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S1. The RP-ChEMBL database 

All relevant data included in the RP-ChEMBL database are compiled in a comma-separated values 

(CSV) text file that can be downloaded from the PredPotS web application (Datasets tab, 

RP-ChEMBL.csv). The entries of the tabulated dataset include the ChEMBL codes of molecules, 

SMILES codes, charges and 1e standard reduction potentials computed with the composite 

GFN2-xTB/M06-2X protocol. Optimized geometries of the molecules, as well as their reduced forms 

are also available under the Datasets tab (zipped xyz files). 

S2. Details of DeepChem model training and validation 

In our present work we used deep learning tools provided by the open-source Python-based framework 

DeepChem1 (version 2.8.0) to train predictive models on the RP-ChEMBL molecular database. Model 

training was performed on a personal laptop equipped with an AMD Ryzen 5 processor, 32 GB RAM, 

and no dedicated GPU. Depending on the machine learning model used, the training time ranged from 

22 to 90 minutes. This timeframe reflects the average duration observed across multiple runs under 

consistent conditions.  

We selected five standard deep learning models provided by DeepChem that were all specifically 

developed for graph property predictions, therefore we think they are suitable for handling larger 

datasets of organic molecules. These models are: graph convolutional network models GCN2 and Graph 

Conv3, graph attention network models GAT4 and Attentive FP5, and the directed acyclic graph model 

DAG.6 The inputs for all these models were the molecules collected in the database RP-ChEMBL 

represented by their standardized SMILES codes. Conversion of SMILES codes to graph structures was 

performed using two different featurizers from DeepChem. For the GraphConv and DAG models, we 

used the built-in ConvMolFeaturizer, which generates a fixed-structure graph where each atom is 

represented by a feature vector based on local atomic and pairwise information. For the DAG model, the 

resulting graph was further processed using the DAGTransformer to transform it to the model’s input 

requirements. For the GAT, GCN, and Attentive FP models, we used the more flexible 

MolGraphConvFeaturizer, which constructs graph objects with customizable node and edge features. 

These featurizers prepare the graph inputs for the graph neural network models enabling them to learn 

representations that capture both local and global structural information relevant to the chemical 

property that will be predicted.  

For hyperparameter tuning, model training and performance monitoring, we applied a consistent 

procedure across all five models. The dataset was randomly split into training (train), validation (valid) 

and test (test) sets using the conventional 0.8:0.1:0.1 ratio. The computed values obtained following the 

protocol of the composite GFN2-xTB/M06-2X method were used as reference data for the supervised 

model training. In the following sections, we present the detailed procedures, evaluation methods and 

performance results for example models, but the same approach was used for all other models. 

First, the model's performance was evaluated across multiple random seeds while maintaining the same 

data split ratio. Table S1 summarizes the results for the Attentive FP model. Training was conducted 

using a dropout rate of 0 and applying the early stopping as regularization strategy. On the test set, the 

model achieved a mean absolute error (MAE) of 0.134 V. Using the t-distribution (with t ≈ 2.776) to 

calculate the 95% confidence interval, the MAE was estimated to lie within ±0.007 V of the mean, 

yielding an interval of approximately (0.125, 0.142). This means we can be 95% confident that the true 

test MAE falls within this range. 
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Table S1. Evaluation metrics results for the Attentive FP model using different random seeds for the dataset 

splitting with the ratio of 0.8:0.1:0.1. 

Nr. 
split 

seed 
seed epoch 

MAE_ 

train 

MAE_ 

valid 

MAE_ 

test 

1 45 144 98 0.0638 0.1351 0.1263 

2 35 135 97 0.0688 0.1335 0.139 

3 78 245 101 0.0617 0.1275 0.1261 

4 76 123 67 0.0926 0.1387 0.1356 

5 74 625 94 0.0643 0.1254 0.1406 

Mean    0.070±0.011 0.132±0.005 0.134±0.006 

 

For the five models deployed in the PredPotS application a fixed random seed parameter was used 

during training to ensure reproducibility and consistent dataset partitioning. The default 

hyperparameters of the neural networks provided by DeepChem performed well across all models for 

our purposes. The most relevant parameters are summarized in Table S2.  

