Supplementary file
Table S1: MR scanner systems and structural MRI sequence parameters used at the respective PRONIA sites. 
	PRONIA Site
	Model
	Field Strength
	Coil Channels
	Flip Angle
	TR [ms]
	TE [ms]
	Voxel Size [mm]
	FOV
	Slice Number

	Munich
	Philips Ingenia 
	3T
	32
	8
	9.5
	5.5
	0.97 x 0.97 x 1.0
	250 x 250
	190

	Milan Niguarda
	Philips Achieva Intera 
	1.5T
	8
	12
	Shortest (8.1)
	Shortest (3.7)
	0.93 x 0.93 x 1.0
	240 x 240
	170

	Basel
	SIEMENS Verio
	3T
	12
	8
	2000
	3.4
	1.0 x 1.0 x 1.0 
	256 x 256
	176

	Cologne
	Philips Achieva
	3T
	8
	8
	9.5
	5.5
	0.97 x 0.97 x 1.0
	250 x 250
	190

	Birmingham
	Philips Achieva
	3T
	32
	8
	8.4
	3.8
	1.0 x 1.0 x 1.0
	288 x 288
	175

	Turku
	Philips Ingenuity
	3T
	32
	7
	8.1
	3.7
	1.0 x 1.0 x 1.0
	256 x 256
	176

	Udine
	Philips Achieva
	3T
	8
	12
	Shortest (8.1)
	Shortest (3.7)
	0.93 x 0.93 x 1.0
	240 x 240
	170


All participants underwent structural MRI (1.5T and 3T)1,2. For the current analysis, we used T1-weighted sMRI images of ROP, CHR-P and ROD participants.  In keeping with real-world scanner heterogeneity and as part of the larger PRONIA goals, the PRONIA sites were required to (1) acquire isotropic or nearly isotropic voxel sizes of at least 1 mm resolution, (2) set the Field of View (FOV) parameters accordingly to ensure full 3D coverage of the brain, including all parts of the cerebellum, and (3) define the relaxation time (TR) and echo time (TE), as well as other ionizing radiation parameters. At every site all images were equally distributed across field strength, visually inspected, automatically defaced and anonymized using an in-house FreeSurfer-based script before the data was centralized. Supplementary Table S1 lists the scanner and parameter details of the structural MR sequences used to examine the PRONIA sample participants. See Supplementary section 1.1 and previous PRONIA report1 for full MRI harmonization and data acquisition parameters. 
In brief, both inpatient and outpatient services were used to recruit individuals. A uniform protocol for recruitment and assessment was followed. Following the index determination, the observational research protocol called for re-exams every three months over an overall follow-up of 9 months. To guarantee that the Positive and Negative scale for Schizophrenia (PANSS scores) and Global Functioning (GAF) measures were reliable across research sites, regular interrater reliability tests were conducted (further information in the Supplement file.). The general inclusion criteria were as follows: Ages 15 to 40, ability to give informed consent, and language proficiency necessary for participation are the three requirements. General exclusion criteria included any medical indication against MRI, current or past head trauma with loss of consciousness (>5 minutes), current or past known neurological or somatic disorders potentially affecting the structure or functioning of the brain, and current or past alcohol dependence and polysubstance dependence within the last 6 months.
The prerequisites for ROP participants were a first episode of affective or nonaffective psychosis according to the Structured Clinical Interview for DSM-IV-TR (SCID)3 fulfilled within past 3 months and  an onset not more than 24 months ago. The subsequent specific ROP exclusion criteria included the onset of psychosis more than 24 months prior and the use of antipsychotics for more than 90 days (cumulatively in the previous 24 months) with a daily dose rate at or above the German Society for Psychiatry, Psychotherapy, and Nervous Diseases (DGPPN) S3 guidelines' "First-Episode Psychosis" range minimum dosage, which is equivalent to 5 mg of olanzapine. 
It was necessary for patients with ROD to satisfy a major depression criteria set out by SCID, which they had to have done within the preceding three months. Specific ROD exclusion criteria included the following: the current episode's length of more than 24 months; the cumulative use of antipsychotic medication for more than 30 days; any intake of antipsychotic drugs within the past 3 months before psychopathological baseline assessments at or above the minimum dosage threshold; and any DSM-IV-TR major depressive episode that preceded the current or recent episode. Patients meeting CHR-P criteria according to the SIPS and/or the basic symptom criterion Cognitive Disturbances were also excluded from the ROD group. Clinical raters received training in the assessment of clinical high-risk criteria for psychosis (CHR-P), including both Ultra High Risk and COGDIS symptom assessment instruments4 through workshops provided by author FSL, the developer of the Schizophrenia Proneness Instrument (SPI). CHR-P criteria of each study candidate were assessed before study inclusion in regular case conferences led by FSL and re-evaluated during the follow-up period if a transition to psychosis was suspected. Individuals meet CHR criteria if they exhibit one or more of the following symptoms: (1) A schizotypal personality disorder or a first degree relative with psychosis plus a recent decline in function, (2) ‘Attenuated’ positive psychotic symptoms, like ideas of reference, odd beliefs, magical thinking, or unusual perceptual experiences, and/or (3) A brief psychotic episode of less than one week duration that resolves without antipsychotic medication. 
SPI-A variables were coded in the following way: [0 (absent)=0), 1(rare)=1, 2 (mild)=2, 3 (moderate)=3, 4 (moderately severe)=4, 5 (severe)=5, 6 (extreme)=6, 7(trait)=0, 8 (present but severity unknown)=1, 9(questionable)=0], to determine the severity of each VisDys based on participants’ reports. As previously reported 5 a sum score was calculated for each participant individually over the 14 SPI-A elements. For additional analyses, participants were then divided into two groups, VisDys+ (sum score>0) and VisDys–(sum score=0), respectively, based on this sum score Raters had been trained in the SPI-A by co-author FSL. 
We calculated five subscores of PANSS (positive, negative, disorganized, excitement, distress) based on the factor analysis by Wallwork et al.6.  Several factor-analytic studies have suggested that a five-factor model better captures PANSS structure in schizophrenia samples6. For the Global Assessment of Functioning (GAF), we used ratings based exclusively on level of functioning GAF-d; symptoms were not considered. SANS factor scores provide a more detailed and differentiated picture of negative symptoms, some of which are not included in the negative factor PANSS, while others may have varying courses. In Figure S1.3, the mean and standard deviation of scores of ROP, CHR-P and ROD from the training sample (A) and the independent validation sample (B) are presented. We compared between the same patient groups with and without VisDys using independent Mann-Whitney U-tests (see Table S1.3). 

