feature construction and guide model selection by 

revealing the scale and structure of spatial dependencies and heterogeneity in traffic volumes. 

Figure S2-1 shows that AADT distributions are highly skewed and heterogeneous across road classes. 

Motorways exhibit a relatively broad and near-symmetric distribution, while A roads display a clear right-

skewed distribution with a long tail extending toward very high traffic volumes. Both road classes 

demonstrate relatively good coverage across medium to high traffic levels. In contrast, B roads, C roads, 

and especially unclassified roads tend to have lower AADT values, with steep drop-offs, heavier skew, 

and sparse high-volume observations. This increased skewness and heterogeneity present challenges 

for accurately learning and predicting outliers. These differences in distributional shape and scale 

motivate the use of stratified modelling approaches and justify applying a logarithm transformation to 

stabilise variance and improve model robustness. The distribution of AADT values after logarithm 

transformation is shown in Figure S2-2. The log-transformed AADT distributions show clear 

improvements in symmetry and shape across all road classes compared to the raw scale, especially 

for major roads.  

 

Figure S2-1. Distribution of AADT values by road class. Histograms and kernel density estimates of 

AADT (in thousands) are shown separately for motorways, A roads, B roads, C roads, and unclassified 

roads. 
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Figure S2-2. Distribution of log-transformed AADT values by road class. Histograms and kernel density 

estimates of log-transformed AADT values are shown separately for motorways, A roads, B roads, C 

roads, and unclassified roads. 

To support the specification of spatial weight matrices for AADT observations, we analyse the spatial 

structure of AADT separately for motorways, A roads, and minor roads by fitting empirical variograms 

to grouped data using the scikit-gstat library29 in python. We experiment with different combinations of 

theoretical models, binning strategies, and maximum lag distances, and apply Cressie’s robust 

estimator to mitigate the influence of outliers. For each road type, the final variogram model is selected 

based on the highest pseudo-R² score, indicating the best fit to the empirical semivariances. After model 

selection, variograms for A roads and motorways are computed using the exponential model with a 

maximum lag of 9 km and uniform binning, while for minor roads, the Gaussian model is used with the 

same lag setting but ward binning strategy. The resulting fitted variograms are presented in Figure 

S2-3, Figure S2-4, and Figure S2-5 for motorways, A roads, and minor roads, respectively. 

These variograms generally demonstrate increasing spatial dissimilarity with distance, indicating 

positive spatial autocorrelation in AADT values. For motorways and A roads, the fitted theoretical 

models closely follow the empirical semivariances, showing strong spatial correlation at short distances 

and a smooth, gradual increase up to ~ 9 km. In contrast, the variogram for minor roads flattens much 

earlier, suggesting that spatial correlation diminishes rapidly beyond short distances.  
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Figure S2-3. Empirical variogram of AADT for motorways. The variogram is fitted with an exponential 

model using Cressie’s robust estimator. Blue points represent empirical semivariances calculated 

across 20 lag bins with approximately uniform sample sizes, up to a maximum lag distance of 9 km. 

The green curve indicates the fitted theoretical variogram. Red bars show the number of point pairs 

contributing to each bin. 

 

Figure S2-4. Empirical variogram of AADT for A roads. The variogram is fitted with an exponential 

model using Cressie’s robust estimator. Blue points represent empirical semivariances calculated 

across 20 lag bins with approximately uniform sample sizes, up to a maximum lag distance of 9 km. 

The green curve indicates the fitted theoretical variogram. Red bars show the number of point pairs 

contributing to each bin. 
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Figure S2-5. Empirical variogram of AADT for minor roads. The variogram is fitted with a Gaussian 

model using Cressie’s robust estimator. Blue points represent empirical semivariances calculated 

across 20 lag bins derived using a ward-based binning strategy, with a maximum lag distance of 9 km. 

The green curve indicates the fitted theoretical variogram. Red bars show the number of point pairs 

contributing to each bin. 
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S3. Additional model results and diagnostics 

This section presents additional results to complement the main manuscript. The first subsection reports 

summary statistics such as the number of selected features and the performance gap between training 

and test sets, providing insight into model complexity and generalisation. The second subsection 

includes supplementary figures based on spatial block cross-validation (CV), where training and test 

sets are spatially disjoint. These results are provided in addition to the main manuscript, which primarily 

focuses on results from sampling-intensity-weighted CV.  