Table S2: Most important built-in parameter values for the selected DeepChem models. 

model parameter value 

Attentive FP 

number of GCN layers 2 

number of atom features 30 

number of bond features 11 

max time steps for updating 

graph representation 
2 

GraphConv 

graph conv layers 64x64 

dense layer size 128 

number of atom features 75 

batch size 100 

GCN 

graph conv layers 64x64 

number of atom features 30 

predictor hidden features 128 

GAT 

graph conv layers 64x64 

graph attention layers 8x8 

n attention heads 8 

number of atom features 30 

predictor hidden features 128 

DAG 

number of atom features 75 

number of features for atom in 

the graph 
30 

number of features of each 

molecule 
30 

number of hidden layers 100 

 

To avoid overtraining of the models, the series of dropout = 0, 0.1, 0.2 were tested for each model. For 

this purpose the loss function computed in each epoch for the validation and training set were monitored 

for trainings consisting of a minimum of 100 epochs and applying the early stopping regularization with 

a patience of 2. The loss function considered is the squared difference between the true and predicted 

values as implemented in DeepChem (L2Loss). To determine the optimal dropout parameter for each 

model, we examined both parity plots and training/validation loss curves. For the Graph Conv model, 
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results with dropout values of 0, 0.1, and 0.2 are illustrated in Figure S1. While the overall error functions 

are quite similar across these settings (see Table S3), a notably larger difference between training and 

validation MAE at the dropout of 0 and 0.1 suggests potential overfitting. In contrast, the model with a 

dropout of 0.2 exhibits the most balanced performance, indicating it as the most suitable choice. The 

same routine was used for all models, the final dropout values are listed in Table S4. 

 

Figure S1: Parity plots for the computed and predicted values (upper) and loss functions for the training and 

validation sets (lower) for different dropout values: 0.0, 0.1 and 0.2 by using Graph Conv model. The computed 

and predicted reduction potential values are in V.  

 

Table S3: Performance of ML trainings by using the Graph Conv model for dropouts 0.0, 0.1, 0.2. 

Dropout Set MAE RMSD R2 

 Train 0.0797 0.0999 0.9873 

0.0 Valid 0.2419 0.323 0.8345 

 Test 0.2356 0.3053 0.851 

 Train 0.127 0.1593 0.9708 

0.1 Valid 0.1871 0.25 0.9112 

 Test 0.19 0.2525 0.9041 

 Train 0.1643 0.2067 0.9524 

0.2 Valid 0.2066 0.2699 0.9034 

 Test 0.204 0.2693 0.8977 

 

 

 

 

 

Dropout = 0 Dropout = 0.1 Dropout = 0.2
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Table S4: Dropout parameters used for training the models.  

Model Dropout 

Attentive FP 0.1 

GraphConv 0.2 

GCN 0.1 

GAT 0 

DAG 0.2 

 

Training machine learning models is inherently stochastic and can exhibit considerable noise, making it 

important to carefully determine an appropriate stopping point. Since the validation error curves may 

present several local minima, we extended training to 800 epochs to observe the overall trend in model 

performance and estimate the minimal necessary training epochs. 

S3. Training and evaluation of DeepChem models 

Herein, we present a detailed analysis of the training strategy applied to the Attentive FP model. This 

includes the investigation of early stopping behavior, and model performance across different training 

durations. To prevent premature termination due to short-term fluctuations in validation loss, we 

introduced a parameter specifying the minimum number of epochs (min_epochs). This ensures that 

training proceeds for at least this minimum number of epochs before early stopping is considered. After 

this threshold is passed, early stopping with a patience of 2 is applied, meaning training stops if no 

improvement in validation loss is observed for two consecutive epochs. In all cases, the model is restored 

to the best-performing epoch (best_epoch) based on validation loss. This strategy allows flexibility in 

total training duration, which can extend up to a higher maximum epoch limit if early stopping 

conditions are not met. 

 To analyse the model performance over time, we changed the minimum epoch parameter with a step of 

100, and evaluated the corresponding error metrics: training and test MAE, training and validation loss 

at each setting and the overall rolling mean (using a window size of 10) for these functions. This 

approach allowed us to assess the impact of training duration and early stopping dynamics on model 

generalization as shown in Figure S2. 

 

Figure S2: Performance of the model Attentive FP recorded for 800 epochs. Left: MAE and rolling mean of MAE 

for the train and test sets. Right: Loss function and rolling mean for the train and valid sets.  
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The details of the evaluation are listed in table S5 for the Attentive FP model. The ‘best epoch’ is the 

epoch number corresponding to the trained model stopped by the early stopping regularization after the 

respective minimal epochs was reached. It is apparent that after the minimal epochs value of 200 the 

performance of the trained model doesn’t improve indicating that a choice of the minimal epoch leading 

to the best trained model is between 100 and 200.  

