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S1. The RP-ChEMBL database

All relevant data included in the RP-ChEMBL database are compiled in a comma-separated values
(CSV) text file that can be downloaded from the PredPotS web application (Datasets tab,
RP-ChEMBL.csv). The entries of the tabulated dataset include the ChEMBL codes of molecules,
SMILES codes, charges and le~ standard reduction potentials computed with the composite
GFN2-xTB/M06-2X protocol. Optimized geometries of the molecules, as well as their reduced forms
are also available under the Datasets tab (zipped xyz files).

S2. Details of DeepChem model training and validation

In our present work we used deep learning tools provided by the open-source Python-based framework
DeepChem! (version 2.8.0) to train predictive models on the RP-ChEMBL molecular database. Model
training was performed on a personal laptop equipped with an AMD Ryzen 5 processor, 32 GB RAM,
and no dedicated GPU. Depending on the machine learning model used, the training time ranged from
22 to 90 minutes. This timeframe reflects the average duration observed across multiple runs under
consistent conditions.

We selected five standard deep learning models provided by DeepChem that were all specifically
developed for graph property predictions, therefore we think they are suitable for handling larger
datasets of organic molecules. These models are: graph convolutional network models GCN? and Graph
Conv?, graph attention network models GAT* and Attentive FP°, and the directed acyclic graph model
DAG.5 The inputs for all these models were the molecules collected in the database RP-ChEMBL
represented by their standardized SMILES codes. Conversion of SMILES codes to graph structures was
performed using two different featurizers from DeepChem. For the GraphConv and DAG models, we
used the built-in ConvMolFeaturizer, which generates a fixed-structure graph where each atom is
represented by a feature vector based on local atomic and pairwise information. For the DAG model, the
resulting graph was further processed using the DAGTransformer to transform it to the model’s input
requirements. For the GAT, GCN, and Attentive FP models, we used the more flexible
MolGraphConvFeaturizer, which constructs graph objects with customizable node and edge features.
These featurizers prepare the graph inputs for the graph neural network models enabling them to learn
representations that capture both local and global structural information relevant to the chemical
property that will be predicted.

For hyperparameter tuning, model training and performance monitoring, we applied a consistent
procedure across all five models. The dataset was randomly split into training (train), validation (valid)
and test (test) sets using the conventional 0.8:0.1:0.1 ratio. The computed values obtained following the
protocol of the composite GFN2-xTB/M06-2X method were used as reference data for the supervised
model training. In the following sections, we present the detailed procedures, evaluation methods and
performance results for example models, but the same approach was used for all other models.

First, the model's performance was evaluated across multiple random seeds while maintaining the same
data split ratio. Table S1 summarizes the results for the Atfentive FP model. Training was conducted
using a dropout rate of 0 and applying the early stopping as regularization strategy. On the test set, the
model achieved a mean absolute error (MAE) of 0.134 V. Using the t-distribution (with t = 2.776) to
calculate the 95% confidence interval, the MAE was estimated to lie within +£0.007 V of the mean,
yielding an interval of approximately (0.125, 0.142). This means we can be 95% confident that the true
test MAE falls within this range.



Table S1. Evaluation metrics results for the Attentive FP model using different random seeds for the dataset

splitting with the ratio of 0.8:0.1:0.1.

Nr. split seed epoch MA.E— MA.E— MAE_
seed train valid test
1 45 144 98 0.0638 0.1351 0.1263
2 35 135 97 0.0688 0.1335 0.139
3 78 245 101 0.0617 0.1275 0.1261
4 76 123 67 0.0926 0.1387 0.1356
5 74 625 94 0.0643 0.1254 0.1406
Mean 0.070+0.011 0.132+0.005  0.134+0.006

For the five models deployed in the PredPotS application a fixed random seed parameter was used
during training to ensure reproducibility and consistent dataset partitioning. The default
hyperparameters of the neural networks provided by DeepChem performed well across all models for
our purposes. The most relevant parameters are summarized in Table S2.

