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Supplementary Figure 1 Photograph of the flexible spiking neuron circuit under bent configura-
tions. Demonstrates mechanical flexibility of the fabricated circuit, showing structural integrity and
device layout consistency across bending. The bending radius is 205 mm.
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Supplementary Figure 2 Stress test of p-type OFETs across seven consecutive measurements.
Transfer characteristics remain stable, indicating high electrical reliability and robustness under
repeated operation.
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Supplementary Figure 3 Stress test of n-type OFETSs across seven consecutive measurements.
Device behavior is consistent across cycles, indicating high electrical reliability and robustness under
repeated operation.
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Supplementary Figure 4 Device-to-device variability of n-type OFETSs across a single chip.
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Supplementary Figure 5 Device-to-device mobility variability of n-type OFETSs across a single
chip.
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Supplementary Figure 6 Device-to-device on/off ratio variability of n-type OFETs across a single
chip.
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Supplementary Figure 7 Device-to-device threshold voltage variability of n-type OFETSs across
a single chip.
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Supplementary Figure 8 Device-to-device variability of p-type OFETSs across a single chip.
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Supplementary Figure 9 Device-to-device mobility variability of p-type OFETSs across a single
chip.
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Supplementary Figure 10 Device-to-device on/off ratio variability of p-type OFETs across a
single chip.
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Supplementary Figure 11 Device-to-device threshold voltage variability of p-type OFETs across
a single chip.
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Supplementary Figure 12 Time constant of excitatory PCS synaptic circuit across weighing

voltages in flat and bent states. The time constant decreases with higher weighing voltages. Bending
has minimal impact on synaptic temporal dynamics.

Q'..IIIIIIIIIIIIIIIII

13



()

-

-
-
o ]
A
[—
ol
—

2250¢ . * Bent 1
2200 F .
& [ . i
S 150 F .
o I “ ]
£ [ ]
= 100 3 3

50 IR W T TN NN WA TN TN TN NN SN TN THN SN NN S T S
0.4 0.5 0.6 0.7 0.8
Weighting Voltage (V)

Supplementary Figure 13 Time constant of inhibitory PCS synaptic circuit across weighing
voltages in flat and bent states. Inhibitory synapses maintain high time constants (~275-280 ms) at
low weighing voltages. A slight variation is observed with bending.
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Supplementary Figure 14 Measured output firing rates of the excitatory synaptic circuit in the
flat configuration across eight synaptic weight voltages. Raw data points illustrating the neuron’s
firing rate response as a function of presynaptic frequency (1-100 Hz). Data corresponds to the fitted
sigmoidal curves shown in Figure4a (solid lines).
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Supplementary Figure 15 Measured output firing rates of the excitatory synaptic circuit in the
bent configuration across eight synaptic weight voltages. Experimental data supporting Figure 4a
(dotted lines), showing how mechanical bending influences the spiking response at varying synaptic
weights and presynaptic input frequencies.
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Supplementary Figure 16 Measured output firing rates of the inhibitory synaptic circuit in the
flat configuration across eight synaptic weight voltages. Raw firing rate data corresponding to the
inhibitory condition in Figure 4b (solid lines), demonstrating suppression of output spikes as input
frequency increases, modulated by synaptic weight.
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Supplementary Figure 17 Measured output firing rates of the inhibitory synaptic circuit in the
bent configuration across eight synaptic weight voltages. Data matches the fitted curves in Figure 4b
(dotted lines), highlighting the impact of mechanical strain on inhibitory response shaping in organic
spiking neurons.
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Supplementary Figure 18 Comprehensive dataset for coincidence detection across inter-stimulus
intervals (ISIs). Membrane voltage traces for multiple ISIs show the neuron’s transition from successful
integration (coincidence detection) to signal separation. Neuronal response disappears beyond an ISI
of 260.25 ms.
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