Table S5: Performance of model Attentive FP evaluated at every 100th epoch. 

min 

epochs 
best_epoch 

loss 

valid 

loss 

train 

MAE 

train 

MAE 

valid 

MAE 

test 

MAE 

roll 

train 

MAE 

roll 

test 

100 95 0.0377 0.0178 0.0837 0.1373 0.1373 0.1008 0.1454 

200 102 0.0376 0.0162 0.0789 0.1351 0.1356 0.0926 0.1425 

300 102 0.0376 0.0162 0.0789 0.1351 0.1356 0.0926 0.1425 

400 102 0.0376 0.0162 0.0789 0.1351 0.1356 0.0926 0.1425 

500 464 0.0375 0.0023 0.0232 0.1368 0.1345 0.0289 0.1365 

600 580 0.0368 0.0019 0.0224 0.1345 0.1353 0.0255 0.1358 

700 580 0.0368 0.0019 0.0224 0.1345 0.1353 0.0255 0.1358 

 

The model weights corresponding to the best epoch determined by the early stopping criterion, were 

saved and used as the final trained model. In Table S6 we provide a summary of the training parameters 

for each model. 

Table S6: Training parameters used in various deep learning methods.a 

Model seed Dropout min_epoch best_epoch 

Attentive FP 283 0.1 200 81 

GraphConv 768 0.2 250 263 

GCN 366 0.1 350 336 

GAT 483 0 400 314 

DAG 637 0.2 100 86 
a Notation: Minimum epoch numbers (min_epoch), the epoch number of the best model (best_epoch) according to 

the early stopping with a patience of 2, and the random seed used for the trainings (seed). For all models the 

random seed=42 was used for the dataset split into training/validation/test sets. 

S4. The performance of DeepChem models 

The parity plot for the computed (via the protocol) and predicted values of the three sets (train, valid, 

test), the loss functions for train and valid and the MAE for the test set are shown in Figure S3.  
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 Figure S3. Performance plots for the models used in the PredPotS application: Attentive FP, GraphConv, GCN, 

GAT, and DAG models.    
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S5. Analysis of outliers 

Despite the satisfying correlation between the predicted and computed reduction potentials, the parity 

plots display a number of outliers (see Figure S3). To understand the origin of these exceptional 

discrepancies, we analyzed the structures of these compounds (both original and reduced forms) 

obtained by the applied GFN2-xTB/M06-2X computational protocol, and compared them to those 

provided by a more accurate approach, namely by full DFT calculations. In this latter approach, the 

geometries of both original and reduced forms of molecules were optimized at M06-

2X/6-31+G(d,p)/SMD(water) level (with initial geometries from the GFN2-xTB/M06-2X protocol), and 

the 1e standard reduction potentials were obtained from Gibbs free energies computed at the same DFT 

level. The present analysis was carried out for compounds identified as outliers of predictions using the 

Attentive FP model, but we expect similar conclusions for the other deep learning models as well. The 

molecules from the validation and test datasets, for which the error of Attentive FP predictions of 

reduction potentials is larger than 0.6 V are shown in Figures S4 and S5, and the predicted/computed 

data are compiled in Table S7. 

 

 

Figure S4: Molecules from the validation set of the RP-ChEMBL database for which the Attentive FP model gives 

exceptionally erroneous reduction potential predictions (discrepancy with respect to values computed with the 

GFN2-xTB/M06-2X protocol is larger than 0.6 V). 
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Figure S5: Molecules from the test set of the RP-ChEMBL database for which the Attentive FP model gives 

exceptionally erroneous reduction potential predictions (discrepancy with respect to values computed with the 

GFN2-xTB/M06-2X protocol is larger than 0.6 V).  

Our structural analysis indicated that some of the exceptional discrepancies between the predicted and 

computed reduction potentials clearly originate from the inaccurate structures obtained with the GFN2-

xTB method, as evidenced by large differences between the GFN2-xTB/M06-2X and full DFT results 

(𝐸𝑜
2 data in Table S7). The structural artefacts include bond weakenings, partial bond formations 

between substituents, amplified inaccuracies for particular structural motives (e.g. amide, N=N bonds, 

CN bonds, hydrogen bonds). In two cases, we found that the conformational search of the GFN2-

xTB/M06-2X protocol (crest utility) did not find the most stable forms of the molecules. In all other 

cases, where the 𝐸𝑜
2 differences are insignificant, the large 𝐸𝑜

1 deviations are likely related to the deep 

limited capacity of deep learning models to generalize across diverse molecular structures. This also 

depends on the sensitivity of the methods to the unique properties of certain molecules. 
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Table S7: Computed and predicted reduction potentials of molecules from the validation and test set of the RP-ChEMBL database giving large errors in the predictions with 

the Attentive FP model.a 

ChEMBL code CHG SMILES Set 𝐸𝑜
𝑝𝑟𝑜𝑡

 𝐸𝑜
𝑝𝑟𝑒𝑑

 𝐸𝑜
1 𝐸𝑜

𝐷𝐹𝑇 𝐸𝑜
2 Origin of error 

CHEMBL1159735 0 [P@](=O)(SCC(=O)O)([C@@H](N)C)O valid -2.46 -1.79 0.66 -1.95 0.51 xTB 