Table S2: Most important built-in parameter values for the selected DeepChem models.

model parameter value
number of GCN layers 2
number of atom features 30
Attentive FP number of bond features 11
max time steps for updating 2
graph representation
graph conv layers 64x64
dense layer size 128
GraphConv
number of atom features 75
batch size 100
graph conv layers 64x64
GCN number of atom features 30
predictor hidden features 128
graph conv layers 64x64
graph attention layers 8x8
GAT n attention heads 8
number of atom features 30
predictor hidden features 128
number of atom features 75
number of features for atom in
30
the graph
DAG
number of features of each 30
molecule
number of hidden layers 100

To avoid overtraining of the models, the series of dropout = 0, 0.1, 0.2 were tested for each model. For
this purpose the loss function computed in each epoch for the validation and training set were monitored
for trainings consisting of a minimum of 100 epochs and applying the early stopping regularization with
a patience of 2. The loss function considered is the squared difference between the true and predicted
values as implemented in DeepChem (L2Loss). To determine the optimal dropout parameter for each
model, we examined both parity plots and training/validation loss curves. For the Graph Conv model,
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results with dropout values of 0, 0.1, and 0.2 are illustrated in Figure S1. While the overall error functions
are quite similar across these settings (see Table S3), a notably larger difference between training and
validation MAE at the dropout of 0 and 0.1 suggests potential overfitting. In contrast, the model with a
dropout of 0.2 exhibits the most balanced performance, indicating it as the most suitable choice. The

same routine was used for all models, the final dropout values are listed in Table S4.
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Figure S1: Parity plots for the computed and predicted values (upper) and loss functions for the training and
validation sets (lower) for different dropout values: 0.0, 0.1 and 0.2 by using Graph Conv model. The computed
and predicted reduction potential values are in V.

Table S3: Performance of ML trainings by using the Graph Conv model for dropouts 0.0, 0.1, 0.2.

Dropout | Set MAE RMSD R2
Train 0.0797 0.0999 0.9873
0.0 Valid 0.2419 0.323 0.8345
Test 0.2356 0.3053 0.851
Train 0.127 0.1593 0.9708
0.1 Valid 0.1871 0.25 0.9112
Test 0.19 0.2525 0.9041
Train 0.1643 0.2067 0.9524
0.2 Valid 0.2066 0.2699 0.9034
Test 0.204 0.2693 0.8977




Table S4: Dropout parameters used for training the models.

Model Dropout
Attentive FP 0.1
GraphConv 0.2

GCN 0.1
GAT 0
DAG 0.2

Training machine learning models is inherently stochastic and can exhibit considerable noise, making it
important to carefully determine an appropriate stopping point. Since the validation error curves may
present several local minima, we extended training to 800 epochs to observe the overall trend in model
performance and estimate the minimal necessary training epochs.

S3. Training and evaluation of DeepChem models

Herein, we present a detailed analysis of the training strategy applied to the Attentive FP model. This
includes the investigation of early stopping behavior, and model performance across different training
durations. To prevent premature termination due to short-term fluctuations in validation loss, we
introduced a parameter specifying the minimum number of epochs (min_epochs). This ensures that
training proceeds for at least this minimum number of epochs before early stopping is considered. After
this threshold is passed, early stopping with a patience of 2 is applied, meaning training stops if no
improvement in validation loss is observed for two consecutive epochs. In all cases, the model is restored
to the best-performing epoch (best_epoch) based on validation loss. This strategy allows flexibility in
total training duration, which can extend up to a higher maximum epoch limit if early stopping
conditions are not met.

To analyse the model performance over time, we changed the minimum epoch parameter with a step of
100, and evaluated the corresponding error metrics: training and test MAE, training and validation loss
at each setting and the overall rolling mean (using a window size of 10) for these functions. This
approach allowed us to assess the impact of training duration and early stopping dynamics on model
generalization as shown in Figure S2.
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Figure S2: Performance of the model Attentive FP recorded for 800 epochs. Left: MAE and rolling mean of MAE
for the train and test sets. Right: Loss function and rolling mean for the train and valid sets.



