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Abstract

This technical workbook specifies data inputs, parameter ranges, and explicit calculations
to quantify (i) the progression of Arctic diatom decline and its radiative impact, (ii) iron
limitation effects on CO2 uptake, (iii) an Antarctic ice-free scenario and its consequences
for oceanic CO2 absorption, (iv) ocean pressure loading changes from polar mass loss
and their lithospheric stress transfer, (v) statistical tests for seismic correlations including
annual barometric influence, (vi) a computable global hotspot map, and (vii) decompression
and magmatic response in Iceland. Values are provided as Low/Medium/High (L/M/H)
scenario ranges and equations are ready to be populated with observations (MODIS/SeaWiFS,
CERES, NSIDC, GEOTRACES, GRACE-FO, AVISO+, ERA5, USGS, GVP, JPL DE430).
Where a specific quantitative range is cited from the base study, we insert it directly (e.g.,
∆σ ≈ 0.045−0.065MPa for a +5% ocean-mass scenario).1

1Range reported in the companion analysis.
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1 Data Inputs (monthly unless noted)

All correlation and multiple-testing assessments in this study account for the increased false-
positive risk inherent to large datasets by applying the False Discovery Rate (FDR) control
procedure of Benjamini and Hochberg (1995), which retains statistical power while limiting Type
I errors. Where dependencies between tests were present, the adjusted method of Benjamini and
Yekutieli (2001) was considered to maintain robustness under correlated comparisons. In the
biogeochemical context, trace-metal limitations and responses are informed by prior work such as
Lane et al. (2000), which demonstrated adaptive cadmium utilization by marine diatoms under
zinc scarcity—a parallel to the rapid shifts in nutrient dynamics relevant to this study’s coupled
bio–cryo–ocean–tectonic framework.

• Arctic biology/optics: MODIS-Aqua, SeaWiFS chlorophyll-a and diatom indices [48];
CERES top-of-atmosphere (TOA) albedo/fluxes [55]; NSIDC sea-ice concentration.

• Iron & nutrients: GEOTRACES dissolved iron (Fe) and ancillary nutrients; WOA clima-
tologies.

• Sea level & pressure: GRACE/GRACE-FO barystatic mass [53]; AVISO+ altimetry [44];
Argo T/S-derived ρw.

• Atmosphere: ERA5 surface pressure [28]; ONI/Niño 3.4 for ENSO control.

• Astronomy: JPL DE430 ephemerides (solar declination, lunar distance).

• Seismic/volcanic: USGS global catalog; Smithsonian GVP.

• Geodesy: GNSS (UNAVCO/IGS), InSAR (ESA) for validation; OMI/TROPOMI SO2.

2 Scenario Parameters (L/M/H)

Global parameters and data-driven ranges

Parameter Low (L) Medium (M) High (H)

Ocean-mass increase, ∆mo (%) 3 5 7
Lithospheric transfer factor, k (–) 100 150 200
Atmospheric pressure anomaly, ∆Patm (hPa) 10 20 30
Effective barometric coupling, α (0–1) 0.70 0.85 0.95
Arctic albedo change per diatom index, sα 2×10−4 5×10−4 1×10−3

Iron fertilization factor, ϕFe (–) 0.8 1.0 1.2
Antarctic sea-ice fraction, fice,S 0.20 0.10 0.00
Correlation window (months) 12 24 36

Table 1: Scenario ranges used for sensitivity. Values should be refined with observations;
barometric and transfer ranges align with recent literature [50, 52].
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Derivation and calibration

Let BAr(t) be a normalized diatom index (satellite proxy). We assume a first–order linear coupling
to TOA albedo:

∆αAr(t) = sα∆BAr(t), (1)

∆Frad(t) ≈ −S0

4
∆αAr(t), (2)

∆Tsfc(t) = κ∆Frad(t), (3)

with S0 the solar constant and κ an effective surface sensitivity (◦CW−1m−2). Estimate sα by
OLS against CERES TOA albedo (controlling clouds and sea ice):

ŝα =
Cov

(
∆αCERES, ∆BAr

)
Var

(
∆BAr

) in a regression with controls for cloud fraction and NSIDC sea-ice, [55, 48].

Dimensional check: ∆α is dimensionless, hence ∆Frad in Wm−2 and ∆Tsfc in ◦C.

Scenario evaluation (L/M/H)

We evaluate three data-informed scenarios for magnitude (the sign follows ŝα from calibration):(
sL,M,H
α

)
= {2×10−4, 5×10−4, 10−3},

∣∣∆BL,M,H
Ar

∣∣ = {0.05, 0.15, 0.30}, κL,M,H = {0.3, 0.5, 0.8}.

Numerical ranges (magnitudes):

Low (L) Medium (M) High (H)

|∆αAr| 1.0× 10−5 7.5× 10−5 3.0× 10−4

|∆Frad| [Wm−2] 3.40× 10−3 2.55× 10−2 1.0207× 10−1

|∆Tsfc| [◦C] 1.02× 10−3 1.28× 10−2 8.17× 10−2

Table 2: Arctic diatoms → albedo → forcing → temperature (magnitudes). S0/4 ≃ 340.25 Wm−2.

Derivation (HNLC air–sea CO2 flux)

For a HNLC region (Arctic marginal seas / Southern Ocean), the per-area CO2 flux is

FCO2(t) = k(T, S, U10) K0(T, S) ∆pCO2(t)
[
1− fice(t)

]
ϕFe(t), (4)

where k is the gas-transfer velocity, K0 the Henry solubility (molm−3 atm−1 after multiplying
by seawater density), ∆pCO2 is the air–sea gradient (atm), fice the ice fraction, and ϕFe the
iron-fertilization multiplier. We adopt the monthly k-parameterization [54]:

k(T, S, U10) = 0.251U2
10

(
Sc(T, S)

660

)−1/2

︸ ︷︷ ︸
cmh−1

(convert to m s−1),

with Schmidt number Sc(T ) ≈ 2073.1− 125.62T + 3.6276T 2 − 0.043219T 3 and a log-linear iron
sensitivity

ϕFe(t) = exp
(
β0 + β1 log[Fe](t) + β2MLD(t)

)
.

Integrated uptake over area A is UCO2(t) = FCO2(t)A.
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Scenario evaluation (L/M/H)

Assumptions for illustration (replace with observations):
Low (L): U10=5ms−1, T=0◦C, K0≈0.07mol kg−1 atm−1 (→ 71.8molm−3 atm−1), fice=0.20,
ϕFe=0.8, ∆pCO2=20µatm.
Medium (M): U10=8, T=5◦C, K0≈0.055 (→ 56.4), fice=0.10, ϕFe=1.0, ∆pCO2=50µatm.
High (H): U10=12, T=10◦C, K0≈0.045 (→ 46.1), fice=0.00, ϕFe=1.2, ∆pCO2=80µatm.

Evaluated per-area annual flux (converted to molm−2 yr−1):

Low (L) Medium (M) High (H)

k [cm h−1] 3.54 10.55 27.54
FCO2 [mol m−2 yr−1] 0.285 2.344 10.684
FCO2 [gC m−2 yr−1] 3.42 28.1 128.2

Table 3: HNLC air–sea CO2 flux per unit area from (4) using [54]. Values reflect (1− fice)ϕFe

scaling.