CHEMBL1741566 0 OC(CN=[N+]=[N-])CN=[N+]=[N-] valid -1.99 -0.99 0.99 -1.49 0.50 xTB 

CHEMBL2131547 1 [P+](CO)(CO)(CO)CO valid -2.08 -3.07 -0.99 -2.10 -0.02 ML + xTB 

CHEMBL314727 0 [N+](=O)([O-])CC[C@@H]1N=C(N)CCOC1 valid -0.17 -1.24 -1.07 -0.95 -0.78 xTB 

CHEMBL3186090 0 N(CC#N)CC#N valid -3.70 -3.04 0.67 -3.68 0.02 xTB 

CHEMBL331588 0 c1c(o[n-]c1=O)C1=CC[NH2+]CC1 valid -2.26 -2.96 -0.70 -2.34 -0.07 ML 

CHEMBL584139 0 c1cnc2c(c1)Cc1c(C2)[nH]n[n+]1[O-] valid -2.76 -2.13 0.63 -2.53 0.23 xTB + ML 

CHEMBL594030 0 c1ccc2c(c1)c1c(n(c2)C)ncc1 valid -1.59 -2.27 -0.68 -1.65 -0.06 ML 

CHEMBL86457 0 [N+](=[N-])=Nc1ccc(NC(=S)N)cc1 valid -2.01 -1.38 0.64 -1.11 0.90 xTB 

CHEMBL144825 0 c1(nc(c(nn1)C)C)c1ncccc1 test -1.75 -1.10 0.65 -1.72 0.03 ML 

CHEMBL1457102 0 Fc1ccc([C@@H]2NC(=O)NC2=O)cc1 test -3.39 -2.52 0.87 -2.75 0.63 xTB 

CHEMBL1585418 0 O=C(N(CCC#N)C)/C=C/OCC test -3.11 -2.45 0.66 -2.40 0.71 xTB 

CHEMBL1594149 1 o1n[n+](N2CCOCC2)cc1N test -0.69 -1.50 -0.81 -0.78 -0.09 ML 

CHEMBL2008736 1 [P+]1(CCCC1)(CC)CC test -2.87 -3.51 -0.64 -2.79 0.08 ML 

CHEMBL21696 0 n1(c(nnc1)N)NCC(=O)O test -2.57 -3.18 -0.60 -2.48 0.09 ML 

CHEMBL2251586 0 c1(ccccc1OC(=O)NC)C(C)C test -4.01 -3.39 0.62 -3.08 0.93 xTB 

CHEMBL2298299 0 c1ccc(cc1)[C@]1(OCC(=O)NN1)C test -3.69 -2.92 0.77 -2.89 0.80 xTB 

CHEMBL3251149 0 c1(nc(c([nH]1)C(=O)N)/N=N/N(C)C)C test -1.32 -2.02 -0.70 -1.41 -0.09 crest 

CHEMBL3303529 0 O=C(/C(=N/[O-])/C[NH+]1CCCCC1)C test -1.41 -2.04 -0.64 -1.41 -0.01 ML 

CHEMBL3635077 0 n1c(nnc(n1)CCCF)C test -0.59 0.08 0.68 -0.79 -0.20 ML 

CHEMBL4160836 0 c1(n(nnn1)C(=O)O)Nn1cnnc1 test -1.66 -2.47 -0.80 -1.30 0.37 crest 

CHEMBL4536477 0 CN1c2ccccc2NS1(=O)=O test -1.15 -1.76 -0.61 -0.48 0.67 xTB 

aNotation:  𝐸𝑜
𝑝𝑟𝑜𝑡

, 𝐸𝑜
𝑝𝑟𝑒𝑑

 and 𝐸𝑜
𝐷𝐹𝑇 refer to 1e standard reduction potentials obtained via the GFN2-xTB/M06-2X computational protocol, via predictions of the Attentive FP 

model, and via full DFT calculations, respectively; 𝐸𝑜
1 = 𝐸𝑜

𝑝𝑟𝑒𝑑
 - 𝐸𝑜

𝑝𝑟𝑜𝑡
; 𝐸𝑜

2 = 𝐸𝑜
𝐷𝐹𝑇 - 𝐸𝑜

𝑝𝑟𝑜𝑡
. The last column of the table specifies the origin of the error: xTB – structural 

uncertainty inherited from the semiempirical GFN2-xTB method, ML – uncertainty of machine learning training, crest – uncertainty from crest conformational analysis.  
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To further examine the uncertainty level of the GFN2-xTB/M06-2X protocol, we carried out additional 

test calculations for a set of compounds from the RP-ChEMBL database. We selected 50 compounds 

from the database randomly, but also ensuring that the reduction potential of these compounds covers 

the entire potential range of RP-ChEMBL compounds. We then carried out geometry optimizations for 

the original and reduced forms at the M06-2X/6-31+G(d,p)/SMD(water) level of DFT and computed 

the 1e standard reduction potentials at the same DFT level. The results are compiled in Table S8, which 

includes the ChEMBL and SMILES codes of the selected compounds and all data relevant to the test 

calculations. 