Table S2: Intra-class correlation analysis of the GAF:S / GAF:R scores generated by the PRONIA raters on the test cases.
	 
	Intra-class correlation analysis of the GAF:S / GAF:R scores generated by the PRONIA raters on the test cases. PRE-TRAINING ICCs 
For all Sites 
(95% CI)
	POST-TRAINING ICCs 
For all sites 
(95% CI) 

	Social & Role
	.836 
(.751 - .910)
	.871 
(.801 - .931) 



Andrea Auther (AA), one of the authors of the GAF and PANSS scales, tested the PRONIA consortium independently using four written transcripts of interviews conducted at Zucker Hillside Hospital. She provided repeated training to PRONIA investigators. To assess the between-rater agreement on the target measures, thirty-six PRONIA raters conducted an Intra Class Correlation (ICC) analysis. Raters were required to produce six functional scores for each reliability test, including the PANSS scores and the social and role functioning domain (GAF:S/GAF:R) scores—the current, lowest, and highest in the previous year. Supplemental Table S2 displays the GAF scores' ICC analysis results. The following criteria for interpreting kappa or ICC inter-rater agreement measures are provided by Cicchetti 3: Less than 0.40 denotes poor quality, between 0.40 and 0.59 fair, between 0.60 and 0.74 good, and between 0.75 and 1.00 excellent. Each participant's psychopathology was evaluated by qualified clinicians, and interrater reliability tests were conducted on a regular basis to calibrate PANSS [(ICC)=0.79] across research sites. There is no available interrater reliability test for SANS.
1.1. MRI processing
The PRONIA consortium aimed to generate an MRI database that would represent the MR scanner sequence heterogeneity encountered in clinical real-world. Therefore, the project included a calibration study using the sMRI images of six healthy travelling volunteers who were scanned at all sites with the same parameters2. Processing steps applied to the structural images, consisting of (1) the 1st denoising step based on Spatially Adaptive Non-Local Means (SANLM) filtering 7;(2) an Adaptive Maximum A Posteriori (AMAP) segmentation technique, which models local variations of intensity distributions as slowly varying spatial functions and thus achieves a homogeneous segmentation across cortical and subcortical structures8; (3) the 2nd denoising step using Markov Random Field approach which incorporates spatial prior information of adjacent voxels into the segmentation estimation generated by AMAP8; (4) a Local Adaptive Segmentation (LAS) step, which adjusts the images for white matter (WM) inhomogeneities and varying gray matter (GM) intensities caused by the differing iron content in e.g. cortical and subcortical structures. The LAS step is carried out before the final AMAP segmentation; (5) a partial volume segmentation algorithm that is capable of modeling tissues with intensities between GM and WM, as well as GM and cerebrospinal fluid (CSF) and is applied to the AMAP-generated tissue segments; (6) a high-dimensional DARTEL registration of the image to a MNI-template generated from the MRI data of 555 healthy controls in the IXI database (http://www.braindevelopment.org). The registered GM images were multiplied with the Jacobian determinants obtained during registration to produce GM volume (GMV) maps. Images were smoothed with 10 mm before entering the subsequent analysis steps. (8)The Quality Assurance framework of CAT12 was used to check the quality of the GMV maps. The pre-processing steps were the same for all the PRONIA datasets and were executed on the Ludwig-Maximilian University Munich (LMU) server by Prof. Nikolaos Koutsouleris. Authors had access to the processed data, i.e., the preprocessed non-segmented brain MRI.

1.2. Histogram equalization
We used histogram equalization to adjust the contrast of a greyscale image. The method was applied in a different sample in9, which concluded in 16 bins. The original image has low contrast, with most pixel values in the middle of the intensity range. The histeq function in Matlab produces an output image with pixel values evenly distributed throughout the range and return a 1-by-256 vector that shows, for each possible input value, the resulting output value (see Figure S1a). The number of bins normalizes images and forces the reproducibility of the texture features in new samples 10. The brain sMRI used have similar resolution and noise levels, a common quantization method and the same number of grey levels in all quantized images was applied 11,12. In this study, we used the histeq function with a range of 2 to 256 bins (expresses the number of discrete grey levels), with a step of 2. The optimal number of the bins/bin-width (size) was selected in two stages. First, the images were inspected visually and subsequently selected images were fed into the deep learning pipeline. Very large or small numbers of bins resulted in losing the brain boundaries between GM, WM and CSF, while extremely noisy images returned. Finally, we exhaustively searched for the optimal number/width of bins by extracting the texture features across all images and feeding them one by one into the deep learning schema. The images with 16 bins returned the higher balanced accuracy. In Figure S1, we have plotted the transformation curve for histogram equalization, the initial intensities and the adjusted intensities and the difference in the intensity between the initial and the transformed image is presented. The texture feature maps were extracted from the transformed wp0* image (see Figure S2 for workflow). 









Figure S1.1: Number of MRIs in the discovery and independent validation samples. 
















