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I. COMPARISON OF DIFFERENT
ARCHITECTURES: WHY 6 CONVOLUTIONAL
LAYERS IN THE PLAIN CNN?

In the early stages of this study, several architectures
have been compared and a few significant trends have
been identified (see Figure S1). As shown in the article,
ResNet34 systematically outperforms ”shallower” CNNs,
no matter the size of the training dataset, and the gap
is rather significant. The gain in accuracy lies between
2 to 5% depending on the size of the training dataset.
It has also been proven that a CNN containing 6 blocks
(Convolution+Pooling) is better than a CNN containing
5 blocks, which also performs better than a CNN com-
prising 4 blocks. When the CNN has 6 of these blocks, it
allows for more down-sampling, with filters of size 2 x 2
just before flattening. This allows for a better abstrac-
tion of the input data, by making an interaction between
pixels that would not interact with less blocks.
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FIG. S1. The predictive accuracy of the classifier as a func-
tion of the size of the training dataset. This gives a com-
parison of performance depending on the architecture of the
CNN model, with three ”shallow” models containing 4, 5 and
6 convolutional layers, respectively, and one deeper model:
ResNet34.

II. CONFUSION MATRICES
CORRESPONDING TO THE OPTIMIZATION OF
THE TRAINING DATASET

To have a deeper understanding of how accurate each
model is, depending on the way the dataset is generated,
it is possible to look at confusion matrices. Here, as seen
in the article, one can see a competition between the
sampling of defocus in the focal series and the number of
orientations for each NP (see Figure S2).

Overall, cubes are very well disentangled from the four
other shapes. The lowest prediction accuracy is consis-
tently for cuboctahedral shapes, followed by truncated
octahedra. The most common misclassifications occur for
cuboctahedra, being predicted as icosahedra. This could
be surprising given the fact that cuboctahedra, that can
be seen as being halfway between a truncated cube and
a truncated octahedron, should be mistaken for what we
call truncated octahedra in this study, which is not the
case. It could be explained by the fact that under some
exotic orientations, which are allowed by our sampling of
the orientations, cuboctahedra tend to look like icosahe-
dra, locally. Overall, of course, such icosahedral shapes
should exhibit some twinning that are not to be seen in
any other shape in our study.

As the number of orientations increases in the train-
ing dataset, the overall accuracy also increases, but here
it is possible to see that the gain in predictive accuracy
increases simultaneously for cuboctahedra, truncated oc-
tahedra and octahedra, up to the point of reaching al-
most 100% for octahedra. Accuracy for cuboctahedra
remains significantly lower than the other shapes. De-
spite reaching sometimes 93 to 94%, it can stall around
90%, as shown on Figure S2(b) on the two last matrices.
Such fluctuations are explained by different weights and
biases initialization.

IIT. ROTATION MATRICES

R, and Rygy are given explicitly in equation 1 and
equation 2.
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FIG. S2. a) Visualization of the sampling of focal series and the distribution of NP orientations on the 3D sphere. b)
Examples of confusion matrices for each dataset, chosen after one of 10 independent trainings (with different weights and biases
initialization).

IV. EXAMPLES OF NPS MORPHOLOGY ness of the model, by varying defocusing conditions, the
ANALYSIS BASED ON THIS CNN APPROACH orientation and the size of NPs. The CNN consistently
FROM HRTEM IMAGES predicts each shape accurately with a near 100% proba-

bility (see Figure S3).

As shown in the article, this approach is very efficient
for the prediction of the shape of NPs. Here, an large
number of images are shown to emphasize the robust-
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V. EXAMPLES OF MISCLASSIFICATIONS IN amount of classification errors occur when the NPs are

THE TEST DATASET oriented in such a way that contrast is very low, the as-

pect of the NPs is blurred and the edges are not well

A focus is made on the misclassifications, knowing that ~ defined. This effect is strengthened by poor defocusing

almost all the cases where the CNN fails are included here ~ conditions. The expected shape is often predicted as the
(see Figure S4). As discussed in the article, a significant ~ second choice, with a rather high probability.
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FIG. S3. 60 images were selected from a sample of 67,200 images in the test dataset. Here are the results, with the plot of
the output of the classifier, and the predicted shape is indicated below each image. From 0 to 4, labels correspond to ”cube”,
”cuboctahedron”, ”truncated octahedron” (=”TOh”), "octahedron” and ”icosahedron”.
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FIG. S4. 60 images were selected among less than 100 misclassifications. The predictive model was evaluated over a sample of
67,200 images. Here are the results, with the plot of the output of the classifier, and the predicted shape is indicated below each
image, along with the expected shape. From 0 to 4, labels correspond to ”cube”, ”cuboctahedron”, ”truncated octahedron”
(="TOh”), "octahedron” and ”icosahedron”.
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