S3.1 Summary statistics on model complexity and generalisation 

Table S3-1 summarises the performance gap across a range of model configurations. By comparing 

the difference in performance between training and test sets for each configuration, we assess the 

model's ability to generalise. These statistics complement model selection by highlighting the trade-offs 

between complexity, accuracy, and generalisability. 

Table S3-2 reports the number of features selected for models of major and minor roads under two CV 

strategies. Results are shown for models using only spatial features, only contextual features, and a 

combined feature set prior to feature selection. Across both road types, models using combined 

contextual and spatial features retain the largest number of features, suggesting additive value in 

combining both types of information. Minor road models generally require more contextual features than 

major road models, reflecting the increased heterogeneity and complexity of local environments 

associated with less prominent road classes. 

Table S3-1. Performance gap across model configurations. 

Configuration Performance gap (a) 

ID Tuning Encoding 
Custom 

loss  

Spatial 
features 

CV type nRMSE (%) R2 (%) MAPE (%) 

0 - - - - 
Spatial -20.9 17.0 -30.2 

Weighted -12.0 9.1 -24.3 

1 - - - ✓ 
Spatial -27.3 22.8 -28.4 

Weighted -12.5 9.1 -24.2 

2 - ✓ - ✓ 
Spatial -26.9 22.5 -28.2 

Weighted -12.4 9.0 -24.1 

3 - ✓ ✓ ✓ 
Spatial -27.2 21.7 -27.6 

Weighted -13.4 9.4 -25.3 

4 ✓ ✓ - ✓ 
Spatial -36.9 27.4 -36.0 

Weighted -32.7 17.6 -36.5 

5 ✓ ✓ ✓ ✓ 
Spatial -29.1 22.7 -27.9 

Weighted -17.3 11.4 -26.5 

(a) The performance gap is defined as the difference between the performance metric on the training set and that 

on the test set. 
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Table S3-2. Number of selected features by model group, feature set, and CV strategy. 

Model group CV type 
Number of features 

Spatial only Contextual only Contextual + Spatial 

Major road 
weighted 47 221 272 

spatial 49 223 264 

Minor road 
weighted 39 338 378 

spatial 38 338 378 

 

S3.2 Additional results under spatial block CV 

Figure S3-1 illustrates the predictive performance by road class under spatial block CV. Compared with 

Figure 2 in the manuscript, which presents corresponding results under sampling-intensity-weighted 

CV, model performance generally declines under spatial block CV, as expected. The reduction in 

predictive performance reflects the challenge of spatial extrapolation to regions that are entirely disjoint 

from the training data. The performance drop is particularly significant for major roads, with test R² 

decreased by ~ 25 percentage points. This highlights the spatial heterogeneity and complexity of traffic 

patterns on these networks. In contrast, minor road classes show smaller performance differences 

between the two CV strategies, suggesting more locally stable or spatially consistent traffic patterns. 

Overall, spatial block CV provides a conservative benchmark for evaluating model robustness under 

the most stringent generalisation conditions. 

Figure S3-2 shows the contribution evaluation of spatial features associated with spatial block CV. 

Consistent with the results observed under sampling-intensity-weighted CV (c.f. Figure 3 and Figure 4 

in manuscript), spatial features primarily act as complements to contextual features and the benefits of 

incorporating spatial features vary notably across road types. Interestingly, the contextual-only scenario 

achieves the best performance for major roads under spatial block CV, as opposed to results under 

weighted CV. Additionally, the relative importance of local dependency features diminishes under 

spatial block CV, implying reduced effectiveness when training and test regions are spatially disjoint. In 

contrast, ESF features remains valuable for major roads and coordinates-based features still contribute 

for minor roads.  