The details of the evaluation are listed in table S5 for the Attentive FP model. The ‘best epoch’ is the
epoch number corresponding to the trained model stopped by the early stopping regularization after the
respective minimal epochs was reached. It is apparent that after the minimal epochs value of 200 the
performance of the trained model doesn’t improve indicating that a choice of the minimal epoch leading
to the best trained model is between 100 and 200.

Table S5: Performance of model Attentive FP evaluated at every 100th epoch.

min loss loss MAE MAE MAE MAE — MAE
epochs best_epoch valid train  train  valid test t:'g:il ::sl:
100 95 0.0377 0.0178 0.0837 0.1373 0.1373 0.1008 0.1454
200 102 0.0376 0.0162 0.0789 0.1351 0.1356 0.0926 0.1425
300 102 0.0376 0.0162 0.0789 0.1351 0.1356 0.0926 0.1425
400 102 0.0376 0.0162 0.0789 0.1351 0.1356 0.0926 0.1425
500 464 0.0375 0.0023 0.0232 0.1368 0.1345 0.0289 0.1365
600 580 0.0368 0.0019 0.0224 0.1345 0.1353 0.0255 0.1358
700 580 0.0368 0.0019 0.0224 0.1345 0.1353 0.0255 0.1358

The model weights corresponding to the best epoch determined by the early stopping criterion, were
saved and used as the final trained model. In Table S6 we provide a summary of the training parameters
for each model.

Table S6: Training parameters used in various deep learning methods.?

Model seed Dropout min_epoch best_epoch
Attentive FP 283 0.1 200 81
GraphConv 768 0.2 250 263

GCN 366 0.1 350 336
GAT 483 0 400 314
DAG 637 0.2 100 86

2 Notation: Minimum epoch numbers (min_epoch), the epoch number of the best model (best_epoch) according to
the early stopping with a patience of 2, and the random seed used for the trainings (seed). For all models the
random seed=42 was used for the dataset split into training/validation/test sets.

S4. The performance of DeepChem models

The parity plot for the computed (via the protocol) and predicted values of the three sets (train, valid,
test), the loss functions for train and valid and the MAE for the test set are shown in Figure S3.
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Figure S3. Performance plots for the models used in the PredPotS application: Attentive FP, GraphConv, GCN,

GAT, and DAG models.
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S5. Analysis of outliers

Despite the satisfying correlation between the predicted and computed reduction potentials, the parity
plots display a number of outliers (see Figure S3). To understand the origin of these exceptional
discrepancies, we analyzed the structures of these compounds (both original and reduced forms)
obtained by the applied GFN2-xTB/M06-2X computational protocol, and compared them to those
provided by a more accurate approach, namely by full DFT calculations. In this latter approach, the
geometries of both original and reduced forms of molecules were optimized at MO06-
2X/6-31+G(d,p)/SMD(water) level (with initial geometries from the GFN2-xTB/M06-2X protocol), and
the 1le~ standard reduction potentials were obtained from Gibbs free energies computed at the same DFT
level. The present analysis was carried out for compounds identified as outliers of predictions using the
Attentive FP model, but we expect similar conclusions for the other deep learning models as well. The
molecules from the validation and test datasets, for which the error of Attentive FP predictions of
reduction potentials is larger than 0.6 V are shown in Figures S4 and S5, and the predicted/computed
data are compiled in Table S7.
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Figure S4: Molecules from the validation set of the RP-ChEMBL database for which the Attentive FP model gives
exceptionally erroneous reduction potential predictions (discrepancy with respect to values computed with the
GFN2-xTB/MO06-2X protocol is larger than 0.6 V).
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Figure S5: Molecules from the test set of the RP-ChEMBL database for which the Attentive FP model gives
exceptionally erroneous reduction potential predictions (discrepancy with respect to values computed with the
GFN2-xTB/M06-2X protocol is larger than 0.6 V).