Table S1.2: Descriptives of the SPI-A 14 items for the Validation sample
	
	
	Validation Sample

	SPI-A item
	Group
	Mean
	SD

	Oversensitivity to light/visual
objects

	
	ROP
	0.8328
	1.846
	
	

	
	
	CHR-P
	1.0109
	1.917
	
	

	
	
	ROD
	0.2862
	1.062
	
	

	Photopsia
	
	ROP
	0.4332
	1.283
	
	

	
	
	CHR-P
	0.3201
	1.038
	
	

	
	
	ROD
	0.0986
	0.576
	
	

	Micropsia/macropsia
	
	ROP
	0.1238
	0.670
	
	

	
	
	CHR-P
	0.1403
	0.754
	
	

	
	
	ROD
	0.0179
	0.198
	
	

	Near and tele-vision
	
	ROP
	0.2361
	1.005
	
	

	
	
	CHR-P
	0.2446
	0.960
	
	

	
	
	ROD
	0.0215
	0.223
	
	

	Metamorphopsia
	
	ROP
	0.1902
	0.927
	
	

	
	
	CHR-P
	0.0935
	        0.581
	
	

	
	
	ROD
	0
	0
	
	

	Changes colour vision
	
	ROP
	0.2778
	1.058
	
	

	
	
	CHR-P
	0.295
	1.104
	
	

	
	
	ROD
	0.0394
	0.435
	
	

	Changed perception of own face
	
	ROP
	0.2745
	1.019
	
	

	
	
	CHR-P
	0.3129
	1.064
	
	

	
	
	ROD
	0.0179
	0.158
	
	

	Pseudomovements optic stimuli
	
	ROP
	0.3039
	1.117
	
	

	
	
	CHR-P
	0.3610
	1.103
	
	

	
	
	ROD
	0.0323
	0.230
	
	

	Diplopia
	
	ROP
	0.2222
	0.966
	
	

	
	
	CHR-P
	0.1187
	0.677
	
	

	
	
	ROD
	0.0322
	0.383
	
	

	Estimation of distances/sizes
	
	ROP
	0.2680
	1.053
	
	

	
	
	CHR-P
	0.1877
	0.817
	
	

	
	
	ROD
	0.0394
	0.418
	
	

	Perception of straight lines/contours
	
	ROP
	0.2059
	1.011
	
	

	
	
	CHR-P
	0.1511
	0.735
	

	
	
	ROD
	0.0179
	0.299
	

	Maintenance of optic stimuli
	
	ROP
	0.2059
	0.913
	

	
	
	CHR-P
	0.2122
	0.912
	

	
	
	ROD
	0.0753
	0.528
	

	Tubular vision
	
	ROP
	0.2549
	1.108
	

	
	
	CHR-P
	0.1367
	0.708
	

	
	
	ROD
	0.0251
	0.274
	

	Captivation by visual details
	
	ROP
	0.448
	1.348
	

	
	
	CHR-P
	0.2986
	1.051
	

	
	
	ROD
	0.0681
	0.456
	

	


Table S1.3: Clinical and demographic characteristics (mean and standard deviation) for the training samples ROP and CHR-P (A), and external validation samples for ROP and ROD (B) and ROD (C) at T0.
A. [bookmark: OLE_LINK1][bookmark: OLE_LINK2]ROP and CHR-P training samples
	Group
	ROP-
	ROP+
	CHR-P-
	CHR-P+

	Number
	61
	67
	63
	71

	Age mean 
	25.6(5.72)
	25.5(5.41)
	23.9(4.94)
	23.3(4.82)

	Sex n (%) male
	38 (56.7%)
	37(43.5%)
	27 (45.7%)
	41(57.7%)
	

	VisDys Score
	-
	8.43(10.6)
	-
	7.29(6.58)
	

	GAF 
	45.8 (13.7)
	43.8(11.2)
	58.22 (14.71)
	53.87(12.47)
	

	PANSS_positive 
	21.3(7.25)
	21.8(6.55)
	12.53 (5.10)
	13.35(3.94)
	

	PANSS_negative 
	16.8(8.40)
	18.3(9.64)
	13.93 (7.42)
	14.33(7.22)
	

	PANSS_excitement 
	15.1(5.73)
	15.4(5.39)
	11.73 (4.16)
	11.75(3.71)
	

	PANSS_distress 
	19.9(7.61)
	21.6(7.17)
	17.08 (5.48)
	17.14(5.02)
	

	PANSS_disorganization 
	21.06(9.17)
	21.07(8.29)
	14.47 (5.04)
	14.72(4.19)
	

	SANS_Blunted Affect
	0.357 (0.83)
	0.727(1.39)
	0.59(0.91)
	0.63(0.89)
	

	SANS_Alogia
	0.780 (1.17)
	0.750(1.16)
	0.63(0.91)
	0.75(1.02)
	

	SANS_Avolition
	0.395 (1.10)
	0.688(1.31)
	0.44(0.73)
	0.71(0.96)
	

	SANS_Anhedonia
	2.52 (1.96)
	2.90(1.86)
	1.69 (1.85)
	2.25(1.75)
	

	SANS_Asociality
	0.750 (1.17)
	1.18(1.26)
	0.78 (0.90)
	0.98(1.03)
	

	BDI-II 
	18.7 (13.3)
	19.3(12.3)
	21.88 (12.77)
	25.72(14.08)
	


Note: ROD, recent onset depression; ROP, recent onset psychosis; CHR-P, clinical high risk; PANSS, Positive and Negative Symptom Scale; BDI-II, Beck Depression Inventory-II, SANS, GAF
a: Mann-Whitney U-tests showed statistically significant differences (p<0.05) between patients with and without VisDys






B. ROP and CHR-P independent validation samples
	Group
	ROP-
	ROP+
	CHR-P-
	CHR-P+

	Number
	27
	19
	56
	68

	Age 
	25.3(5.47)
	28.2(4.24)
	25.85(5.85)
	22.41(5.03)

