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The harmonic oscillator equation

Our oscillator dynamics is described the following homogeneous system of linear first-order differential equations:
X = QX 1)

where the matrix Q is given as:
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Considering I" and @ as being constant one can derive time-dependent solutions for the vortex core position (X (¢),Y(¢)).
This assumption is verified in a steady-state regime of oscillation. The eigenvalues A of the system are calculated from its
characteristic equation:

A2 —2TA+ (I +0*) =0 3)

The latter has been obtained from det(Q — AI) = 0. The two solutions of Eq. (3) are A = I'+i®. Using Euler’s formula one
can prove that the coordinates of the vortex core are given as:

X(1) = e"'[(Cy + Cy) cos(ot) +i(C — Cy) sin(o1)]
Y(t) = &' [—i(C) — Cy) cos(@r) + (Cy + Cy) sin(ot)]

If the two constants are fixed such as C; = —C; = —1||X|| one finally obtains:
X(@) | ;| sin(or)
[ Y (o) ]— XN cos (ar) @

Ampeére-Oersted field contribution to the Thiele equation
Ampere’s law (SI):

?fB-dﬁ — Amkl,
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where ki, is the magnetic force constant (1o /(47)) and L is the magnetic constant[(47 - 10~7 T/(A/m)].

Let’s take the case of an infinite wire of radius R with a uniform current / flowing through it. I, represents the current
flowing inside the path ¢ of integration.

Inside the wire (r < R): I, = Inr?/(nR?) = Ir* /R* = Jr?, where J = I /(7R?) is the current density. Outside the wire
(r>R): I =1
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For r < R (inside the wire): B27wr = pox |J|r* and B(r) = #r

For r > R (outside the wire): B27tr = ynR? |J| and B(r) = %RZ

~ =

The Oersted field vector obtained is: B(r) = B(r) (cos (6 +6%),sin (6 +6%),0) = B(r)b(r), where r = r(cos 6,sin 6,0)
orr = (r,0), c =sign(J) = =1 and b(r) is the Oersted field unit vector. Inside a magnetic dot of radius R and thickness A,
the potential energy due to the current induced Oersted field and a shifted magnetic vortex state of magnetization distribution
M(r,X) with X = (p, ) being the vortex core position is given by:

Woe = — / B(r)-M(r,X)dV,
14
where V corresponds to the magnetic dot volume.
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In SI units Bg;(r) = 5

KOV, — 0gi 0] [T1, with Qg; = ‘;0 [T-m/A], and J = [A/m?].

J
In CGS units Bcgs(r) = yr = 0OcaGs |]| r [G], with Qcgs = g [G-cm/A], and J = [A/crn2].

B(r) = B(r)b(r) = Q|J| rb(r) and M(r,X) = M;m(r,X), where M; is the spontaneous magnetisation and m(r,X) is the
normalised magnetisation profile (distribution) of the magnetic vortex. The potential energy Wo, yields:

Woe = 7Q|J\MS/ rb(r) -m(r,X)dV.
%

As b(r) = (cos ¢y,sin@;,0), with ¢; = 6 + o7 /2, has no out of plane component, the z-component (vortex core shape) of
m(r,X) is not contributing, so = m = (cos ¢, sin ¢,,0), i.e. = m(r,X) = (cos[¢2(r,X)],sin[¢2(r,X)],0)).

The in-plane profile ¢ (r,X) of an off-centred vortex is well described within the "Two Vortex Ansatz" TVA (or "Image
Vortex Ansatz", IVA) as no side charges are created (unlike the "Single Vortex Ansatz" also called the "Rigid Vortex Ansatz"):

TVA(r,X) = arg (r — X) - arg (r — X;) — ¢ +Cr/2
where X = (R?/p, @) are the image vortex coordinates (||Xi|| = R*/p?||X||) and C is the vortex chirality (= %1).

One obtains explicitly:

VA _1{ rsin@ —psing _, ( prsin@ —R*sing T
X ISMEZPING g+t
(rX) = (rcos@—pcos(p)+ an (prcosG—chos(p P+

The cylindrical symmetry of the energy evaluation of an off-centred vortex with respect to the Oersted field makes it
independent from ¢, so we choose to take ¢ = 0:

TVA _1( rsinb 4 prsin® T
0)=t _ t - i
(r,p,0) = tan <rcos@—p)+an (prcosG—R2>+C2

Finally, using reduced variables 1 = r/R and s = p /R we obtain:

TVA 1 M sin 1 s1sin O b
0)=t — | +t S Bk S g b
(m,5,6) = tan <U0059—5>+an <sncos€—1>+ 2

Woe = —Q|J|M/rb m(r,X)dV
- —Q|J|M/ /2n/ b(r) - m(r,X)drd0dz
_ —Q|J|Mh/ / m(r, X)drd®
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The previous transformation is due to the fact that there is no z-dependence.

