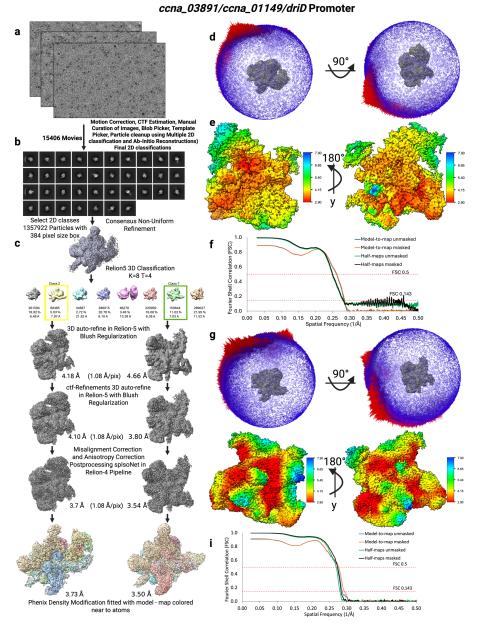
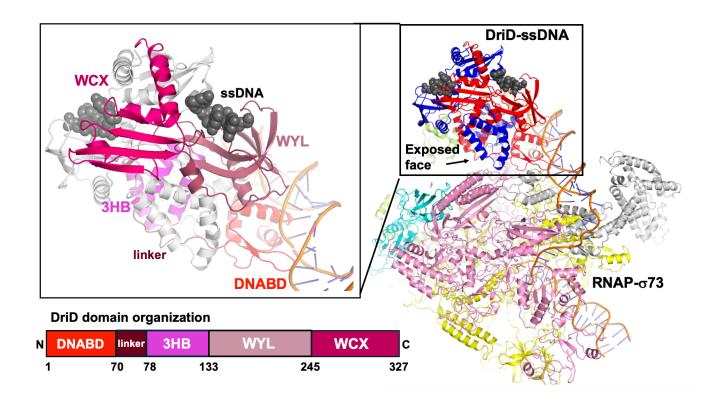

Supplementary Information for:

Transcription activation mechanism of a non-canonical bacterial DNA damage response pathway

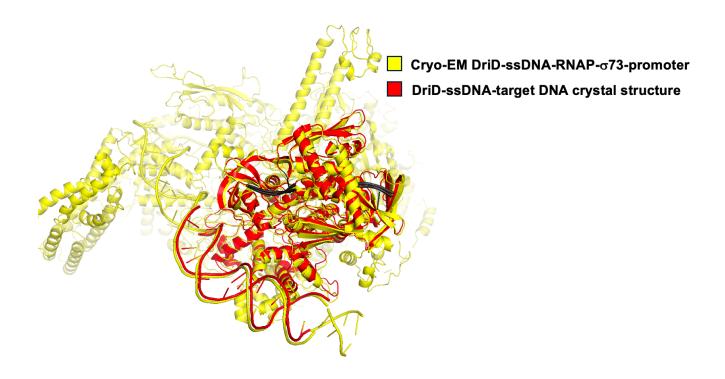
Rajiv R. Singh¹, Amani Chinni², Emily Cannistraci¹, Raul Salinas¹, Kevin Gozzi² and Maria A. Schumacher¹

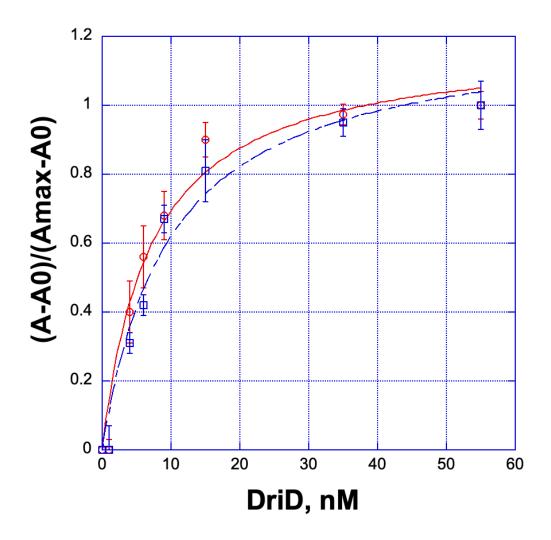

¹Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA.