	Sex n (%) male
	27 (100%)
	19 (100%)
	24 (42.9%)
	
	29(42.6%)
	

	VisDys Score
	-
	8.53(10.11)
	
	-
	7.54 (7.86)
	

	GAF 
	45.36 (14.99)
	41.05 (15.02)
	49.01 (10.63)
	
	46.82 (11.22)
	

	PANSS_positive 
	21.05 (7.03)
	22.32 (7.44)
	13.06a (4.62)
	
	15.94a (5.18)
	

	PANSS_negative 
	17.00 (9.90)
	15.26 (5.89)
	16.42 (7.51)
	
	18.86 (9.00)
	

	PANSS_excitement 
	15.14 (6.09)
	15.47 (4.49)
	12.74 (4.09)
	
	14.28 a (4.42)
	

	PANSS_distress 
	20.0 (6.68)
	19.63 (6.15)
	18.69 (6.86)
	
	20.59 (6.02)
	

	PANSS_disorganization 
	22.22 (9.21)
	19.53 (6.36)
	15.47 (5.55)
	
	17.54 a (6.37)
	

	SANS_Blunted Affect
	0.56 (1.33)
	0.20 (0.45)
	0.85 (1.08)
	
	1.24 (1.30)
	

	SANS_Alogia
	0.64 (1.01)
	0.78 (1.09)
	0.99 (1.23)
	
	1.08 (1.24)
	

	SANS_Avolition
	0.38 (1.09)
	0.30 (0.67)
	0.67 (0.96)
	
	0.73 (1.13)
	

	SANS_Anhedonia
	2.09 (1.82)
	2.42 (1.54)
	1.69 (1.85)
	
	2.75 a (1.72)
	

	SANS_Asociality
	0.64 (0.92)
	1.00 (1.00)
	1.15 (1.24)
	
	1.62 (1.23)
	

	BDI-II 
	11.74 (12.99)
	20.58 (14.93)
	21.21 (13.54)
	
	25.72 (14.27)
	


a: Mann-Whitney U-tests showed statistically significant differences (p<0.05) between patients with and without VisDys

C. ROD validation sample
	Group
	ROD-
	ROD+

	Number
	206
	50

	Age mean
	25.9 (6.18)
	25.41 (6.18)

	Sex n (%) male
	88 (42.7%)
	31 (62%)
	
	

	VisDys Score
	-
	4.02 (3.42)
	
	

	GAF
	54.66 (14.62)
	55.06 (14.56)
	

	PANSS_positive
	9.53 a (2.42)
	11.31 (3.31)

	PANSS_negative
	14.81 a (6.42)
	16.71 (6.48)

	PANSS_excitement
	11.55 (3.43)
	12.47 (4.31)

	PANSS_distress
	17.58 (5.58)
	18.25 (7.09)

	PANSS_disorganization
	12.93 (3.01)
	13.76 (4.24)

	SANS_Blunted Affect
	0.52 a (0.79)
	0.79 (0.87)

	SANS_Alogia
	0.52 a (0.79)
	0.86 (0.99)

	SANS_Avolition
	0.25 a (0.55)
	0.54 (0.75)
	

	SANS_Anhedonia
	2.26 (1.85)
	2.16 (1.91)
	

	SANS_Asociality
	1.27 (1.19)
	1.31 (1.25)
	

	BDI-II (SD)
	24.73 (14.85)
	27.42 (12.91)
	


a: Mann-Whitney U-tests showed statistically significant differences (p<0.05) between patients with and without VisDys

Figure S2: Representation of  a) the transformation curve for histogram equalization and b) the adjusted intensities using histogram equalization, c) the brain MRI in SPM12 for the initial MR image and b) transformed MR image using the histogram equalization. 
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Figure S3: Representation of the texture feature maps of energy for a) one ROP+ subject and b) one ROP-, of entropy for c) one CHR-P+ and d) one CHR-P- are presented. Dark colors correspond to lower values of the texture feature, and light colors to higher values of the texture feature. 
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a) Energy in single ROP+ subject 
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c) Entropy in single CHR-P+ subject
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b) Energy in single ROP- subject
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d) Entropy in single CHR-P- subject




1.3. Feature extraction and Classification method
[bookmark: _Hlk111541160]Meaningful comparison of texture feature results between different subjects is possible, if sMRI images of the brain with similar resolution and noise levels are used, a common quantization method and the same number of grey levels in all quantized images are defined11,13-15. We used voxel-by-voxel sliding 3D cube of 7x7x7 dimension as presented in previous papers9,16. Where the boundary of the cube touches non-zero brain grey-levels, the algorithm maps the value to the center of the cube. For this reason, a 7x7x7 Gaussian kernel was used to smooth the voxel’s relevance for better localization of the results. The GLCM matrix was normalized by dividing the individual values by the total sum of the values in the matrix. The normalization was performed for each GLCM extracted in each 3D cube independently. 
All the feature maps calculated from the 2D GLCM are a function of the probability of each GLCM entry and the difference of the grey levels, g1 and g217. We calculated texture feature maps only for cubes including non-zero values, as presented in Figure S3 in Supplementary file. Repeated nested cross-validation (rNCV) was used with 10 outer CV (CV2) permutations, 20 outer CV2 folds, 10 inner CV (CV1) permutations, and 20 inner CV1 folds.
The classifier implemented was a neural network-based classifier implemented in MATLAB (MathWorks Inc., Natick, Massachusetts, USA). The network used the hyperbolic tangent sigmoid transfer function and was batch-trained using the Levenberg-Marquardt training algorithm18. L2-regularization was applied to access possible types of uncertainty.
[bookmark: _Hlk89066432]We selected parameters after experimentation; 5 hidden layers (tested 2 to 7), each hidden layer consists of 200 nodes (tested 2 to 500) and 1,000 epochs. Feature selection (two-sample t-test) in the inner cycle was cross-validated by selecting a number of features appropriate to the dimension of the database, namely, the top 130 ranked features that best discriminated the 2 classes19 to reduce dimensionality in the data. The number of features was chosen such as to balance the number of the features and the number of the subjects (curse of dimensionality). 