The parity plot of mean predicted versus the GFN2-xTB/M06-2X potentials shows an excellent 

correlation for the molecules of this test set (R2 = 0.99, MAE = 0.13 V, see Figure S6). The results of 

full DFT calculations reveal that the GFN2-xTB/M06-2X protocol gives quite accurate data for the 

majority of the molecules, and there are only a few exceptions in the highly negative potential region as 

illustrated in Figure S7. Larger discrepancies (>0.4 V) are obtained only for four compounds, which 

include structural units that appear problematic for the GFN2-xTB method. Inaccuracies associated with 

the amide and the CN units have already been mentioned in the previous section, but the structural 

analysis indicates that the reduced form of CHEMBL1631455 (i.e. the pyramidality of the carbonyl 

group) is not accurately described either by the GFN2-xTB method. 

The present analysis provides further support for the efficiency of the composite GFN2-xTB/M06-2X 

protocol in the calculation or redox potentials, but it also highlights its limitations. 
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Table S8: Computed and predicted reduction potentials of molecules selected from the RP-ChEMBL database for test calculations.a 

ChEMBL code CHG SMILES  𝐸𝑜
𝑝𝑟𝑒𝑑

 𝐸𝑜
𝑝𝑟𝑜𝑡

 𝐸𝑜
𝐷𝐹𝑇   𝐸𝑜

𝑝𝑟𝑜𝑡−𝐷𝐹𝑇
 

CHEMBL1999493 0 O=C(N[C@H](CNC(=O)N)C)N  -3.79 -4.23 -3.75  -0.47 

CHEMBL3558608 1 C1[C@H](CC=C1)C[N+](C)(C)C  -3.77 -4.20 -3.81  -0.39 

CHEMBL1191543 0 C(=O)([C@@H]1C2(C[NH2+]CC1)CCCCC2)[O-]  -3.75 -4.14 -3.88  -0.26 

CHEMBL431307 0 C1(=O)N([C@@H](Cc2n(cnc2)C)CO1)C  -3.44 -3.93 -3.48  -0.45 

CHEMBL1978310 0 P(=O)(C([C@H](C(C)C)C)(C)C)(C)C  -3.79 -3.83 -3.65  -0.18 

CHEMBL1741675 0 N(CC(=C)C)(CC(=C)C)CC#N  -3.53 -3.73 -2.88  -0.85 

CHEMBL1489129 0 N12C(=NCCC1)CCCCC2  -3.57 -3.63 -3.67  0.05 

CHEMBL1621372 0 n1(nc(c(c1N)C)CC)C  -3.61 -3.53 -3.56  0.04 

CHEMBL4517591 0 N[C@H]1CCn2ccnc12  -3.54 -3.42 -3.47  0.05 

CHEMBL3899142 0 NC/C=C/CN  -3.39 -3.32 -3.36  0.04 

CHEMBL343650 0 C(=O)([C@@H](N)[C@@H](CC)C)N(CCC)C  -3.15 -3.22 -3.18  -0.04 

CHEMBL2109969 0 C(C#C[C@H]1CCCN1)N1CCCC1  -3.31 -3.12 -3.10  -0.02 

CHEMBL1631455 0 C(SCCC(=O)C)CO  -2.66 -3.02 -2.52  -0.50 

CHEMBL4549622 0 O=C1CNc2cccc(F)c2N1  -2.91 -2.92 -2.71  -0.20 

CHEMBL1432925 0 S=C(NC(C)(C)C)NC(C)(C)C  -3.02 -2.82 -2.84  0.02 

CHEMBL2111859 0 [C@@]123[C@H](c4c(C1)ccnc4)N(CC2)CC3  -2.66 -2.72 -2.76  0.04 

CHEMBL125783 0 c1(c2ccc(cc2)O)c(F)cccc1  -2.51 -2.61 -2.62  0.00 

CHEMBL1732601 0 [nH]1ncc2c1ncnc2NCC  -2.58 -2.51 -2.50  -0.02 