Our structural analysis indicated that some of the exceptional discrepancies between the predicted and
computed reduction potentials clearly originate from the inaccurate structures obtained with the GFN2-
XTB method, as evidenced by large differences between the GFN2-xTB/M06-2X and full DFT results
(E2 data in Table S7). The structural artefacts include bond weakenings, partial bond formations
between substituents, amplified inaccuracies for particular structural motives (e.g. amide, N=N bonds,
C=N bonds, hydrogen bonds). In two cases, we found that the conformational search of the GFN2-
XTB/M06-2X protocol (crest utility) did not find the most stable forms of the molecules. In all other
cases, where the E?2 differences are insignificant, the large E} deviations are likely related to the deep
limited capacity of deep learning models to generalize across diverse molecular structures. This also
depends on the sensitivity of the methods to the unique properties of certain molecules.



the Attentive FP model.?

Table S7: Computed and predicted reduction potentials of molecules from the validation and test set of the RP-ChEMBL database giving large errors in the predictions with

ChEMBL code | CHG SMILES set  gPTt pPred [l EPFT  E?Z Origin of error
CHEMBL1159735 0 [P@](=0)(SCC(=0)0)([C@@H](N)C)O valid  -246 -179  0.66 -1.95 051 xTB
CHEMBL1741566 0 OC(CN=[N+]=[N-])CN=[N+]=[N-] valid  -1.99 -099  0.99 -1.49 050 XTB
CHEMBL2131547 1 [P+](CO)(CO)(CO)CO valid  -208 -307 -099 -210 -0.02 ML + xTB
CHEMBL314727 0  [N+](=0)([O-])CC[C@@H]IN=C(N)CCOC1  valid -0.17 -124 -1.07 -095 -0.78 xTB
CHEMBL3186090 0 N(CC#N)CC#N valid -3.70 -3.04 0.67 -3.68 0.02 XTB
CHEMBL331588 0 clc(o[n-]c1=0)C1=CC[NH2+]CC1 valid -2.26  -2.96 -0.70 -2.34 -0.07 ML
CHEMBL584139 0 clenc2c(cl)Cele(C2)[nH]n[n+]1[O0-] valid  -2.76  -2.13  0.63 -253  0.23 XTB + ML
CHEMBL594030 0 clcec2c(cl)cle(n(c2)C)ncel valid  -1.59 -227 -068  -165 -0.06 ML

CHEMBL86457 0 [N+](=[N-])=Nclccc(NC(=S)N)ccl valid  -201 -1.38  0.64 -1.11 0.90 xTB
CHEMBL 144825 0 c1(nc(c(nn1)C)C)clnceecl test -1.75 -1.10  0.65 -1.72  0.03 ML
CHEMBL1457102 0 Fclece([C@@H]2NC(=0)NC2=0)ccl test -3.39 252 0.87 -2.75 0.63 XTB
CHEMBL1585418 0 O=C(N(CCC#N)C)/C=C/OoCC test -3.11 245 0.66 -2.40 0.71 XTB
CHEMBL1594149 1 oln[n+](N2CCOCC2)cclIN test -0.69 -1.50 -0.81 -0.78 -0.09 ML
CHEMBL2008736 1 [P+]1(CCCCL)(CC)CC test -2.87 -351 -0.64 -2.79 0.08 ML