Figure S3-3 presents the top 20 most important features for major and minor roads, respectively, based 

on mean absolute SHAP values derived from the model under spatial block CV. Notably, the top five 

features in each group are consistent with those identified under sampling-intensity-weighted CV, 

indicating the stability of key predictors across different validation strategies. 
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Figure S3-1. Predictive performance by road class under spatial block CV.  Scatter plots (panels a-e) 

compare predicted and observed AADT on the training (red) and test (blue) sets for each road class, 

based on the final model. The dashed diagonal line indicates perfect prediction. Panel f shows the 

cumulative distribution of absolute percentage error by road class. 
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Figure S3-2. Test performance across spatial feature combinations by road class using spatial block 

CV. Each panel shows the test normalised RMSE (%) for models trained with different combinations of 

input features prior to feature selection, evaluated separately by road class under spatial block CV. All 

models are trained without hyperparameter tuning, target encoding, or custom loss to isolate the effect 

of spatial features. The matrix beneath each bar chart indicates the combinations of input features, 

including contextual, eigenvector spatial filtering (ESF), geographical coordinates and oblique 

coordinates (Coord), coordinate-based spatial smooth surface (Smth), local dependence including 

spatial lag of AADT and local Moran’s I for key predictors (LocDep), and road network topology (Topo).  
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Figure S3-3. Global feature importance for predicting AADT on major roads (motorway and A roads) 

and minor roads (B, C, and unclassified roads) under spatial block CV. Bar plots show the top 20 

features ranked by mean absolute SHAP value for (a) major roads and (b) minor roads. Spatial features 

are grouped by type, with SHAP values aggregated across all constituent features. Asterisks (*) denote 

spatial statistical features. ESF includes multiple eigenvector spatial filtering features, LocDep includes 

spatial lag of AADT and clustering metrics for key predictors, Smth refers to the coordinate-based 

spatial smooth surface, and Topo refers to topological indicators from the road network. 
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S4. Custom Loss Function and Hyperparameter Tuning 

This section provides details on the custom loss function and the parameter tuning procedures used to 

optimise the performance of the LightGBM regression model.  

To better reflect the practical objectives of traffic volume prediction, we implement a custom asymmetric 

loss function that penalises underestimation more heavily than overestimation. The function is 

implemented using the custom objective interface in the lightGBM library in python30. The loss function 

modifies the standard mean squared error by applying different weights to errors depending on whether 

the prediction is higher or lower than the true value: 

Loss(𝑦, 𝑦̂) = {
𝜆under ∙ (𝑦 − 𝑦̂)2 𝑖𝑓 𝑦̂ < 𝑦

𝜆over ∙ (𝑦 − 𝑦̂)2 𝑖𝑓 𝑦̂ ≥ 𝑦
 

where 𝑦 and 𝑦̂ are the observed and predicted AADT, respectively; 𝜆under  and 𝜆over  are the penalty 

weights for underestimation and overestimation, respectively. In our study, we set 𝜆under = 2 and 𝜆over =

1, placing twice as much penalty on underestimation.  

In addition to specifying a custom loss function, we apply Bayesian optimisation to tune a selected set 

of key hyperparameters in the LightGBM model. Specifically, we focus on 8 key hyperparameters, as 

shown in Table S4-1. The optimisation objective is to minimise the RMSE of the LightGBM model 

evaluated on an internal held-out set. Specifically, for each CV fold, Bayesian optimisation is performed 

on an 80/20 split of the training set, ensuring that hyperparameter tuning is conducted independently of 

the final test set to avoid information leakage. The optimisation procedure is implemented using the 

scikit-learn library in python31. 

In addition to the parameters shown in Table S4-1, we treat the number of boosted trees (n_estimators) 

as a dynamic hyperparameter. Instead of fixing or explicitly tuning its value, we rely on the early stopping 

function in the lightGBM library. Particularly, we set early_stopping_rounds = 70, meaning the model 

stops adding new trees if the RMSE does not improve for 70 consecutive iterations. This adaptive 

approach ensures that the ensemble size is optimally chosen based on validation performance, 

preventing overfitting while reducing unnecessary computational cost. 

Table S4-1. Description and search domain of key hyperparameters for tuning. 

Parameter (a) Description Search domain 

learning_rate Boosting step size 0.005 – 0.1, float 

num_leaves Max number of leaf nodes per tree 20 – 100, integer 

max_depth Maximum depth of each tree 3 – 10, integer 

min_child_samples Minimum samples per leaf 20 – 100, integer 

subsample Row sampling ratio per tree 0.6 – 1.0, float 

colsample_bytree Feature sampling ratio per tree 0.6 – 1.0, float 

reg_alpha L1 regularisation strength 1e-8 – 10, float 

reg_lambda L2 regularisation strength 1e-8 – 10, float 

(a) The name of hyperparameters is aligned with those used in the lightGBM library in python. 
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