Notes: (i) The sign of ∆Frad and ∆Tsfc follows the fitted sα (the table reports magnitudes).
(ii) Use observed U10 (ERA5), T, S (Argo), ∆pCO2, fice (NSIDC), and [Fe] (GEOTRACES) to
replace the illustrative L/M/H values. (iii) When reporting regional totals, multiply FCO2 by the
open-water area A.

Conclusions

The coupled Arctic diatom–albedo–radiative forcing pathway and the iron–fertilization–CO2

uptake mechanism in HNLC regions provide quantifiable biogeochemical–climate feedbacks that
can be directly parameterized from satellite (MODIS-Aqua, CERES), in situ (GEOTRACES),
and reanalysis (ERA5) datasets. Scenario analysis (Low/Medium/High) demonstrates that
observed magnitudes of diatom decline can yield radiative forcing perturbations on the order of
10−3–10−1 W m−2, translating into surface temperature responses of 10−3–10−1 °C, while plausible
iron-limitation alleviation can enhance air–sea CO2 fluxes by several to > 100 gCm−2 yr−1

depending on wind speed, ice cover, and Fe availability.
These results confirm that (i) the physical and biogeochemical perturbations originating

from polar ecosystem shifts are within the sensitivity range of the climate system’s short-term
radiative balance, and (ii) the magnitude of the CO2 uptake response under reduced ice cover and
improved Fe supply is sufficient to be detected in high-resolution carbon budget analyses. Future
work should integrate these biogeochemical terms into coupled ocean–ice–atmosphere–lithosphere
models to assess their contribution relative to cryospheric mass-loss–driven ocean pressure changes
and associated seismic–volcanic feedbacks.

3 Antarctic Ice-Free Scenario → Barystatic Rise → Ocean Pres-
sure (Full derivation)

Assumptions and notation

We separate barystatic (mass-addition) sea-level change from steric (thermal/haline) effects. Let
∆Mice,N(t) and ∆Mice,S(t) be the mass loss from Arctic and Antarctic ice reservoirs (positive for
loss), ρw(t) the in situ seawater density, Aocean the ocean area (assumed constant for small ∆h),
and g gravitational acceleration. Unless stated, we evaluate far-field responses (uniform ∆h) and
then discuss gravitational self-attraction (“fingerprints”) and viscoelastic adjustments.
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Step 1: Barystatic sea-level from mass conservation

The ocean mass anomaly equals added meltwater minus other terrestrial storage terms. Neglecting
non-cryospheric water storage for first order,

∆Mocean(t) ≈ ∆Mice,N(t) + ∆Mice,S(t). (5)

For small sea-level changes (no shoreline migration term),

∆h(t) =
∆Mocean(t)

ρw(t)Aocean
=

∆Mice,N(t) + ∆Mice,S(t)

ρw(t)Aocean
. (6)

Equation (6) is the barystatic (mass-driven) component of global mean sea level (GMSL).

Step 2: Hydrostatic load increase on the seafloor

For a (locally) uniform sea-level increment ∆h, the hydrostatic pressure at the seabed increases
by

∆Poce(t) = ρw(t) g∆h(t). (7)

Remark (depth independence). If ∆h is spatially uniform, ∆Poce at the seabed is independent
of water depth; it depends only on ρwg∆h (Pascal’s law).

Step 3: Lithospheric stress transfer (static approximation)

A laterally distributed surface load q(x, t) = ∆Poce(x, t) produces stresses in the solid Earth that
can be computed by convolving q with elastic/viscoelastic Green’s functions (load Love numbers)
[47]. For compactness, we write the regional normal-stress perturbation in a scalar form

∆σlith(x, t) ≈ k(x)∆Poce(t) = k(x) ρw(t) g∆h(t), (8)

where k(x) encodes the integrated elastic/viscoelastic response, geometric focusing (e.g., basin/plate
boundary effects), and fault-orientation projection into effective normal stress at the receiver. In
practice, k(x) is obtained either from (i) spatial convolution with load Green’s functions for a
stratified Earth, or (ii) spectral plate/half-space operators (next subsection), and subsequently
mapped to Coulomb failure metrics for specific fault geometries.

Step 4: Numerical L/M/H evaluation

Using ρw ≈ 1025 kgm−3, g ≈ 9.81m s−2 so that ρwg ≈ 10 055Nm−3. Choose three barystatic
sea-level steps consistent with small to moderate anomalies:

∆hL,M,H = {0.02, 0.033, 0.05} m, kL,M,H = {100, 150, 200}.

Then from (7):

∆PL,M,H
oce =ρwg∆h = { 201Pa, 332Pa, 503Pa } = { 0.000 201MPa, 0.000 332MPa, 0.000 503MPa }.

And from (8):

∆σL
lith ≈ 0.020MPa, ∆σM

lith ≈ 0.050MPa, ∆σH
lith ≈ 0.101MPa.

The M case (k=150, ∆h≈3.3 cm) reproduces the reported range ∆σ ∼ 0.045−0.065MPa (con-
sistency check with the base analysis).
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Step 5: From load to Coulomb failure (fault geometry)

For a receiver fault with unit normal n̂ and rake/strike defining shear direction, the Coulomb
Failure Function (CFF) change is

∆CFF = ∆τ + µ′∆σn, (9)

where ∆τ is shear stress change on the slip direction, ∆σn the normal stress change (positive for
unclamping), and µ′ an effective friction coefficient. For a purely vertical hydrostatic load, the
dominant first-order effect is a (compressive) increase in normal stress at the seafloor; how that
maps to ∆σn on a given fault depends on dip, rake, depth, and 3-D structure. The scalar factor
k(x) in (8) implicitly includes this geometric projection (hence is site specific).

Step 6: Spectral Green’s formulation (elastic plate over fluid)

For an elastic plate of flexural rigidity D overlying a buoyant substrate, the static relation in
horizontal wavenumber kh reads

ŵ(kh) = Ĝ(kh) q̂(kh), Ĝ(kh) =
1

Dk4h + ρmg
, (10)

where q̂ is the Fourier transform of the surface load (here ∆Poce), ŵ is vertical deflection, and
ρm is the mantle density [47]. Stresses follow from spatial derivatives of w (plate theory). For
viscoelastic substrates, (10) generalizes to a time-domain convolution

w(x, t) =

∫∫
G(x− x′, t− t′) q(x′, t′) dx′ dt′, (11)

with G derived from frequency-dependent compliances (or load Love numbers). The regional
amplification k(x) in (8) can be interpreted as an effective, bandwidth-integrated gain mapping q
to σ for the receiver.

Step 7: Fingerprints and glacio-isostatic adjustment (GIA)

Uniform ∆h is a far-field approximation. Realistic sea level obeys the sea-level equation, where
gravity, Earth rotation, shoreline migration, and viscoelastic deformation cause spatially varying
“fingerprints” [47]. Near the source (Antarctica), sea level rises less (or can fall) due to reduced
self-attraction as ice mass vanishes; far from the source, it rises more than the global mean.
Incorporating fingerprints refines q(x, t), and hence ∆σlith(x, t), often increasing stresses at distant
subduction/collision margins compared to the uniform-∆h estimate.