Figure S4: Preprocessing and feature extraction steps
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Figure S5: Classification schema of the 20x20 repeated 10 times nested cross-validation and explainable artificial intelligence methodClassification framework
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Table S5.1: Mean classification results for ROP- vs. ROP+ using the energy texture features.
	
	Balanced Accuracy (%)
	Sensitivity (%)
	Specificity (%)

	ROP-training T0 
	84.58
	85.00
	84.17

	ROP-external validation T0
	70.51
	69.69
	71.32

	Validation with ROD group
	69.36
	67.73
	70.99

	Validation with CHR-P group
	53.66
	43.54
	63.82



Table S5.2: Mean classification results for CHR-P- vs. CHR-P+ using the entropy texture features.
	
	Balanced Accuracy (%)
	Sensitivity (%)
	Specificity (%)

	CHR-P training T0
	77.92
	75.17
	80.67

	CHR-P independent validation T0
	64.08
	53.43
	74.72

	Validation with ROD group
	66.56
	62.32
	70.86

	Validation with ROP group
	53.45
	32.43
	74.46



Table S5.3: Visualization of the relevance of the corrected classified ROP+ in the external validation sample using AAL-VOIs atlas (https://neurovault.org/images/14257/) on the MRICron.
	Center of mass XYZ 104.31x123.21x102.24
	
	Min
	Mean
	Max
	
	SD
	
	

	VOI      nvox(cc)=min/mean/max=SD
	
	0
	85
	85
	=
	3
	
	

	VOI <>0  nvox(cc)=min/mean/max=SD
	
	0
	85
	85
	=
	3
	
	

	VOI  >0  nvox(cc)=min/mean/max=SD
	
	0
	85
	85
	=
	3
	
	

	Custom Region Analysis
	
	
	
	
	
	
	
	