CHEMBL92537 0 c1(nc(no1)N)[C@H]1N(CCN(C1)C)C  -2.63 -2.41 -2.38  -0.04 

CHEMBL1999762 0 O=c1n2c([nH]c3c1CCCC3)ncc2  -2.51 -2.31 -2.32  0.01 

CHEMBL12849 0 c12c(cc(s2)N)[nH]c(=O)[nH]c1=O  -2.25 -2.21 -2.14  -0.07 

CHEMBL1213612 0 O=C(O)c1ccsc1NC(=O)C  -2.13 -2.11 -2.05  -0.05 

CHEMBL1313117 0 o1c2c(c(N)c(N)c1=O)cccc2  -2.01 -2.01 -2.02  0.02 

CHEMBL195075 0 N(=C\c1ccccc1)/Oc1ccccc1  -1.91 -1.91 -1.95  0.04 

CHEMBL1896392 0 O=C(N1[C@H](C1)C)c1c(cccc1)C  -2.11 -1.80 -1.97  0.17 

CHEMBL2132927 0 O=C1C(=C(c2ccccc2)CC1)C  -1.64 -1.70 -1.67  -0.04 

CHEMBL4583850 0 c1c(ccc(c1)/C=C(/C(=O)O)\O)Cl  -1.60 -1.60 -1.63  0.03 

CHEMBL3185350 0 N#Cc1c(cccc1)C#N  -1.53 -1.50 -1.50  0.00 

CHEMBL1977616 0 O=C1C(=O)C=C1O  -1.19 -1.40 -1.28  -0.12 

CHEMBL1990202 0 S1(=O)(=O)N(C(=O)[C@H](N1)C)C  -1.43 -1.30 -1.20  -0.10 

CHEMBL1548859 0 s1c(C(=O)c2ncc[nH]2)ccc1  -1.19 -1.20 -1.18  -0.01 
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CHEMBL29207 0 [N+](=[N-])=CC(=O)C=C=CCCCCCC  -0.99 -1.10 -1.05  -0.05 

CHEMBL357682 0 S(=O)(=O)(O/C=C\1/C(=O)OCC1)C  -1.09 -0.99 -0.67  -0.33 

CHEMBL479228 0 c1c[n+](cc(c1)C(=O)O)CC(=O)[O-]  -0.80 -0.89 -1.07  0.18 

CHEMBL1651797 0 c1c(cccc1)NC(=O)/C(=N/O)/C#N  -0.77 -0.79 -0.79  -0.01 

CHEMBL489894 0 C1[C@H](COc2n1c(cn2)[N+](=O)[O-])O  -0.76 -0.69 -0.71  0.02 

CHEMBL164925 0 [N+](=O)(c1cc2c(NN(C2)C)cc1)[O-]  -0.71 -0.59 -0.64  0.05 

CHEMBL231045 0 c1ccc(c(c1)/C=C/[N+](=O)[O-])O  -0.47 -0.49 -0.47  -0.02 

CHEMBL241419 0 [n+]1(nc([n+](c2c1cccc2)[O-])C)[O-]  -0.52 -0.39 -0.44  0.06 

CHEMBL1269722 0 c1ccc(cc1)/C=C(/[N+](=O)[O-])\O  -0.39 -0.28 -0.27  -0.01 

CHEMBL253356 0 C1(=C(C(=CC(=O)C1=O)OC)O)C  -0.16 -0.18 -0.20  0.02 

CHEMBL2296053 0 C1(=O)C(=C(C(=O)C(=C1O)CC)O)CC  -0.15 -0.08 -0.08  0.00 

CHEMBL1559303 0 O=C1C(=C(O)C(=O)C(=C1O)O)O  -0.12 0.02 0.07  -0.05 

CHEMBL1985450 0 s1cc2c(c(=O)c(=O)c2=O)c1  -0.33 0.13 0.14  -0.01 

CHEMBL1971808 0 O=C1c2c(C(=O)C=C1)ccc(=O)cc2  0.14 0.22 0.23  -0.01 

CHEMBL1743218 0 C1=CC(=CC(=O)C1=O)C[C@H](C(=O)[O-])[NH3+]  0.33 0.34 0.25  0.09 

CHEMBL174035 0 C1(=O)C(=O)[C@H](OC1=O)[C@H](O)CO  0.37 0.46 0.40  0.06 

CHEMBL2361875 1 O=[N+]1C=C(/N=N/N(CC)CC)C=CC1  0.35 0.55 0.17  0.38 

CHEMBL1189149 2 [N+]1(=CC=[N+]([C@@H]1C)C)C  0.64 0.65 0.62  0.03 

CHEMBL2134077 0 O=C1[C@H]([N+](=O)[O-])C(=O)NC(=O)C1=O  0.76 0.74 0.68  0.05 

aNotation:  𝐸𝑜
𝑝𝑟𝑒𝑑

, 𝐸𝑜
𝑝𝑟𝑜𝑡

 and 𝐸𝑜
𝐷𝐹𝑇 refer to 1e standard reduction potentials obtained via predictions (mean values with Z-score filtering switched on), the GFN2-xTB/M06-