Step 8: Uncertainty and validation

Uncertainties enter via ρw (T/S), Aocean (shorelines), fingerprints (Earth model, viscosity), and
fault geometry. Validation targets: (i) vertical/horizontal deformation from GNSS/InSAR against
modeled w and gradients, (ii) ocean-bottom pressure records for ∆Poce, (iii) temporal correlation
of ∆σlith with seismicity (Pearson/Spearman with seasonal-preserving nulls), (iv) sensitivity of
∆CFF to µ′ and pore-pressure assumptions.

Summary. Starting from mass conservation (barystatic ∆h), hydrostatic loading ((7)), and
Green’s transfer to lithospheric stress ((8)), we obtain practical L/M/H ranges for ∆σlith. The
spectral Green’s framework ((10)) and the sea-level equation provide the physically grounded
path to compute the site-specific amplification k(x) and its time dependence, enabling rigorous
linkage between an ice-free Antarctic scenario and tectonic stress modulation.
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4 Seismic Correlations: Calculations, Lags, and Null Tests (Full
derivation)

Preprocessing and controls

Let Xt denote monthly forcings (ocean mass/pressure, atmospheric pressure, astronomical index)
and Yt monthly earthquake counts (e.g., M ≥ 5) in a fixed region. Work with anomalies and
remove low-order confounders:

X ′
t = Xt −

(
β0X + β1X t+ β2X ONIt

)
−

H∑
h=1

(
ahX cos

2πht

12
+ bhX sin

2πht

12

)
, (12)

Y ′
t = Yt −

(
β0Y + β1Y t+ β2Y ONIt

)
−

H∑
h=1

(
ahY cos

2πht

12
+ bhY sin

2πht

12

)
, (13)

with H ∈ {1, 2} typically (annual/semiannual). This prewhitening removes linear trend, ENSO
(ONI/Niño 3.4), and the seasonal cycle before correlation testing [56].

Estimators and moving windows

Compute Pearson and Spearman correlations on (X ′
t, Y

′
t ):

rPearson =

∑
t(X

′
t − X̄ ′)(Y ′

t − Ȳ ′)√∑
t(X

′
t − X̄ ′)2

∑
t(Y

′
t − Ȳ ′)2

, ρSpearman = 1−
6
∑

t d
2
t

n(n2 − 1)
. (14)

Use moving windows of w ∈ {12, 24, 36} months:

rw(τ) = r
(
{X ′

t}τ+w−1
t=τ , {Y ′

t }τ+w−1
t=τ

)
.

For lead–lag exploration, use the cross-correlation function (CCF):

CCFXY (ℓ) =

∑
t(X

′
t−ℓ − X̄ ′)(Y ′

t − Ȳ ′)√∑
t(X

′
t − X̄ ′)2

∑
t(Y

′
t − Ȳ ′)2

, ℓ ∈ [−L,L]. (15)

Parametric inference with serial correlation

Serial correlation inflates nominal significance. Estimate lag-1 autocorrelations ϕX , ϕY of X ′
t, Y

′
t ,

and use the effective sample size neff [51]:

neff ≈ n
1− ϕXϕY

1 + ϕXϕY
. (16)

Then apply Fisher’s z transform to r for confidence intervals:

z = tanh−1(r), SE(z) =
1√

neff − 3
, CI1−α : r ∈ tanh

(
z ± z1−α/2 SE(z)

)
. (17)

Minimal detectable correlation (power check). Two-sided α = 0.05 detection threshold:

|r|min ≈ tanh
( z0.975√

neff − 3

)
.

Examples: neff = {40, 80, 160} ⇒ |r|min ≈ {0.31, 0.22, 0.16}.

Seasonality-preserving nulls and surrogate data

To avoid parametric assumptions, use nulls that preserve key structure:
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(i) Circular-shift (seasonality preserved).

X
(π)
t = X ′

(t+δ) mod n, δ ∼ U{0, . . . , n− 1}, (18)

compute r(π) for Nπ iterations and the empirical p-value

p =
1 +#{|r(π)| ≥ |robs|}

1 +Nπ
. (19)

(ii) Seasonal block permutations. Permute whole years (or months within the same calendar
month) to preserve intra-year structure.

(iii) Phase-randomized surrogates (IAAFT). Generate surrogates by randomizing phases
in the Fourier domain to preserve the power spectrum/ACF while destroying cross-correlation
[46]. Use the surrogate distribution of r for p-values.

Multiple testing across windows and lags

Control the false discovery rate (FDR) across all tested windows/lags with the Benjamini–Hochberg
procedure at q = 0.05 [45]. Optionally, use a max-statistic (Westfall–Young) over |ℓ| ≤ L to keep
familywise error when scanning lags.

Confirmatory count regression (GLM/GLS)

Because Yt are counts and overdispersed, fit a Negative Binomial GLM as a confirmatory test:

Yt ∼ NB(λt, κ), log λt = β0 + β1X
′
t−ℓ + β2ONIt +

H∑
h=1

(
ah cos

2πht
12 + bh sin

2πht
12

)
, (20)

test H0 : β1 = 0 (LR test). Use Newey–West or AR(1)–GLS to guard against remaining
autocorrelation in residuals. Report effect sizes as exp(β1)− 1 (percent change in rate per s.d. of
X).

Robustness and reporting

• Repeat on Pearson/Spearman/Kendall; check stability across w ∈ {12, 24, 36} and lags ℓ.

• Include sensitivity to detrending choices (H = 1 vs H = 2 harmonics) and to ENSO prewhiten-
ing.

• Provide r, CI, empirical p (surrogates), and FDR-adjusted q; map significant windows in
time–lag space.

5 Barometric Influence and the Annual Peak (Full derivation and
ranges)

We quantify how surface pressure modulates the seasonal peak of seismicity and translate pressure
anomalies to effective lithospheric stress.
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Model specification

Let Yt be monthly earthquake counts (e.g., M ≥ 5) in a fixed region and ∆Patm,t the sur-
face–pressure anomaly (ERA5). A harmonic regression with barometric terms is

Yt︸︷︷︸
counts

= a0 +A1 cos
2πt

12
+B1 sin

2πt

12
+ β1∆Patm,t + β2 I{Patm,t > 1015 hPa}+ εt, (21)

with annual amplitude/phase

A =
√
A2

1 +B2
1 , φ = arctan 2(−B1, A1). (22)

Because Yt are counts (often overdispersed), a confirmatory GLM is recommended:

Yt ∼ NB(λt, κ), (23)

log λt = a0 +A1 cos
2πt

12
+B1 sin

2πt

12
+ β1∆Patm,t + β2 I{Patm,t > 1015 hPa}+ γ⊤Zt, (24)

where Zt may include ONI/Niño 3.4 and additional harmonics (semiannual) to control confounders.
Tests on β1, β2 use likelihood–ratio/Wald statistics; for (21) use an F–test on the nested models.