CHEMBL21696 0 n1(c(nnc1)N)NCC(=0)O test 257 -318 060 -248  0.09 ML
CHEMBL2251586 0 c1(ccccclOC(=0)NC)C(C)C test -401 -3.39 0.62 -3.08 0.93 XTB
CHEMBL2298299 0 cleee(ccl)[C@]1(OCC(=0)NN1)C test -3.69 292 077 -2.89  0.80 XTB
CHEMBL3251149 0 c1(nc(c([nH]1)C(=0)N)/N=N/N(C)C)C test 132 =202 070  -141  -0.09 crest
CHEMBL3303529 0 O=C(/C(=N/[0-])/C[NH+]1CCCCC1)C test 141 -2.04 064  -141  -0.01 ML
CHEMBL3635077 0 nlc(nnc(nl)CCCF)C test -0.59 0.08 0.68 -0.79 -0.20 ML
CHEMBL4160836 0 c1(n(nnn1)C(=0)O)Nnlcnncl test -1.66  -2.47 -0.80 -1.30 0.37 crest
CHEMBL4536477 0 CN1c2ccccc2NS1(=0)=0 test -1.15 -1.76  -0.61 -0.48 0.67 XTB

*Notation: EP™F, EP™? and EPFT refer to 1e- standard reduction potentials obtained via the GFN2-xTB/MO06-2X computational protocol, via predictions of the Attentive FP

model, and via full DFT calculations, respectively; EX = EF"% - EP™°": E2 = EDFT . EP™°! The Jast column of the table specifies the origin of the error: XTB — structural
uncertainty inherited from the semiempirical GFN2-xTB method, ML — uncertainty of machine learning training, crest — uncertainty from crest conformational analysis.
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To further examine the uncertainty level of the GFN2-xTB/M06-2X protocol, we carried out additional
test calculations for a set of compounds from the RP-ChEMBL database. We selected 50 compounds
from the database randomly, but also ensuring that the reduction potential of these compounds covers
the entire potential range of RP-ChEMBL compounds. We then carried out geometry optimizations for
the original and reduced forms at the M06-2X/6-31+G(d,p)/SMD(water) level of DFT and computed
the le~ standard reduction potentials at the same DFT level. The results are compiled in Table S8, which
includes the ChEMBL and SMILES codes of the selected compounds and all data relevant to the test
calculations.

The parity plot of mean predicted versus the GFN2-xTB/MO06-2X potentials shows an excellent
correlation for the molecules of this test set (R = 0.99, MAE = 0.13 V, see Figure S6). The results of
full DFT calculations reveal that the GFN2-xTB/MO06-2X protocol gives quite accurate data for the
majority of the molecules, and there are only a few exceptions in the highly negative potential region as
illustrated in Figure S7. Larger discrepancies (>0.4 V) are obtained only for four compounds, which
include structural units that appear problematic for the GFN2-xTB method. Inaccuracies associated with
the amide and the C=N units have already been mentioned in the previous section, but the structural
analysis indicates that the reduced form of CHEMBL1631455 (i.e. the pyramidality of the carbonyl
group) is not accurately described either by the GFN2-xTB method.

The present analysis provides further support for the efficiency of the composite GFN2-xTB/M06-2X
protocol in the calculation or redox potentials, but it also highlights its limitations.
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Table S8: Computed and predicted reduction potentials of molecules selected from the RP-ChEMBL database for test calculations.?