2X computational protocol, and via full DFT calculations, respectively; 𝐸𝑜
𝑝𝑟𝑜𝑡−𝐷𝐹𝑇

 = 𝐸𝑜
𝑝𝑟𝑜𝑡

 - 𝐸𝑜
𝐷𝐹𝑇.  
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Figure S6: Parity plot of predicted 1e reduction potentials (mean predictions) vs. the values computed with the 

GFN2-xTB/M06-2X protocol for a set molecules selected from the RP-ChEMBL database (see Table S8).  

 

Figure S7: Parity plot of 1e reduction potentials computed with the full DFT and GFN2-xTB/M06-2X methods 

for a set molecules selected from the RP-ChEMBL database (see Table S8). Outlier data with discrepancies >0.4 

V are highlighted in orange. 

 

S6. Distribution of signed errors 

The distribution of signed errors for predictions using the five deep learning models are reported in 

Figure S8.  

CHEMBL1631455

CHEMBL1741675

CHEMBL431307

CHEMBL1999493
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Figure S8: Distribution of signed errors for predictions using the models: Attentive FP, Graph Conv, GCN, GAT, 

and DAG with bars colored by data split (train, valid and test). Overlaid kerned density estimate curves provide a 

smoothed view of the error distribution for each set. Percentage value indicates the fraction of test molecules with 

errors within the -0.25 to 0.25 V range. 

S7. The PredPotS web tool 

The online application was implemented by using the dash (version 2.17.0) and plotly (version 5.22.0) 

python program packages. The trained models are loaded in the background and used to make 

predictions for the SMILES code(s) uploaded by the user. The program is hosted on a local webserver 

at http://predpots.ttk.hu/. 

Herein we provide a detailed description of the usage of PredPotS according to the tabs displayed on 

the main page.  

Predict 

The predicted one-electron reduction potentials for molecules of interest can be calculated directly from 

the main page of the application. Multiple input options are available: users can paste a single SMILES 

http://predpots.ttk.hu/
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code or a semicolon-separated list of SMILES codes into the first input box. Alternatively, a CSV file 

containing a list of SMILES codes can be uploaded using the second input box. If needed, SMILES 

codes can be generated via the link provided in the third box of the application, where users can draw 

the molecule and obtain the corresponding SMILES code as input for the prediction (Figure S9). 

 

Figure S9. The main page of PredPotS. 

Upon submitting an input, the web application displays the following information in a table: 

 The smiles of the compound 

 The mean prediction of the reduction potential 

 The associated prediction confidence 

 The individual predictions from each of the models: Attentive FP, GraphConv, GCN, GAT and 

DAG 

The mean prediction is calculated using a default Z-score filter set to On, which corresponds to a Z-

score threshold of 1.5. This means that only predictions from models whose values lie within 1.5 

standard deviations (±1.5 V) of the mean of all five predicted potentials are included in the final averaged 

value. This filtering helps to reduce the impact of potential outliers among the model outputs, however 

it can be switched Off  by the user. 

The prediction confidence is derived from the 95% confidence interval (CI) around the filtered 

predictions, calculated using the t-distribution. To make this information more user-friendly, the width 

of the CI is mapped onto a star scale ranging from 1-5, where a narrower CI (i.e., higher agreement 

between models) results in a higher confidence rating. The ratings are illustrated in Table S9. In addition 

to the star rating, up to four types of warnings may appear in the prediction confidence column to 

highlight potential issues with the input molecule which might lead to poor prediction performances:  

 w1 indicates that the molecule contains fewer than six heavy atoms 

 w2 flags molecules that are not a single covalently bonded entity 

 w3 denotes molecules containing four or more aromatic rings 

 w4 denotes molecules with molecular weight M > 300 g/mol  
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Table S9. The relation between the width of the confidence interval and the star scale ratings. 

CI values Ratinga 

CI < 0.2 ⋆⋆⋆⋆⋆ 

0.2 < CI < 0.3 ⋆⋆⋆⋆ 

0.3 < CI < 0.4 ⋆⋆⋆ 

0.4 < CI < 0.6 ⋆⋆ 

CI > 0.6 ⋆ 
a Additionally, if the number of outlier predictions is equal or greater than two the rating automatically drops to ⋆. 