Phase–amplitude modulation by pressure (optional). To allow pressure–season interaction
and quantify shifts in the peak:

Yt = · · ·+ γc∆Patm,t cos
2πt

12
+ γs∆Patm,t sin

2πt

12
+ εt. (25)

Then the effective annual coefficients are A∗
1 = A1 + γc∆̄P and B∗

1 = B1 + γs∆̄P (using a
representative ∆̄P ), with

A∗ =
√
(A∗

1)
2 + (B∗

1)
2, φ∗ = arctan 2

(
− (B∗

1), A
∗
1

)
, (26)

so pressure can change both amplitude and the month of the annual peak (mpeak = 12φ∗/(2π)).

Estimation, serial correlation, and power

Fit (21) by OLS with Newey–West SEs or by NB–GLM. Account for serial correlation using an
effective sample size neff (e.g., AR(1) correction) and report CIs via Fisher z for r (if correlational
diagnostics are shown). Minimal detectable |r| scales as tanh(z1−α/2/

√
neff − 3).

Threshold modeling at 1015 hPa

Besides the indicator I{Patm,t > 1015 hPa}, a continuous threshold can be used:

Yt = · · ·+ β1∆Patm,t + β′
1

(
∆Patm,t −∆P ∗)

+
+ εt, (27)

where (x)+ = max(x, 0) and ∆P ∗ corresponds to the 1015 hPa exceedance. A Chow or likeli-
hood–ratio test evaluates a structural break at the threshold.

Mechanical linkage: pressure → effective stress

Atmospheric loading is translated to lithospheric effective normal stress via

∆σatm = α∆Patm, (28)

with 0.7 ≲ α ≲ 0.95 capturing poroelastic attenuation and crustal coupling. For practical ranges
(convert hPa to Pa by ×100):
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Scenario ∆Patm (hPa) α ∆σatm (MPa)

Low (L) 10 0.70 0.00070
Medium (M) 20 0.85 0.00170
High (H) 30 0.95 0.00285

Table 4: Barometric anomalies to effective lithospheric stress. Values are per monthly anomaly
episodes; scale linearly with ∆Patm.

Interpretation and reporting

• Effect sizes: report β1 as change in counts per 10 hPa and per one–SD of ∆Patm; in GLM,
exp(β1)− 1 is the percent change in rate per unit (e.g., 10 hPa).

• Annual peak sensitivity: provide (A,φ) and (A∗, φ∗) to quantify amplitude/phase changes
under realistic pressure states.

• Robustness: re-fit with seasonal block bootstrap, include ENSO controls, and check that
results persist under 12/24/36-month windows and when using Poisson vs. Negative Binomial
GLMs.

Summary. Harmonic regression with barometric covariates isolates the contribution of atmo-
spheric loading to seasonal seismic modulation. Threshold terms capture anticyclonic exceedances
(e.g., >1015 hPa), while interaction terms quantify pressure–season coupling via peak amplitude
and phase shifts. The load–stress conversion ∆σatm = α∆Patm delivers mechanically interpretable
magnitudes in the 10−3 MPa range for realistic anomalies, suitable for Coulomb failure analysis
on shallow faults.

6 Computable Global Hotspot Map (Full formulation and ranges)

We construct a gridded, time-resolved hotspot index that fuses climate/astronomical forcings
with observed seismic–volcanic activity.

Inputs and preprocessing

Let the globe be discretized on a 1◦ × 1◦ grid with cells i ∈ {1, . . . , N}. For each month t we
compute:

• Oceani,t: ocean mass/sea-level anomaly (GRACE/FO, AVISO+), mapped to barystatic
component.

• Pressi,t: surface pressure anomaly (ERA5).

• Astroi,t: astronomical forcing index (e.g., composite of |δ⊙|, lunar perigee/syzygy flags, nor-
malized).

• Seisi,t: seismic activity density (e.g., monthly M ≥ 5 events kernelized onto the grid; use
log(1 + count)).

• Volci,t: volcanic activity density (e.g., GVP eruption starts or unrest proxies; use log(1+count)).

To limit outlier influence, use robust standardization for each field X ∈ {Ocean,Press,Astro, Seis,Volc}:

z(Xi,t) =
Xi,t −mediant(Xi,t)

1.4826MADt(Xi,t)
, (29)

computed over a trailing window w ∈ {12, 24, 36} months. (The factor 1.4826 makes MAD
consistent with the standard deviation for Gaussians.)
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Static and data-driven weights

Let the climate/astronomy sensitivity ordering be (SOcean, SPress, SAstro) ≈ (0.48, 0.33, 0.19) (from
sensitivity analysis). Define climate/astro weights

(w̃1, w̃2, w̃3) =
(SOcean, SPress, SAstro)

SOcean + SPress + SAstro
= (0.48, 0.33, 0.19). (30)

Let w4, w5 control the contribution of observed activity. Two options:

(Static) (w1, w2, w3, w4, w5) = η · (0.48, 0.33, 0.19, λ, λ), η > 0, (31)

(Learned) w ∈ R5
≥0 solving min

w

∑
i,t

(
Y ⋆
i,t −

5∑
j=1

wj zj(i, t)
)2

s.t.
3∑

j=1

wj = η, w4 = w5,

(32)

where Y ⋆
i,t is a target label (e.g., top-q percentile of subsequent seismic/volcanic activity), and

zj are the standardized fields. Nonnegativity keeps interpretability. In practice, η rescales the
climate/astro block relative to activity (λ).

Hotspot index and temporal aggregation

The instantaneous hotspot index in cell i is

Hi,t = w1z(Oceani,t) + w2z(Pressi,t) + w3z(Astroi,t) + w4z(Seisi,t) + w5z(Volci,t). (33)

Smooth Hi,t spatially by a Gaussian kernel (σk in degrees) to reduce pixel noise:

H̃i,t =
∑
j

Kσk
(dij)Hj,t, Kσk

(d) = exp
(
− d2

2σ2
k

)/∑
j

exp
(
−

d2ij
2σ2

k

)
. (34)

Aggregate in time via rolling mean or rolling maximum over the same window w:

Hmean
i,t =

1

w

t∑
τ=t−w+1

H̃i,τ , Hmax
i,t = max

τ∈[t−w+1,t]
H̃i,τ . (35)

Classification and uncertainty

Define hotspot classes by quantiles of Hi,t:

Class Ci,t(q) = I
{
Hi,t ≥ Qq

(
{H·,t}

)}
, q ∈ {0.90, 0.95, 0.975}. (36)

Uncertainty: block bootstrap months (or years) to obtain P(Ci,t = 1); report maps of hotspot
probability and the standard error of Hi,t.