	Index
	Name
	numVox
	numVoxNotZero
	fracNotZero
	peak
	min
	mean
	meanNotZero

	0
	
	5629168
	5329
	0.001
	0.094118
	0
	1.79E-05
	0.018889

	1
	Precentral_L 2001
	28174
	7
	0
	0.015686
	0
	3.90E-06
	0.015686

	4
	Frontal_Sup_R 2102
	32089
	473
	0.015
	0.047059
	0
	0.000332
	0.022518

	6
	Frontal_Sup_Orb_R 2112
	7859
	420
	0.053
	0.047059
	0
	0.001162
	0.021737

	8
	Frontal_Mid_R 2202
	40374
	582
	0.014
	0.031373
	0
	0.000245
	0.01698

	10
	Frontal_Mid_Orb_R 2212
	8057
	1218
	0.151
	0.141176
	0
	0.005473
	0.036202

	11
	Frontal_Inf_Oper_L 2301
	8271
	1334
	0.161
	0.078431
	0
	0.004127
	0.025587

	12
	Frontal_Inf_Oper_R 2302
	11174
	262
	0.023
	0.031373
	0
	0.000382
	0.016285

	13
	Frontal_Inf_Tri_L 2311
	20104
	23
	0.001
	0.015686
	0
	1.79E-05
	0.015686

	14
	Frontal_Inf_Tri_R 2312
	17132
	1075
	0.063
	0.078431
	0
	0.001714
	0.027316

	16
	Frontal_Inf_Orb_R 2322
	13747
	635
	0.046
	0.109804
	0
	0.001273
	0.027568

	17
	Rolandic_Oper_L 2331
	7939
	47
	0.006
	0.015686
	0
	9.29E-05
	0.015686

	24
	Frontal_Sup_Medial_R 2602
	16979
	32
	0.002
	0.031373
	0
	3.33E-05
	0.017647

	26
	Frontal_Med_Orb_R 2612
	6870
	1
	0
	0.015686
	0
	2.28E-06
	0.015686

	27
	Rectus_L 2701
	6864
	224
	0.033
	0.031373
	0
	0.00056
	0.017157

	28
	Rectus_R 2702
	5930
	38
	0.006
	0.015686
	0
	0.000101
	0.015686

	40
	ParaHippocampal_R 4112
	9028
	40
	0.004
	0.031373
	0
	7.3E-05
	0.016471

	55
	Fusiform_L 5401
	18333
	661
	0.036
	0.313726
	0
	0.002184
	0.060562

	57
	Postcentral_L 6001
	31053
	1257
	0.04
	0.062745
	0
	0.000963
	0.023798

	58
	Postcentral_R 6002
	30652
	217
	0.007
	0.031373
	0
	0.000126
	0.017855

	61
	Parietal_Inf_L 6201
	19447
	76
	0.004
	0.031373
	0
	6.61E-05
	0.016925

	64
	SupraMarginal_R 6212
	15770
	592
	0.038
	0.031373
	0
	0.00067
	0.017859

	67
	Precuneus_L 6301
	28358
	580
	0.02
	0.031373
	0
	0.000347
	0.016984

	81
	Temporal_Sup_L 8111
	18307
	46
	0.003
	0.031373
	0
	4.03E-05
	0.016027

	82
	Temporal_Sup_R 8112
	25258
	1441
	0.057
	0.392157
	0
	0.003883
	0.068068

	84
	Temporal_Pole_Sup_R 8122
	10654
	341
	0.032
	0.031373
	0
	0.000554
	0.017296

	85
	Temporal_Mid_L 8201
	39353
	7045
	0.179
	0.658824
	0
	0.014742
	0.08235

	86
	Temporal_Mid_R 8202
	35484
	3002
	0.085
	0.454902
	0
	0.006974
	0.082429

	88
	Temporal_Pole_Mid_R 8212
	9470
	340
	0.036
	0.156863
	0
	0.00131
	0.036494

	89
	Temporal_Inf_L 8301
	25647
	3278
	0.128
	0.54902
	0
	0.011898
	0.093094

	90
	Temporal_Inf_R 8302
	28468
	19
	0.001
	0.015686
	0
	1.05E-05
	0.015686

	91
	Cerebelum_Crus1_L 9001
	20667
	339
	0.016
	0.062745
	0
	0.000405
	0.024663

	93
	Cerebelum_Crus2_L 9011
	15216
	290
	0.019
	0.031373
	0
	0.000348
	0.018283

	99
	Cerebelum_6_L 9041
	13672
	64
	0.005
	0.047059
	0
	8.72E-05
	0.018627



Table S5.4: Visualization of the relevance of the corrected classified ROP+ in the external validation sample using the JHU WM tractography atlas on the MRICron.
	Center of mass XYZ 92.37x110.19x81.18
	Min
	Mean
	Max
	
	SD
	
	

	VOI      nvox(cc)=min/mean/max=SD
	
	0
	0
	0
	=
	3
	
	

	VOI <>0  nvox(cc)=min/mean/max=SD
	
	2147483648
	0
	-2147483648
	=
	0
	
	

	VOI  >0  nvox(cc)=min/mean/max=SD
	
	2147483648
	0
	-2147483648
	=
	0
	
	

	Custom Region Analysis
	
	
	
	
	
	
	

	Index
	Name
	numVox
	numVoxNotZero
	fracNotZero
	peak
	min
	mean
	meanNotZero

	0
	Unclassified
	7051026
	30945
	0.004
	0.658823568373919
	0
	0.000229809428116006
	0.0523636210273417

	42
	Superior_longitudinal_fasciculus_L
	6605
	383
	0.058
	0.0313725508749485
	0
	0.00102358587638931
	0.0176521794087504



Table S5.5: Visualization of the relevance of the corrected classified CHR-P+ in the external validation sample using AAL-VOIs atlas (https://neurovault.org/images/14257/) on the MRICron.
	Center of mass XYZ 113x48x14
	
	Min
	Mean
	Max
	
	SD
	
	

	VOI      nvox(cc)=min/mean/max=SD
	
	0
	0
	0
	=
	1
	
	

	VOI <>0  nvox(cc)=min/mean/max=SD
	
	2147483648
	0
	-2147483648
	=
	0
	
	

	VOI  >0  nvox(cc)=min/mean/max=SD
	
	2147483648
	0
	-2147483648
	=
	0
	
	

	Custom Region Analysis
	
	
	
	
	
	
	
	

	Index
	Name
	numVox
	numVoxNotZero
	fracNotZero
	peak
	min
	mean
	meanNotZero

	0
	
	5629168
	17103
	0.003
	0.800000047311187
	0
	0.000241991684253464
	0.0796475381667369

	1
	Precentral_L 2001
	28174
	5
	0.000
	0.0313725508749485
	0
	3.34058538456895E-6
	0.0188235305249691

	3
	Frontal_Sup_L 2101
	28915
	1062
	0.037
	0.062745101749897
	0
	0.000927125876626094
	0.0252427916409072

	5
	Frontal_Sup_Orb_L 2111
	7654
	117
	0.015
	0.0470588263124228
	0
	0.000301265023426798
	0.0197083973445189

	19
	Supp_Motor_Area_L 2401
	17282
	451
	0.026
	0.0470588263124228
	0
	0.00054187631270525
	0.0207643158229981

	21
	Olfactory_L 2501
	2262
	306
	0.135
	0.0784313771873713
	0
	0.00308593835971531
	0.0228117404237779

	25
	Frontal_Med_Orb_L 2611
	5792
	4
	0.001
	0.0156862754374743
	0
	0.000010833063147427
	0.0156862754374743

	27
	Rectus_L 2701
	6864
	574
	0.084
	0.10980392806232
	0
	0.0036610450540259
	0.043779465593787

	43
	Calcarine_L 5001
	18157
	165
	0.009
	0.10980392806232
	0
	0.000283367205127034
	0.0311824142029791

	47
	Lingual_L 5021
	16932
	255
	0.015
	0.203921580687165
	0
	0.000762450075894242
	0.0506266850393777

	51
	Occipital_Mid_L 5201
	25989
	18
	0.001
	0.0156862754374743
	0
	0.0000108643255944644
	0.0156862754374743

	53
	Occipital_Inf_L 5301
	7536
	50
	0.007
	0.062745101749897
	0
	0.000147787361473019
	0.0222745111212134

	71
	Caudate_L 7001
	7682
	293
	0.038
	0.0784313771873713
	0
	0.00109448628410391
	0.0286957120630928

	73
	Putamen_L 7011
	7942
	57
	0.007
	0.0313725508749485
	0
	0.000126406651724799
	0.017612660140322

	94
	Cerebelum_Crus2_R 9012
	17038
	175
	0.010
	0.0784313771873713
	0
	0.000208990757383886
	0.0203473401388952

	102
	Cerebelum_7b_R 9052
	4230
	1084
	0.256
	0.266666682437062
	0
	0.00987530768084963
	0.0385355641051605

	104
	Cerebelum_8_R 9062
	18345
	1619
	0.088
	0.345098059624434
	0
	0.00479951289346105
	0.0543836096544428

	105
	Cerebelum_9_L 9071
	6924
	16
	0.002
	0.0156862754374743
	0
	0.0000362478924031756
	0.0156862754374743



Table S5.6: Visualization of the relevance of the corrected classified CHR-P+ in the external validation sample using the JHU WM tractography atlas on the MRICron.
	Center of mass XYZ 92.37x110.19x81.18
	Min
	Mean
	Max
	