ChEMBL code | CHG SMILES EPred  gPTot  EDIT EProt-bET
CHEMBL1999493 0 0=C(N[C@H](CNC(=O)N)C)N 379  -423  -3.75 -0.47
CHEMBL3558608 1 C1[C@H](CC=C1)C[N+](C)(C)C 377 420  -381 -0.39
CHEMBL1191543 0 C(=0)([C@@H]1C2(C[NH2+]CC1)CCCCC2)[0-] 375 -414  -3.88 -0.26
CHEMBL431307 0 C1(=0)N([C@@H](Cc2n(cnc2)C)CO1)C -344  -393  -3.48 -0.45
CHEMBL1978310 0 P(=0)(C([C@H](C(C)C)C)(C)C)(C)C -379  -383  -3.65 -0.18
CHEMBL1741675 0 N(CC(=C)C)(CC(=C)C)CC#N -353  -3.73  -2.88 -0.85
CHEMBL1489129 0 N12C(=NCCC1)CCCCC2 -357  -3.63  -3.67 0.05
CHEMBL1621372 0 n1(nc(c(cIN)C)CC)C -361  -353  -3.56 0.04
CHEMBL4517591 0 N[C@H]1CCn2ccncl2 -354  -342  -347 0.05
CHEMBL3899142 0 NC/C=C/CN 339  -3.32 -3.36 0.04
CHEMBL343650 0 C(=0)([C@@H](N)[C@@H](CC)C)N(CCC)C 315  -3.22  -3.18 -0.04
CHEMBL2109969 0 C(C#C[C@H]1CCCN1)N1CCCCl 331 -312  -3.10 -0.02
CHEMBL1631455 0 C(SCCC(=0)C)COo -266  -3.02  -2.52 -0.50
CHEMBL4549622 0 0=C1CNc2ccec(F)c2NL 291 292 271 -0.20
CHEMBL1432925 0 S=C(NC(C)(C)C)NC(C)(C)C -3.02  -282  -2.84 0.02
CHEMBL2111859 0 [C@@]123[C@H](c4c(C1)cencd)N(CC2)CC3 -266 272 -2.76 0.04
CHEMBL125783 0 c1(c2cee(ce2)0)c(F)ceeel 251 -2.61  -2.62 0.00
CHEMBL1732601 0 [nH]1ncc2c1ncnc2NCC -258  -251  -2.50 -0.02

CHEMBL92537 0 c1(nc(no1)N)[C@H]LIN(CCN(C1)C)C -263 241  -2.38 -0.04
CHEMBL1999762 0 O=c1n2¢([nH]c3c1CCCC3)nce2 251 231 -2.32 0.01

CHEMBL12849 0 c12¢(cc(s2)N)[nH]¢e(=0)[nH]c1=0 225 221 -2.14 -0.07
CHEMBL1213612 0 0=C(O)clcescINC(=0)C 213 -211  -2.05 -0.05
CHEMBL1313117 0 0lc2c(c(N)c(N)c1=0)ccee2 201 -201  -2.02 0.02
CHEMBL195075 0 N(=C\clcceeel)/Ocleccecl 191 -191  -1.95 0.04
CHEMBL 1896392 0 0=C(N1[C@H](C1)C)clc(ccecl)C 211 -1.80  -1.97 0.17
CHEMBL2132927 0 0=C1C(=C(c2cceec2)CCL)C -164  -1.70  -1.67 -0.04
CHEMBL4583850 0 cle(cee(c1)/C=C(/C(=0)0)\0)ClI -160  -1.60  -1.63 0.03
CHEMBL3185350 0 N#Cclc(ccecl)CHN -153  -1.50  -1.50 0.00
CHEMBL1977616 0 0=C1C(=0)C=C10 119 -140  -1.28 -0.12
CHEMBL1990202 0 S1(=0)(=0)N(C(=0)[C@H](N1)C)C 143 -1.30  -1.20 -0.10
CHEMBL 1548859 0 s1¢(C(=0)c2nce[nH]2)cecl 119 -1.20  -1.18 -0.01
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*Notation: EX™%, EP"°" and EPFT refer to 1e~ standard reduction potentials obtained via predictions (mean values with Z-score filtering switched on), the GFN2-xTB/MO06-
2X computational protocol, and via full DFT calculations, respectively;
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Figure S6: Parity plot of predicted 1e™ reduction potentials (mean predictions) vs. the values computed with the
GFN2-xTB/MO06-2X protocol for a set molecules selected from the RP-ChEMBL database (see Table S8).
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Figure S7: Parity plot of 1e~ reduction potentials computed with the full DFT and GFN2-xTB/M06-2X methods
for a set molecules selected from the RP-ChEMBL database (see Table S8). Outlier data with discrepancies >0.4
V are highlighted in orange.

S6. Distribution of signed errors

The distribution of signed errors for predictions using the five deep learning models are reported in

Figure S8.
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Figure S8: Distribution of signed errors for predictions using the models: Attentive FP, Graph Conv, GCN, GAT,
and DAG with bars colored by data split (train, valid and test). Overlaid kerned density estimate curves provide a
smoothed view of the error distribution for each set. Percentage value indicates the fraction of test molecules with
errors within the -0.25 to 0.25 V range.