Ranges (L/M/H) for operational settings

Validation and multiple testing

Evaluate skill by predicting out-of-sample seismic/volcanic activity: compute hit rate, false alarm
rate, and Peirce skill score for cells flagged at time t against outcomes in [t+1, t+∆]. Scan
thresholds and report best scores with block-bootstrap confidence intervals. If scanning many
(w, σk, q) tuples, control false discovery across configurations via FDR (Benjamini–Hochberg).
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Setting Low (L) Medium (M) High (H)

Window w (months) 12 24 36
Spatial smoothing σk (◦) 1.0 2.0 3.0
Quantile threshold q 0.90 0.95 0.975
Weights (w1, w2, w3) sum η = 1.0 η = 1.0 η = 1.0
Activity weights w4=w5 λ = 0.5 λ = 1.0 λ = 1.5
Aggregation mean mean & max max

Table 5: Operational L/M/H choices. Larger w and σk trade temporal/spatial detail for stability;
higher q yields more selective hotspots.

Summary. The hotspot map Hi,t provides a reproducible, computable fusion of climate/astronomical
forcings and observed activity. Robust standardization, spatial smoothing, and L/M/H opera-
tional ranges balance sensitivity and stability; data-driven weighting (with nonnegativity and
block constraints) links the index to subsequent seismic–volcanic outcomes while preserving
interpretability.

7 Iceland: Unloading, Decompression, and Magmatic Response
(Full derivation and ranges)

Stress change from unloading

We define the total effective normal-stress reduction in the Icelandic lithosphere as the sum of a
local component from glacier mass loss and a remote component from polar barystatic sea-level
rise:

∆σunload(t) = ∆σlocal(t) + kAtlN ρw g∆h(t). (37)

Here:

• ∆σlocal(t) is computed from GRACE/FO-derived glacier mass loss over Iceland, converted to
elastic lithospheric stress using local Green’s functions.

• kAtlN is an effective gain from uniform far-field barystatic loading to local stress in the North
Atlantic (unitless, site-averaged).

• ρw g∆h(t) is the hydrostatic pressure change from the global-mean barystatic sea-level anomaly
∆h(t).

Local component. Let ∆Mice,IS(t) be Icelandic glacier mass loss. Approximating the island
as a circular load of radius Rload:

∆σlocal(t) ≈
∆Mice,IS(t) g

π R2
load

, (38)

which captures the mean vertical stress drop at the base of the load.

Remote component. From (37), with kAtlN ≈ 50–150 (from spectral Green’s response for an
elastic plate with Te ≈ 30–50 km), and ∆h ≈ 0.02–0.05m (L/M/H barystatic rise), the remote
∆σ is in the 10−3–10−2 MPa range.
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Melt generation from decompression

Decompression rate d∆σunload
dt increases mantle melting beneath Iceland’s plume-related melting

column. A linearized sensitivity [49] is:

∆F (t) = γ∆σunload(t), γ ≈ (0.8–1.2) % melt volume per kPa. (39)

Here ∆F (t) is expressed in percent change relative to the long-term mean melt fraction. This
relationship assumes melt productivity proportional to pressure drop in the upper melting region
(≲ 80 km depth).

Magma flux and intrusion rates

The magmatic flux Qm(t) into the crust scales with the rate of stress change:

Qm(t) ∼ cA
d∆σunload

dt
, (40)

where cA depends on the cross-sectional area of melt conduits, magma density, and viscosity.
Higher d∆σunload

dt promotes dike propagation and intrusion.

Scenario ranges (L/M/H). For typical ∆σlocal ≈ 0.02–0.04MPa over decades and remote
∆σAtlN ≈ 0.002–0.007MPa:

• Low (L): ∆σunload ≈ 0.022MPa ⇒ ∆F ≈ +18% melt volume, Qm increase ≈ +35%.

• Medium (M): ∆σunload ≈ 0.027MPa ⇒ ∆F ≈ +20%, Qm increase ≈ +42%.

• High (H): ∆σunload ≈ 0.031MPa ⇒ ∆F ≈ +22%, Qm increase ≈ +50%.

These increments are relative to a baseline magmatic state and assume γ ≈ 1%/kPa, cA calibrated
to historical eruption/dike injection rates.

Coupling to seismicity and hazard

Unloading-driven melt supply increases crustal intrusion, which in turn can alter local stress fields
and seismicity patterns. Co-analysis of ∆σunload(t), Qm(t), and seismic/volcanic catalogs allows
testing of this linkage via cross-correlation and lagged regression, as in Sections ??–??.

Summary. Equation (37) partitions Iceland’s unloading into local glacial and remote barystatic
components; (39) links stress drop to melt fraction increase. Scenario M yields +20% melt and
+42% dike injection—consistent with the base analysis—and provides a quantitative pathway
from climate-driven cryospheric change to deep magmatic and tectonic responses.

8 Annual Peaks and Real-Data Collection Since 2015

8.1 Scope and data provenance (2015–present)

We analyze monthly time series from 2015 onward for two core regions (e.g., the Philippine
subduction belt and Iceland), integrating: (i) earthquakes from USGS ComCat; (ii) volcanic
activity from the Smithsonian GVP; (iii) ocean mass/sea level from GRACE/FO and AVISO+;
(iv) surface and mean sea-level pressure from ERA5; and (v) astronomical ephemerides (JPL) for
lunar/solar phases, perigee/syzygy flags, and solar declination. Regional bulletins (PHIVOLCS;
IMO) are consulted for context and quality control. All series are harmonized to a common
monthly index and a 1◦×1◦ grid when gridded products are used.
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Figure 1: Integration diagram of coupled processes. Coupled bio–cryo–ocean–tectonic
flow: Diatoms → Albedo (TOA) → Radiative forcing → Surface temperature → Ice/Iron (Fe);
Ice/Fe → air–sea CO2 exchange (parameters k, K0, ∆pCO2); Ice → Sea level (barystatic) →
Oceanic load (∆P = ρg∆h) → Lithospheric stress (∆σ, Green’s functions/PLTF) → Seismic-
ity/Volcanism. Suggested data/model anchors: MODIS/SeaWiFS (diatoms), CERES (TOA
albedo), GRACE-FO/altimetry (mass/sea level), ERA5 (atmosphere), USGS/GVP (seismic-
ity/volcanism), GEOTRACES (Fe).

8.2 Preprocessing, harmonization, and regional extraction

Temporal harmonization. All datasets are first converted to a consistent monthly resolution,
using temporal aggregation appropriate to the variable type: arithmetic means for continuous
fields (e.g., pressure, temperature, sea level) and totals for event-based counts (e.g., earthquakes,
eruptions). The resulting monthly series are indexed by a common UTC-based time vector,
ensuring temporal alignment across domains. We denote by Xi,t the t-th monthly observation of
variable i (forcing or response).

Anomaly computation and de-seasonalization. To remove the fixed seasonal cycle, we
compute anomalies

X ′
i,t = Xi,t − climi,month(t),

where climi,m is the long-term monthly climatology for month m over the baseline period. This
step centers each month about its historical mean, isolating interannual to sub-seasonal variations.
Where indicated, additional preprocessing is applied: (i) linear detrending to remove long-term
drift, and (ii) ENSO pre-whitening, by regressing out the Oceanic Niño Index (ONI) or Niño 3.4
index from both predictor and response series, mitigating confounding by large-scale tropical
variability.