Asn =r/R,dr=Rdn:

1 rmr r2
Woe = —Q|J|Msh// B2 b(r)-m(r X)Rdndo
= _Q|J|MhR3// n%b(r) -m(r,X)dndo
b(r) -m(r,X) = (cos@,sing;,0)-(cosdy " singy *,0)
= cos@cos, * +singysingy

cos (¢1 ¢TVA)
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= 0+o0-—t — | —t —— | -C
o= Jr62 an (ncos@—s) an <sncos6—1>
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inf +b
Using 6 = tan ™! (0526) and tan~ ! (a) = tan" ! (b) = tan~! (16; ab):

TVA T _ { sin@ 1 ( sn?sin20 —n(1+s*)sin@
- = (6-C)Z+t —t
01— (o C)Z+ an ( 9) an <snzcos26—n(1+s2)c059+s

U

1+Au

b(r) - m(r,X) = cos (G—C)g—ktan’l < AN)
A B

= cosAcosB— sinAsinB
—_——
=0(A=0orm)

= cos ((G—C)g) cos (tanl (1/1-;/{:&))

N (s*+1) —scos(0) (n*+1)
V(1 (24 1) = 5005 (8) (12 4 1)) + s2sin (0)2(n2 — 1)°

b(r) -m(r,X) = oC

Finally, the potential energy writes (o |J| =

1 r2m
Woe(s) = —QJCMhR? /O /0 0(s,n,0)dnde, (5)
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where

3 (g2 2 )
®(S7n,6): 77( +1> n COS(Q)(r' _|_1)

(52 1)~ scos(8) (2 + 1)) +s2sin? (8) (2 — 1)

There are two possibilities to evaluate Eq. (5) to obtain the s = p /R dependence of Wg,. The first is to numerically integrate
it and then to fit the result to a power law in s. The second possibility is to compute the Taylor expansion (TE) of the integrand
of Eq. (5) and then solve it analytically. Both techniques are considered and compared hereafter. Figure S1 shows the numerical
resolution of the integral in Eq. (5) in blue. The order 6 power law fit is plotted in red and the order 2, 4, and 10 Taylor
expansions are represented with dashed lines.
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Figure S1. Evolution of the double integral in Eq. (5) vs. reduced vortex core position s. The thick light blue line corresponds
to the numerical integration, the dashed blue line is the 6'h order fit over the numerical data and the dashed red line is the
results after analytical integration of the 10" order Taylor expansion.

It should be noticed that 2/37 has been added to the overall value of the integral shown in Fig. S1 in such a way to start at
0 and avoid the evaluation of this parameter during the fit. The fitting coefficients are given as follow:

2
Wa(5) = —QICM R <—37r +0.8275* —0.180s* — 0.1 19s6) . 6)

The 10" order Taylor expansion gives:

2 4 8 4 16 20
WIE(s) = — QJCMR> (—n—i— M M4 T s ”s'0> .

3 15 105 3150 3465 9009 ™

Figure S2 shows the error level between the numerical integration data and both, the fit [Eq. (6)] and the 10th order Taylor
expansion [Eq. (7)].

An important consequence of the error level comparison is the fact that the 10th order TE is much more accurate than the fit
for s < 0.78, but for s > 0.78 the fit maintains a lower error level.

As mentioned in the main text of this manuscript, the vortex core is unstable for s > 0.8, so the Taylor expansion is a better
choice for modelling the Ampere-Oersted field contribution to the Thiele equation.

The current induced Oersted field acts as a restoring force and one can thus consider:

1
Woe(X) = SkoeX?, ®)

where X (= p) is the vortex core orbital radius and ko, is restoring force constant (also called vortex stiffness parameter). The
corresponding restoring force magnitude writes:

OWoe (X
FOe(X) = _% = _kOe(X)X~ 9
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Figure S2. Evolution of the relative error level between the numerical integration data and both, the fit [order 6 power law,
Eq. (6)] and the 10" order Taylor expansion [Eq. (7)].