S7. The PredPotS web tool

The online application was implemented by using the dash (version 2.17.0) and plotly (version 5.22.0)
python program packages. The trained models are loaded in the background and used to make
predictions for the SMILES code(s) uploaded by the user. The program is hosted on a local webserver
at http://predpots.ttk.hu/.

Herein we provide a detailed description of the usage of PredPotS according to the tabs displayed on
the main page.

Predict

The predicted one-electron reduction potentials for molecules of interest can be calculated directly from
the main page of the application. Multiple input options are available: users can paste a single SMILES
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http://predpots.ttk.hu/

code or a semicolon-separated list of SMILES codes into the first input box. Alternatively, a CSV file
containing a list of SMILES codes can be uploaded using the second input box. If needed, SMILES
codes can be generated via the link provided in the third box of the application, where users can draw
the molecule and obtain the corresponding SMILES code as input for the prediction (Figure S9).

PredPotS - Predicting Potentials from SMILES codes

Predict  Similarity Performance  Help Downloads

I N =N J |

Prediction of one electron reduction potential in aqueous environment

Enter a SMILES or multiple Upload here a csv file with Convert structures to
SMILES (separated by SMILES: SMILES codes online

semicolon): here.

For the format of csv file
Submit read the help.

Filter: ©On @ Off

Figure S9. The main page of PredPotS.

Upon submitting an input, the web application displays the following information in a table:
e The smiles of the compound
e The mean prediction of the reduction potential
e The associated prediction confidence

e The individual predictions from each of the models: Attentive FP, GraphConv, GCN, GAT and
DAG

The mean prediction is calculated using a default Z-score filter set to On, which corresponds to a Z-
score threshold of 1.5. This means that only predictions from models whose values lie within 1.5
standard deviations (+1.5 V) of the mean of all five predicted potentials are included in the final averaged
value. This filtering helps to reduce the impact of potential outliers among the model outputs, however
it can be switched Off by the user.

The prediction confidence is derived from the 95% confidence interval (Cl) around the filtered
predictions, calculated using the t-distribution. To make this information more user-friendly, the width
of the CI is mapped onto a star scale ranging from 1-5, where a narrower ClI (i.e., higher agreement
between models) results in a higher confidence rating. The ratings are illustrated in Table S9. In addition
to the star rating, up to four types of warnings may appear in the prediction confidence column to
highlight potential issues with the input molecule which might lead to poor prediction performances:

o wl indicates that the molecule contains fewer than six heavy atoms
o w2 flags molecules that are not a single covalently bonded entity

e w3 denotes molecules containing four or more aromatic rings

o w4 denotes molecules with molecular weight M > 300 g/mol
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Table S9. The relation between the width of the confidence interval and the star scale ratings.

Cl values Rating®

Cl<0.2 Kok kkk
0.2<Cl<03 *kkk
0.3<Cl<04 *kKk
04<Cl<0.6 *K

Cl>0.6 *
2 Additionally, if the number of outlier predictions is equal or greater than two the rating automatically drops to x.

The table displayed by PredPotS can be exported from the application to a comma-separated values
CSV type of file for further analysis and documentation. By using the radio button in the first column
of the table the Lewis structure of the molecule is displayed below the table. An illustrated example is
shown in Figure S10.

Filter: ©On @ Off

Delete table

smiles Mean_PredictiqPred_Confiden{ AttentiveFP GraphConv

Figure S10. The table for the predicted reduction potential of the molecule represented by the SMILES code:
O=C(0O)clcce(-c2cecc(F)c2)ccl and the Lewis structure displayed.