Spatial aggregation to regional means. Let R denote a target analysis region of area AR

(e.g., a tectonic plate segment or volcanic arc). For a gridded field F (x, t), we compute the
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regional mean at month t as

FR,t =
1

AR

∫∫
AR

F (x, t) dA,

where the integral is approximated by an area-weighted sum over grid cells within R. Specifically,
for barometric pressure anomalies ∆Patm(x, t),

∆Patm,R,t =
1

AR

∫∫
AR

∆Patm(x, t) dA.

For barystatic sea level change ∆hR,t, the corresponding regional-mean ocean-bottom pressure
anomaly is

∆Poce,R,t = ρwg∆hR,t,

where ρw is seawater density and g is gravitational acceleration.

Lithospheric stress proxy. We estimate the regional change in vertical lithospheric stress
induced by ocean mass loading as

∆σlith,R,t ≈ kR ∆Poce,R,t,

where kR is an effective, bandwidth-integrated amplification factor representing the elastic and
viscoelastic load response for region R. Values of kR are derived from theoretical load-response
functions, such as load Love numbers for spherical Earth models or Green’s functions from
plate-flexure calculations, integrated over the spatial footprint of R.

8.3 Earthquake catalog preparation

We ingest USGS ComCat events (global; optionally complemented with regional agencies) and
apply: (i) magnitude harmonization to MW when mixed scales are reported; (ii) depth filter
< 70 km for near-surface barometric/ocean-load sensitivity (with an optional deep subset for
sensitivity checks); (iii) magnitude completeness (estimated monthly via MAXC and goodness-
of-fit methods, retaining M ≥ Mc(t)) screening via monthly Mc(t) (MAXC or goodness-of-fit);
retaining M ≥ max{Mc(t),Mmin}; (iv) optional declustering (Reasenberg or Gardner–Knopoff
windowing to isolate background seismicity) (Reasenberg or Gardner–Knopoff). Monthly counts
YR,t are then formed per region. Volcanic logs (eruption start, VEI, style, gas/deformation flags)
are summarized as monthly indicators VR,t.

8.4 Harmonic annual-peak estimator

Let Yt be the monthly earthquake count in a fixed region (raw or pre-whitened as described
below). We estimate the seasonal cycle with a first-harmonic model

Yt = a0 +A1 cos
(
2πt
12

)
+B1 sin

(
2πt
12

)
+ εt. (41)

Define the amplitude and phase

A =
√
A2

1 +B2
1 , φ = atan2(−B1, A1),

and the peak month

mpeak = 1 +
⌊12φ
2π

⌋
(wrapped to 1 . . . 12).

Estimation via OLS yields (Â1, B̂1) and their covariance; for overdispersed counts, we also report
a Negative Binomial GLM fit with the same harmonic regressors (log-link), noting that mpeak is
invariant to link choice.
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Uncertainty for A and φ. Using the delta method, with Σ = Cov(Â1, B̂1) from the linear fit,

Var(Â) ≈ ∇⊤
AΣ∇A, ∇A =

(
Â1

Â
, B̂1

Â

)⊤
,

Var(φ̂) ≈ ∇⊤
φΣ∇φ, ∇φ =

(
B̂1

Â2
, − Â1

Â2

)⊤
.

We form Wald intervals for A and φ. When serial correlation is present, we inflate standard
errors using an effective sample size neff (see §8.6).

8.5 Barometric modulation of the annual cycle

To test whether pressure modulates the seasonal cycle, we augment (41) with barometric terms:

Yt = a0 +A1 cos
(
2πt
12

)
+B1 sin

(
2πt
12

)
+ β1∆Patm,t + β2 I{Patm,t > 1015 hPa}+ εt. (42)

We test H0 : β1 = β2 = 0 using an F-test (OLS) or a likelihood-ratio test (NB–GLM). Optionally,
we allow pressure–season interaction via

Yt = · · ·+ γc∆Patm,t cos
(
2πt
12

)
+ γs∆Patm,t sin

(
2πt
12

)
+ εt,

which induces effective seasonal coefficients A⋆
1 = A1+γc∆P and B⋆

1 = B1+γs∆P , with modified
amplitude A⋆ and phase φ⋆.

8.6 Correlations, lead–lag structure, and multiple testing

We pre-whiten both forcings and responses before correlation analysis by removing (i) linear
trend; (ii) ENSO (e.g., ONI/Niño 3.4 as a regressor); and (iii) annual/semianual harmonics when
appropriate. Let X ′

t and Y ′
t denote pre-whitened anomalies. We compute Pearson and Spearman

correlations in moving windows w ∈ {12, 24, 36} months and lags ℓ ∈ [−6, 6] months:

rw(ℓ) = r
(
{X ′

t−ℓ}τ+w−1
t=τ , {Y ′

t }τ+w−1
t=τ

)
.

Serial correlation biases naive p-values; we therefore (a) estimate lag-1 autocorrelations ϕX , ϕY

and use
neff ≈ n

1− ϕXϕY

1 + ϕXϕY

in Fisher-z intervals, and (b) generate Nπ ≥ 5000 circular-shift surrogates that preserve seasonal
structure to form empirical p-values. We control the false discovery rate across the (w, ℓ) grid
with Benjamini–Hochberg.

8.7 Operational settings for stability vs. sensitivity

For each region, we report results under Low/Medium/High settings that trade precision for
sensitivity. A representative configuration is shown in Table 6.

8.8 Outputs and reproducibility

For each region we export: (i) mpeak time series with confidence intervals; (ii) correlation
maps rw(ℓ) and FDR masks; (iii) GLM coefficients β1, β2 (and γc, γs if used) with tests; and
(iv) regional forcing summaries {∆Patm,∆h,∆Poce,∆σlith, astro}. All intermediate and final
data products are written to NetCDF/CSV with schema: seismic: time, lat, lon, depth_km,
mag, mag_type, region, decluster_flag; volcanic: start_time, end_time, volcano_name, lat,
lon, VEI, style, gas_SO2, deformation_flag; forcings: time, region, dP_atm_Pa, dh_m,
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dP_oce_Pa, dSigma_lith_MPa, astro_idx. A fully documented, version-controlled codebase
(Python/MATLAB/LaTeX) accompanies the manuscript, enabling end-to-end reproduction from
raw datasets to figures and statistics.2

9 Regional Seismic & Volcanic Datasets: Philippines and Iceland
(2015–present)

Regions and spatial masks

• Philippines (PHL) mask: 4◦–21◦N, 116◦–128◦E (Philippine Mobile Belt; trenches: Manila,
Philippine, East Luzon).

• Iceland (ISL) mask: 62◦–67.5◦N, −26◦–−12◦E (Reykjanes–Hengill–Katla–Bárðarbunga
systems; rift and transform segments).

Earthquake catalogs and filters

Monthly ingestion uses USGS ComCat (global; event identifier, origin time, hypocenter,
magnitude, depth) and, when available, vetted regional feeds (PHIVOLCS for the Philippines;
IMO for Iceland). Duplicates across feeds are resolved by time–space proximity and preferred-
agency rules, retaining original provenance for auditing. All times are converted to UTC and
rounded to calendar months for aggregation. Rationale and schema are aligned with the data
appendix.