The energy Wo. in Egs. (6) and (7) is already depending on s, so we can rewrite Eq. (9) as follow to consider the force in
terms of the reduced vortex core position s:

FOC(S) o 718WOC(S)§771< ( )5
R~ R 9s ox Vg
o iaWOe(S) _
= TR s — —koe(s)s.

Egs. (6) and (7) then give the following results for the respective restoring force constants:

kio(s) = QJCMhR (1.654—0.720s* —0.714s")
= QJCMhR-1.654 (1—0.4355* —0.432s%)
and
&t 327 24w 1287 2007
TE 2 4 6 8
= QICMhR | = — =2 - 5t - 26— 1
koe () = QICM (15 105° 315 3465 9009S> (19)

St/ 4, 1, 16 125
— QICMREE (1 - 22— o5t = D0 22 8)
QICM, 15( 70 7% T 2310 T 3003°

Finally, the oscillation frequency contribution of the Oersted field is given by ®pe = koe/G-

1.654- QJCR
ol (s) = # (1-0.4355> — 0.4325")

and

@6c (5)

_AQJCRYs (4o 14 16 6 125 4
15 7 7 231 3003 /-

Magnetostatic contribution to the Thiele equation

The magnetostatic contribution Wyys(&,s) to the Thiele equation has been calculated by Gaididei et al.! under the "Two Vortex
Ansatz" and gives the following equation:

_ 4MZh’Rs*

Wins (&, 5) p

CISO (1)
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with
1 1 1 , 2r 2r , , ,
®(€7s)=/0 dCfO dn/o dn/o dp [ dgT(C.n0' 0.9, E.9)

y = M= O)AM. 5 9)AM5 0+ ¢)
V202 —2nn cos g + 45202

r¢,nn.e¢.&s

and
M sin@
A(Tla& (P) = 5 5 = ,
Vs2+n2=2sncos @y/1+52n2 —2smcos @
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Figure S3. Evolution of the integral ®(&,s) (see Eq. (11)) vs. the reduced vortex position s. The magenta dots represent the
numerical Monte Carlo integration for & = 0 whereas the cyan dots represent the Monte Carlo integration for & = 0.05. The
dashed lines correspond to a 6 order power law fit of the numerical data in the range of stability of the vortex, i.e. 0 < s < 0.8.
The black and red dashed lines correspond to & = 0 and & = 0.05, respectively. The coefficients of the power law model are
given in Table S1.

There is no analytical solution for Eq. (11) and a deterministic numerical integration is not feasible. So, we performed a
Monte Carlo (MC) integration (non-deterministic) with guaranteed absolute precision of 10~.! It should be noticed that anx
analytical solution exists when & = 0 and s = 0. obtained ©(0,0) = 27(2% — 1)/3 = 1.742393 where € = 0.5 fol K(x)dx =
0.916 with K(x) the elliptic integral of the first kind.

The MC integration for (& = 0,s) gives after fitting the numerical data to a power law:

£=0.0 _ 8M§2h2 2 4 6
kpms () = Tl.7424 140.11655° —0.0434s" +0.0243s" ) . (12)

Even if the practical magnetic dot geometries give rise to very small & values, the latter are not zero. For instance in this
manuscript, R = 100 nm and & = 10 nm, so & = h/(2R) = 0.05. The Monte Carlo integration for ®(£ = 0.05,s), gives after fit:

£=0.05 B 8M§h2 2 4 6
kps (s) = Tl.5941 1+40.0870s“ +0.0236s" — 0.0171s (13)

The mean relative overestimation of Eq. (12) compared to Eq. (13) is about 10.3%. It goes from 9.3% at s =0 to 13.2%
at s = 0.8. As the oscillation frequency contribution of the magnetostatic energy is given by @ns = kms/G, the vortex core
gyrotropic frequencies computed using & = 0 instead of & = 0.05 in this case give rise to a mean error of about 10.3%.

I'The library used for the MC integration is GAIL version 2.0 (Guaranteed Automatic Integration Library) developed by the Illinois Institute of Technology.
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I N A
0.0 | 1.7424 | 0.1165 | 0.0434 | 0.0243
0.05 | 1.5941 | 0.0870 | 0.0236 | —0.0171

Table S1. Values of the coefficients of the kg term after the fit according to the power law model given in the main text.
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