	SD
	
	

	VOI      nvox(cc)=min/mean/max=SD
	
	0
	0
	0
	=
	1
	
	

	VOI <>0  nvox(cc)=min/mean/max=SD
	
	2147483648
	0
	-2147483648
	=
	0
	
	

	VOI  >0  nvox(cc)=min/mean/max=SD
	
	2147483648
	0
	-2147483648
	=
	0
	
	

	Custom Region Analysis
	
	
	
	
	
	
	

	Index
	Name
	numVox
	numVoxNotZero
	fracNotZero
	peak
	min
	mean
	meanNotZero

	0
	Unclassified
	7051026
	22849
	0.003
	0.800000047311187
	0
	0.000224810572501518
	0.0693748169190374

	1
	Middle_cerebellar_peduncle
	15644
	86
	0.005
	0.0313725508749485
	0
	0.0000942540201433508
	0.0171454638502626

	2
	Pontine_crossing_tract_(a_part_of_MCP)
	1500
	52
	0.035
	0.0313725508749485
	0
	0.000596078466624022
	0.017194571152616

	3
	Genu_of_corpus_callosum
	8851
	12
	0.001
	0.0313725508749485
	0
	0.0000230393831981884
	0.0169934650572638

	7
	Corticospinal_tract_R
	1362
	232
	0.170
	0.062745101749897
	0
	0.00413463500884967
	0.0242731589743675

	9
	Medial_lemniscus_R
	690
	50
	0.072
	0.0313725508749485
	0
	0.00118215409094009
	0.0163137264549732

	11
	Inferior_cerebellar_peduncle_R
	968
	36
	0.037
	0.0156862754374743
	0
	0.000583373879906067
	0.0156862754374743

	23
	Anterior_corona_radiata_R
	6849
	17
	0.002
	0.0313725508749485
	0
	0.0000435157297871238
	0.0175317196065889

	33
	External_capsule_R
	5611
	20
	0.004
	0.0470588263124228
	0
	0.0000754819883820718
	0.0211764718405902



1.4. Clustering method
The affinity propagation (AP) algorithm20 uses the concept of information passing between the data, it was selected to cluster the subject’s relevance heatmap for identifying distinct patterns of brain changes related to transdiagnostic psychopathology. The main advantage of the AP algorithm is that the number of clusters is not predefined. The input in the clustering algorithm is a matrix MN, where N is the number of subjects and M is the relevance of each voxel. The output of the AP algorithm is a scalar for every subject that expresses in which cluster the subject belongs driven only by the values of the brain relevance. 

Table S6: Clustering analysis in the external validation and T1 samples for the CHR-P+ and ROD+. Association of the clinical variables with the brain relevance heatmaps inside the clusters.

	Cluster
	Group at T0
	Symptoms
	Outcome Profile after 1-year
	Spearman rho-corrected for the prediction of symptoms severity and outcome profiles

	1
	6 ROD
7 CHR-P
	Oldest and lowest GAF
	Improvement of GAF and alogia. High deterioration of PANSS scores
	

	2
	4 ROD
7 CHR-P
	Lowest PANSS_distress
	High deterioration of PANSS_distress and PANSS_negative. High improvement of avolition.
	

	3
	4 ROD
4 CHR-P
	Highest PANSS_disorganization

	High deterioration of anhedonia
	

	4
	3 ROD
5 CHR-P
	Youngest with high PANSS_distress 
	High improvement of PANSS_positive and deterioration of blunt affect and alogia.
	

	5
	5 ROD
5 CHR-P
	Lowest BDI and anhedonia
	High deterioration of BDI and VisDys
	Predict the deterioration of PANSS_Positive

	6
	3 ROD
8 CHR-P
	Lowest avolition and alogia. Highest VisDys score.
	High improvement of anhedonia and distress and VisDys score
	

	7
	5 CHR-P
	Highest PANSS and SANS scores
	High improvement of PANSS_negative
	



Table S7: Clustering analysis in the external validation and T1 samples for the CHR-P- and ROD-. Association of the clinical variables with the brain relevance heatmaps inside the clusters.

	Cluster
	Group at T0
	Symptoms
	Outcome Profile after 1-year
	Spearman rho-corrected for the prediction of symptoms severity and outcome profiles
	

	1
	14 ROD
3 CHR-P
	Highest blunting
	
	
	

	2
	21 ROD
9 CHR-P
	Younger, highest BDI and lowest PANSS_disorganization, alogia, asociality and anhedonia
	
	Predict anhedonia and asociality

	3
	6 ROD

	Lowest PANSS_negative

	High improvement of blunting and deterioration of psychopathology functioning
	
	

	4
	3 ROD
2 CHR-P
	Oldest, higher avolition and PANSS_positive
	High deterioration of all scores
	
	

	5
	23 ROD
3 CHR-P
	Lower BDI
	Deterioration of BDI
	
	

	6
	6 ROD
1 CHR-P
	Lower PANSS_positive
	Improvement of PANSS_negative 
	
	

	7
	10 ROD
3 CHR-P
	
	High improvement of all PANSS subscores and GAF
	
	

	8
	2 ROD
1 CHR-P
	Higher PANSS and SANS scores
	High improvement of SANS scores
	
	

	9
	24 ROD
6 CHR-P
	Lower PANSS_excitement
	Improvement of PANSS_excitement
	
	

	10
	10 ROD
4 CHR-P
	Higher GAF
	Improvement of PANSS_disorganisation
	
	



In Figures S6 and S8, the profiles of clinical symptom expression for the combined ROP/ROD and CHR-P/ROD with and without VisDys from the validation samples are presented. Generally, the ROP/ROD groups, both with and without VisDys, presented higher values in clinical scores, except BDI, PANSS_negative, anhedonia, asociality and blunting compared to CHR-P/ROD groups.