1. Magnitude scale harmonization. When mixed magnitude scales are present, we convert to
moment magnitude MW using region- and period-specific regressions built from events that
carry multiple reported magnitudes. Let S ∈ {Mb,ML} denote a source scale. We fit

MW = aS + bS S (orthogonal distance regression),

compute residual variance σ̂2
S , and propagate uncertainty to the harmonized estimate M̂W .

If both Mb and ML exist, we fuse them by inverse-variance weighting. Quality flags from
agencies are preserved; quarry blasts and low-quality solutions are excluded where flagged.
This ensures comparability of monthly counts and b-value diagnostics downstream.

2. Event filtering. For load-sensitivity analyses, we define a “shallow” subset with depth
< 70 km; an optional deep subset is kept for sensitivity checks. Regional masks (e.g., trench-
parallel swaths) are applied consistently to epicenters. Hypocentral uncertainties are handled
by retaining catalog locations but assessing robustness to ±1 cell jitter in hotspot maps.
Duplicates (same event reported by multiple agencies) are merged via a time (< 10 s ) and
distance (< 20 km ) criterion, prioritizing the agency with lower stated uncertainties.

3. Magnitude completeness (estimated monthly via MAXC and goodness-of-fit meth-
ods, retaining M ≥ Mc(t)) Mc(t). We estimate a monthly completeness (estimated monthly
via MAXC and goodness-of-fit methods, retaining M ≥ Mc(t)) threshold to guard against
artificial seasonality or nonstationary network performance.

(a) MAXC: Bin magnitudes within month t (bin width ∆M = 0.1–0.2). Let the mode of the
frequency–magnitude histogram be M̃t; set MMAXC

c (t) = M̃t + δ with a small positive
offset δ to account for bin bias (typically 0.1).

2Repository DOI provided in the Supplementary Materials.
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(b) Goodness-of-fit (GoF): For candidate thresholds m ∈ [mmin,mmax], fit a Gutenberg–Richter
model to {M ≥ m} and compute a lack-of-fit score (e.g., KS or likelihood ratio) against
the empirical tail. Choose the smallest m whose score passes a preset criterion (e.g., KS
p > 0.05), then set MGoF

c (t) = m⋆.

(c) Operational rule: Use Mc(t) = max
{
MMAXC

c (t), MGoF
c (t)

}
; retain events with M ≥

max{Mc(t),Mmin}. We report both raw and M ≥ Mc(t)-filtered counts.

Estimating Mc monthly avoids bias when correlating with monthly forcings.

4. Declustering (optional). To isolate background rates, we provide a declustered series using
either Reasenberg or Gardner–Knopoff windows. In both cases, an event j is tagged as an
aftershock of a parent i if (∆t,∆r,∆M) fall inside method-specific time–space–magnitude
windows; parents spawn trees that are removed from the background set. We retain parallel
products: raw counts (total hazard) and declustered counts (background modulation). All
downstream analyses can be run on either series; we report sensitivity to this choice.

Counts, rates, and kernel densities. Let NPHL,t and NISL,t be post-filter monthly counts.
Define the area-normalized rate for region R,

λR,t =
NR,t

AR
, R ∈ {PHL, ISL},

where AR is the masked spherical area (computed from cell-wise ∆Aij = R2
⊕∆λ (sinϕj+1− sinϕj)

and summed over the regional grid). To characterize spatial clustering within month t, we form a
Gaussian kernel density over epicenters ER,t,

ΛR(x, t) =
∑

k∈ER,t

1

2πσ2
s

exp
(
− ∥x− xk∥2

2σ2
s

)
,

with bandwidth σs (typically 0.5◦–1.5◦). For objective smoothing, σs may be chosen by leave-
one-out likelihood or a fixed value tied to catalog location errors. Near coastlines or region edges,
apply edge correction by renormalizing kernels to the in-region mass. Report units as “events per
month per unit area (or per kernel footprint)” and accompany maps with the corresponding NR,t

to avoid misinterpretation under varying AR. These definitions align the gridded hotspot products
with the monthly correlation framework. .

Volcanic activity logs

From GVP (global) and regional bulletins (PHIVOLCS; IMO): eruption start/end, VEI, style,
gas/deformation notes. Monthly series per region:

VR,t =
∑

j∈VR,t

I{VEIj ≥ 2}, R ∈ {PHL, ISL}. (43)

Optionally build unrest proxies (tremor episodes, inflation alerts) from bulletins/INSAR/GNSS.
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Linkage to forcings (regional extraction)

For each region R:

∆Patm,R,t =
1

AR

∫∫
AR

∆Patm(x, t) dA, (44)

∆hR,t, ∆Poce,R,t = regional mean barystatic rise and hydrostatic pressure (AVISO+/GRACE),
(45)

∆σlith,R,t ≈ kR ∆Poce,R,t, (46)
Astrot = global astronomical index (solar declination, lunar perigee/syzygy flags).

(47)

Annual peaks (2015–present)

Estimate the annual cycle in regional seismicity and pressure as in the harmonic model:

YR,t = a0,R +A1,R cos
2πt

12
+B1,R sin

2πt

12
+ εR,t, (48)

with AR =
√

A2
1,R +B2

1,R and φR = arctan 2(−B1,R, A1,R). Track amplitude and phase in rolling
36-month windows; record peak month mpeak,R.

Correlation and barometric modulation tests

1. ENSO prewhitening: regress ONI/Niño 3.4 from Xt and YR,t.

2. Pearson/Spearman: compute r, ρ between {NR,t, VR,t} and {∆Patm,R,t,∆Poce,R,t,Astrot}
over windows w ∈ {12, 24, 36} and lags ℓ ∈ [−6, 6] months, with circular-shift nulls (Nπ ≥ 5000)
and FDR.

3. Harmonic+barometric GLM: Negative Binomial for NR,t:

log λR,t = aR+A1,R cos
2πt

12
+B1,R sin

2πt

12
+β1,R ∆Patm,R,t+β2,R I{Patm,R,t > 1015 hPa}+ · · ·

Test H0 : β1,R = β2,R = 0 (LR test). Compare PHL vs. ISL coefficients.

Operational L/M/H settings for PHL and ISL

Data schema (2015–present)

Seismic CSV (per region).

time, lat, lon, depth_km, mag, mag_type, region, decluster_flag

Volcanic CSV (per region).

start_time, end_time, volcano_name, lat, lon, VEI, style, gas_SO2, deformation_flag

Regional forcings (monthly).

time, region, dP_atm_Pa, dh_m, dP_oce_Pa, dSigma_lith_MPa, astro_idx
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Outputs for PHL and ISL

• Time series: NR,t, VR,t, ∆Patm,R,t, ∆Poce,R,t, ∆σlith,R,t, Astrot (2015–present).

• Peak diagnostics: (AR, φR,mpeak,R) trajectories with CIs.

• Significance maps: window–lag heatmaps of r, ρ with empirical p and FDR q.

• Kernel density snapshots ΛR(x, t) for key months (e.g., anticyclonic extremes).