Similarity

The Similarity tab displays the most similar molecule(s) in the underlying computed Rp-ChEMBL
database to the inserted or uploaded SMILES. The result is displayed in a table that contains the SMILES
codes of the entered and the most similar molecule, the potential from the RP-ChEMBL database, and
the similarity score. The latter is calculated by the RDKit’ (version 2022.03.5) program package,
according to the Tanimoto coefficient formula:

QNS
QI+ 1S =1Q nS|

TQ,9) =

where Q and S are the unfolded fingerprint vectors computed by the RDKit topological algorithm for
the query and the most similar molecule from the dataset, respectively. For the visualization of the
structures use the radio button from the first column (Figure S11).
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Entered_molecule
Export

Calculated_potental Similarity_score

~O=0-

Most_similar_molecule

O

Figure S11. Similarity search in the RP-ChEMBL dataset for the submitted SMILES codes:
C[n+]2ccc(C(=0)cleccecl)ec2 (11); CCOcle(C)[n+](C)ee(C)eclC(=0)c2cceec? (27);
C[n+]2cce(clee[n+](C)ecl)ec2 (32%). The Lewis structure of 3%* and the most similar molecule is shown at right.

Performance

The accuracy and error scores for the different models used for predicting the reduction potential can be
found under the Performance Tab. The performance of the different models can be visualized by using
the dropdown menu in the upper left corner. The parity plot of the computed against the predicted
potential values of the trained models is shown in an interactive manner. Hovering with the mouse over
the points of the diagram will show the detailed data for the corresponding molecule and clicking on the
selected point reveals the structure of the molecule (see Figure S12).

Select model to view its performance (metrics in table)
Data and structure are displayed by pointing and clicking at a point in the diagram

e [ e
v | o | o | oss |
= I e

9

True vals

Figure S12. The performance of Attentive FP model is displayed.
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Help

A short presentation, citation and funding of PredPotS and the usage of the web-tool with point-by-
point guidance is described in the Help menu.

Dataset

A curated list of datasets used and referenced in this web application and the related paper (ref) is
available for download. These datasets can be accessed directly from the Datasets section of the
interface. The available datasets include:

¢ RP-ChEMBL dataset — ids, SMILES, computed and predicted potentials and distribution into
train-valid-test sets

o RP-ChEMBL-ext extended dataset — ids, SMILES and computed potentials
¢ Wardman experimental dataset — ids, SMILES and experimental potentials

Each file is provided in CSV format and are freely available.

S8. Wardman compilation

Parity plots of predicted 1le~ reduction potentials (mean values an predictions using the five deep learning
methods) vs. the experimental data from the Wardman compilation (M < 200 set) are shown in Figure
S13.
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Figure S13. Parity plots of predicted vs. experimental 1e- reduction potentials for the M < 200 set of Wardman
compilation. Top-left plot corresponds to mean predictions, the others to those from particular model predictions

as indicated on the y axis.
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S9. Application to larger molecules

To evaluate the applicability of the PredPotS to larger molecules, we downloaded about 300k structures
from the ChEMBL library with molecular weight in the 200 < M < 300 range and used the PredPotS
application to predict their 1e- reduction potentials. From this set a subset of 2000 molecules was
selected such that the distribution of the mean predicted potentials matched the shape of the distribution
observed for the RP-ChEMBL dataset. Subsequently, the 1le~ reduction potentials of these selected
molecules were computed using the GFN2-xTB/M06-2X protocol. Following data filtering, the
resulting RP-ChEMBL-ext dataset comprises 1719 entries, each including the ChEMBL ID of the
molecule, SMILES code, charge and 1e~ standard reduction potential computed with the protocol.

Parity plots of predicted 1e~ reduction potentials using the different deep learning methods vs. the values
computed with the GFN2-xTB/M06-2X protocol for the RP-ChEMBL-ext dataset are shown in Figure
S14.
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Figure S14. Parity plots of predicted 1le~ reduction potentials vs. the values computed with the GFN2-xTB/MO06-
2X protocol for a set molecules from the RP-ChEMBL-ext (molecular weight 200 < M < 300 g/mol). Top-left plot
corresponds to mean predictions, the others to those from particular model predictions as indicated on the y axis.
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