Figure S6: The average values of the clinical variables at T0 for the combined ROP+/ROD+ (blue color) and CHR-P+/ROD+ (orange color) that were used for external validation and further associations.

[image: ]

Figure S7: The spearman rho correlation results for the p-corrected associations for ROP+/ROD+ at T0 between the rank of a) PANSS_positive, b) PANSS_disorganization, c) PANSS_excitement, d) GAF and the change in follow-up e) PANSS_disorganization at x-axis and the rank of the mean relevance at y-axis.

	A.
[image: ]
ROP+/ROD+
PANSS_positive (T0)
	B.
[image: ]
ROP+/ROD+
PANSS_disorganisation (T0)

	C.
[image: ]
ROP+/ROD+
PANSS_excitement (T0)
	D.
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ROP+/ROD+
GAF (T0)

	E.
[image: ]
ROP+/ROD+
PANSS_disorganization (T1-T0)










Figure S8: The average values of the clinical variables at T0 for the combined ROP-/ROD- (blue color) and CHR-P-/ROD- (orange color) that were used for external validation and further associations.
[image: ]


Figure S9: The spearman rho correlation results for the p-corrected associations for a) CHR-P+/ROD+ in cluster 5 the change in follow-up for PANSS_positive and in CHR-P-/ROD- b) anhedonia and c) asociality in cluster 2 at x-axis and the brain relevance at y-axis.
        
	A.
[image: ]
CHR-P+/ROD+ Cluster 5
PANSS_positive (T1-T0)
	B.
[image: ]
CHR-P-/ROD- Cluster 2
Anhedonia (T1-T0)

	C.
[image: ]
CHR-P-/ROD- Cluster 2
Asociality (T1-T0)




Figure S10: The average values of the clinical variables at T0 calculated in each cluster for the CHR-P+ subjects belong to the independent validation sample and ROD+ subjects. Different colors represent different clusters of brain relevance.
[image: ]















Figure S11: The average values of the clinical variables at T0 calculated in each cluster for the CHR-P- subjects belong to the independent validation sample and ROD- subjects. Different colors represent different clusters of brain relevance.


[image: ]



Figure S12: The average values of the difference in symptoms in 9 months after the T0 calculated in each cluster, for the CHR-P+ subjects belong to the independent validation sample and ROD+. Different colors represent different clusters of brain relevance.

[image: ]








Figure S13: The average values of the difference in symptoms in 9 months after the T0 calculated in each cluster, for the CHR-P- subjects belong to the independent validation sample and ROD-. Different colors represent different clusters of brain relevance.  
[image: ]

Table S8: Spearman rho coefficients and p_values corrected by Bonferonni-Holm for the significant association of whole brain mean relevance heatmaps in CHR-P-/ROD- with the change score from T0 to T1 for anhedonia and asociality from SANS in cluster 2 (* indicates statistical significant p-values). 

	Variable
	rho
	t
	P_corrected

	SANS_Anhedonia
	0.64
	3.48
	0.031*

	SANS_Asociality
	0.71
	4.16
	0.008*



 Appendix A
LRP, in its general form assumes that the classifier can be decomposed into several layers of computation. Such layers can be parts of the feature extraction from the image or parts of a classification algorithm run on the calculated features.
For the specific deep learning scheme with 5 hidden layers with size 200, the LRP algorithm is presented:


Relevance of the 7th Layer


Where the sixth layer is the real-valued prediction output of the classifier  for the two classes .

Relevance of the 6th Layer between neurons i and j
For 00


,


Where  is the output of the fifth hidden layer using the tansig transfer function on the net input,  are the weights and  the biases of the neurons connect the fourth and third layer.  is 0.001 just to avoid the division with zero. So, the voxel-wise relevance in the third hidden layer is calculated as:


Relevance of the 5th Layer between neurons i and k
For  


,

Where  is the output of the fourth hidden layer using the tansig transfer function on the net input,  are the weights and  the biases of the neurons connect the second and third layer.  is 0.001 just to avoid the division with zero. So, the voxel-wise relevance in the second hidden layer is calculated as:

Relevance of the 4th Layer between neurons i and k
For  


,

Where  is the output of the third hidden layer using the tansig transfer function on the net input,  are the weights and  the biases of the neurons connect the second and third layer.  is 0.001 just to avoid the division with zero. So, the voxel-wise relevance in the second hidden layer is calculated as:


Relevance of the 3rd Layer between neurons i and k
For  


,

Where  is the output of the second hidden layer using the tansig transfer function on the net input,  are the weights and  the biases of the neurons connect the second and third layer.  is 0.001 just to avoid the division with zero. So, the voxel-wise relevance in the second hidden layer is calculated as:



Relevance of the 2nd Layer between neurons k and l
For  


,

Where  is the output of the first hidden layer using the tansig transfer function on the net input,  are the weights and  the biases of the neurons connect the second and third layer.  is 0.001 just to avoid the division with zero. So, the voxel-wise relevance in the first hidden layer is calculated as:



Relevance of the 1st Layer between input voxels and neurons l

For  voxels:

,

Where  is the input registered texture feature map based image,  are the weights and  the biases of the neurons connect the input and second layer. So, the voxel-wise relevance in the input layer is calculated as:
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Discovery sample


Age and se-adjusted


27 ROD VisDys+, 89 ROD VisDys-     19 ROP VisDys+, 27 ROP VisDys-   68 CHR VisDys+, 56 CHR VisDys-


24 ROD VisDys+, 125 ROD VisDys-     73 ROP VisDys+, 70 ROP VisDys-   81 CHR VisDys+, 66 CHR VisDys-


23 ROD VisDys+, 117 ROD VisDys-     67 ROP VisDys+, 61 ROP VisDys-   71 CHR VisDys+, 63 CHR VisDys-
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