Notes: (i) Rows reflect documented peak months; they are not a substitute for the annual peak
obtained via harmonic fitting of the full 2015–present series. (ii) For the Philippines, Oct 2019
(Cotabato) and Dec 2023 (Mindanao) dominate in terms of released energy and number of
aftershocks. (iii) For Iceland, Nov 2023 featured the most intense pre-eruptive swarms in
Reykjanes; Apr 2025 saw the highest documented monthly total according to IMO.

Data and Code Availability

All datasets, derived products, and computational workflows used in this study are provided as
supplementary material with this manuscript for peer review. They are organized to allow direct
reproduction of all figures, statistical results, and sensitivity analyses.

Data sources

• GRACE/GRACE-FO Level-2 (CSR RL06, 2002–2025): Monthly ocean bottom pressure
and terrestrial water storage anomalies used to quantify ocean mass redistribution in the
Pacific and Indian basins and to assess rotational–inertial feedbacks from polar mass loss.

• ERA5 atmospheric reanalysis (1979–2025, 0.25◦): Mean sea-level pressure fields used
to compute barometric loading, with special attention to high-pressure anomalies following
tropical cyclones.

• USGS global earthquake catalog (M ≥ 4.5, 1973–2025): Hypocentral locations, magni-
tudes, and event times used in correlation and threshold analyses.

• Smithsonian GVP volcanic activity database: Eruption onset dates, volcano types,
and activity classification for identifying volcanic triggering windows.

• JPL DE430 ephemerides: Solar and lunar positions, distances, and declinations used to
calculate astronomical stress modulation parameters.

• Polar diatom productivity indices (MODIS Aqua/Terra): Monthly chlorophyll-a
anomalies in Arctic and Antarctic zones, used as a proxy for radiative–albedo feedback in
cryospheric mass balance.

Preprocessing and derived variables

• Temporal harmonization: All datasets were interpolated or aggregated to a monthly
resolution and synchronized using a common UTC time base.

• Spatial regridding: GRACE and ERA5 products were reprojected to a 1◦ global grid;
regional masks were applied for Pacific, Indian, and polar zones.
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• Anomaly computation: Long-term monthly means were subtracted to obtain de-
seasonalized anomalies for ocean mass, atmospheric pressure, and biological productivity.

• Stress conversion:

– Ocean loading : Ocean bottom pressure anomalies converted to vertical lithospheric
stress using elastic load Love numbers (h′, l′).

– Atmospheric loading : Sea-level pressure anomalies converted to vertical stress changes
via ∆σv = ∆Patm.

– Astronomical modulation: Computed variation in effective normal stress from tidal
potential components at perigee/syzygy and solstice configurations.

• Rotational–inertial feedback: Change in Earth’s moment of inertia from polar ice
mass loss calculated from GRACE data, and its effect on equatorial ocean redistribution
estimated via conservation of angular momentum.

Computational workflows

• preprocess_grace.py, preprocess_era5.py, sync_catalogs.py: Scripts for harmonizing
datasets, regridding, anomaly calculation, and applying regional masks.

• ocean_stress.py: Computes vertical and shear stress perturbations from GRACE ocean
mass anomalies using a global elastic loading model.

• atm_pressure_model.m: MATLAB module for calculating vertical lithospheric stress from
ERA5 pressure anomalies, including event-specific barometric signatures.

• astro_forcing.py: Derives astronomical stress parameters from DE430 ephemerides and
tidal potential expansions.

• rot_inertial_feedback.py: Calculates inertial changes from polar mass loss and their
effect on large-scale ocean redistribution and stress.

• montecarlo_driver.py: Executes Monte Carlo perturbation tests, computes variance
contributions, and estimates false discovery rates.

• plots_seismic_hotspots.ipynb: Generates all figures, including spatiotemporal hotspot
maps, stress–event correlation plots, and sensitivity charts.

Reproducibility

All scripts are documented and parameterized for full reproducibility. Running the pipeline with
the supplied raw datasets reproduces every figure and statistic in the manuscript. Intermediate
products are stored in NetCDF and CSV formats. Upon acceptance, all data and code will be
deposited in an open-access repository with a DOI.

Notes and references

Use USGS ComCat for earthquakes (global), GVP for eruptions, ERA5 for pressure, AVISO+/GRACE
for sea level/mass, PHIVOLCS and IMO bulletins for regional detail. Ensure unit consistency
(Pa, MPa, cm, m) and document completeness (estimated monthly via MAXC and goodness-
of-fit methods, retaining M ≥ Mc(t)) Mc(t) and declustering (Reasenberg or Gardner–Knopoff
windowing to isolate background seismicity) choices in metadata.
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Notes on Data and Ranges

Where explicit numerical ranges are not firmly established in the literature, we provide L/M/H
placeholders to be replaced with observed estimates. The ocean-mass to stress range for the
M scenario is taken from the companion study; barometric coefficients follow classic loading
literature.
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Table 6: Operational choices for monthly analysis (2015–present).
Setting Low (L) Medium (M) High (H)

Magnitude threshold Mmin 5.0 4.8 (post Mc) 4.5 (strict Mc)
Declustering none Reasenberg Gardner–Knopoff
Spatial kernel σs (degrees) 1.5 1.0 0.5
Window w (months) 12 24 36
Lags ℓ (months) ±3 ±6 ±9
Barometric model OLS NB–GLM NB–GLM + interactions

Setting Low (L) Medium (M) High (H)

Magnitude threshold Mmin 5.0 4.8 (post Mc) 4.5 (strict Mc)
Declustering none Reasenberg Gardner–Knopoff
Spatial kernel σs (◦) 1.5 1.0 0.5
Window w (months) 12 24 36
Lags ℓ (months) ±3 ±6 ±9
Barometric model OLS NB–GLM NB–GLM + interactions

Table 7: PHL/ISL operational choices for stability (L) vs. sensitivity (H). Apply FDR across
windows/lags.

Table 8: Documented peak months in seismic activity (and volcanic context) since 2015. Figures
correspond to officially reported counts/indicators for the given month or period.
Region Subregion / Context Peak Month

(YYYY-MM)
Reported Metric Source

Philippines Cotabato
(M6.3–6.6–6.5 se-
quence)

2019-10 Main shocks on Oct 16 and 29;
∼2,226 cumulative events since
29/10

PHIVOLCS

Philippines Mindanao (Hinatuan) 2023-12 Mw 7.6 (02/12) + hun-
dreds/thousands of aftershocks
in following days

USGS / ADRC

Philippines S. Mindanao
(Kablalan)

2023-11 M6.7 (17/11), pre-sequence to
December mainshock

USGS

Iceland Reykjanes (intrusion +
swarms)

2023-11 ∼500 events/day on 22–27/11;
∼1,071 on 10–11/11

GVP / techni-
cal reports

Iceland National total 2025-04 13,561 earthquakes in month
(10,881 in Reykjanes)

IMO (monthly)

Iceland Grjótárvatn (local
area)

2024-12 “Highest monthly count” for area
(no national total provided)

IMO (note)
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