The table displayed by PredPotS can be exported from the application to a comma-separated values 

CSV type of file for further analysis and documentation. By using the radio button in the first column 

of the table the Lewis structure of the molecule is displayed below the table. An illustrated example is 

shown in Figure S10.  

  

Figure S10. The table for the predicted reduction potential of the molecule represented by the SMILES code: 

O=C(O)c1ccc(-c2cccc(F)c2)cc1 and the Lewis structure displayed. 

Similarity 

The Similarity tab displays the most similar molecule(s) in the underlying computed Rp-ChEMBL 

database to the inserted or uploaded SMILES. The result is displayed in a table that contains the SMILES 

codes of the entered and the most similar molecule, the potential from the RP-ChEMBL database, and 

the similarity score. The latter is calculated by the RDKit7 (version 2022.03.5) program package, 

according to the Tanimoto coefficient formula:  

𝑇(𝑄, 𝑆) =  
|𝑄 ∩ 𝑆|

|𝑄| + |𝑆| − |𝑄 ∩ 𝑆|
 

where Q and S are the unfolded fingerprint vectors computed by the RDKit topological algorithm for 

the query and the most similar molecule from the dataset, respectively. For the visualization of the 

structures use the radio button from the first column (Figure S11). 
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Figure S11. Similarity search in the RP-ChEMBL dataset for the submitted SMILES codes: 

C[n+]2ccc(C(=O)c1ccccc1)cc2 (1+); CCOc1c(C)[n+](C)cc(C)c1C(=O)c2ccccc2 (2+); 

C[n+]2ccc(c1cc[n+](C)cc1)cc2 (32+). The Lewis structure of 32+ and the most similar molecule is shown at right. 

 

Performance 

The accuracy and error scores for the different models used for predicting the reduction potential can be 

found under the Performance Tab. The performance of the different models can be visualized by using 

the dropdown menu in the upper left corner. The parity plot of the computed against the predicted 

potential values of the trained models is shown in an interactive manner. Hovering with the mouse over 

the points of the diagram will show the detailed data for the corresponding molecule and clicking on the 

selected point reveals the structure of the molecule (see Figure S12). 

 

Figure S12. The performance of Attentive FP model is displayed.  
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Help 

A short presentation, citation and funding of PredPotS and the usage of the web-tool with point-by-

point guidance is described in the Help menu. 

Dataset 

A curated list of datasets used and referenced in this web application and the related paper (ref) is 

available for download. These datasets can be accessed directly from the Datasets section of the 

interface. The available datasets include: 

 RP-ChEMBL dataset – ids, SMILES, computed and predicted potentials and distribution into 

train-valid-test sets  

 RP-ChEMBL-ext extended dataset – ids, SMILES and computed potentials 

 Wardman experimental dataset – ids, SMILES and experimental potentials 

Each file is provided in CSV format and are freely available. 

 

S8. Wardman compilation 

Parity plots of predicted 1e reduction potentials (mean values an predictions using the five deep learning 

methods) vs. the experimental data from the Wardman compilation (M < 200 set) are shown in Figure 

S13. 
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Figure S13. Parity plots of predicted vs. experimental 1e reduction potentials for the M < 200 set of Wardman 

compilation. Top-left plot corresponds to mean predictions, the others to those from particular model predictions 

as indicated on the y axis.  
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S9. Application to larger molecules 

To evaluate the applicability of the PredPotS to larger molecules, we downloaded about 300k structures 

from the ChEMBL library with molecular weight in the 200 < M < 300 range and used the PredPotS 

application to predict their 1e– reduction potentials. From this set a subset of 2000 molecules was 

selected such that the distribution of the mean predicted potentials matched the shape of the distribution 

observed for the RP-ChEMBL dataset. Subsequently, the 1e– reduction potentials of these selected 

molecules were computed using the GFN2-xTB/M06-2X protocol. Following data filtering, the 

resulting RP-ChEMBL-ext dataset comprises 1719 entries, each including the ChEMBL ID of the 

molecule, SMILES code, charge and 1e standard reduction potential computed with the protocol.  

Parity plots of predicted 1e reduction potentials using the different deep learning methods vs. the values 

computed with the GFN2-xTB/M06-2X protocol for the RP-ChEMBL-ext dataset are shown in Figure 

S14. 
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Figure S14. Parity plots of predicted 1e reduction potentials vs. the values computed with the GFN2-xTB/M06-

2X protocol for a set molecules from the RP-ChEMBL-ext (molecular weight 200 < M < 300 g/mol). Top-left plot 

corresponds to mean predictions, the others to those from particular model predictions as indicated on the y axis.  
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