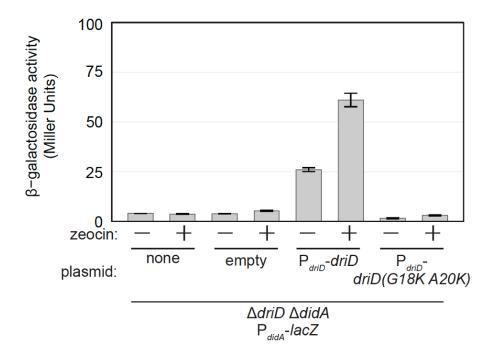
²Rowland Institute at Harvard, 52 Oxford St, Harvard University, Cambridge, MA 02138

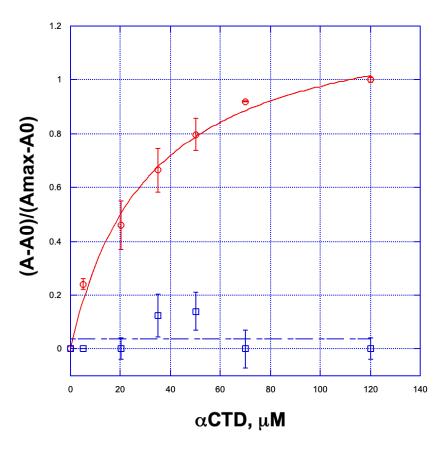


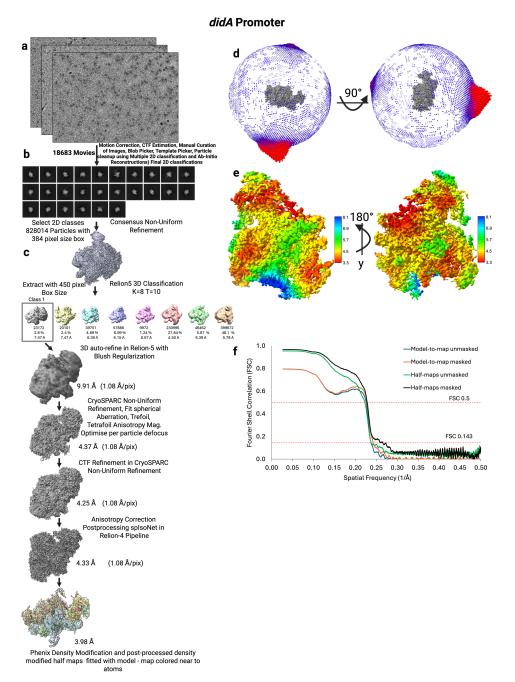
Supplementary Figure 1. Promoters bound by DriD. Shown are schematic diagrams of promoters (*didA*, *driD* and *bapE*) bound by DriD and utilized for cryo-EM structure determination in this study. Putative DriD target DNA binding sites are boxed and colored yellow with the sequence located beneath each. The transcription starts sites are indicated by ATG and the predicted -35 and other elements are indicated above each promoter.

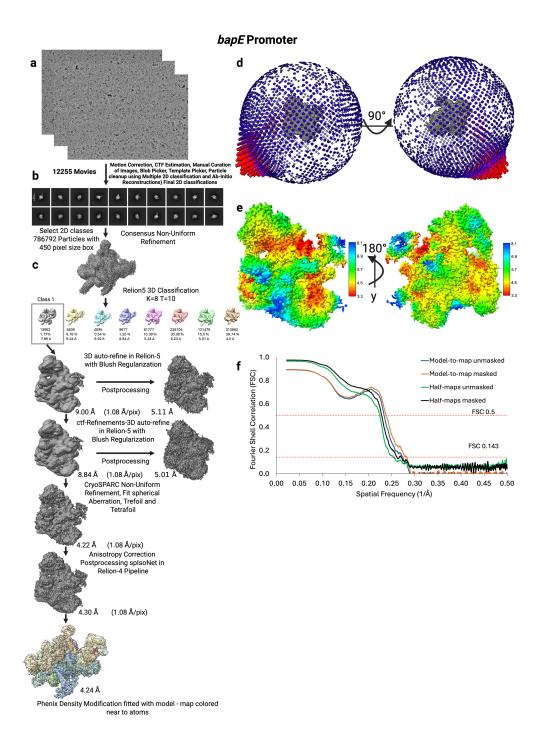

1 proximal to -35 matches consensus


Supplementary Figure 2. Cryo-EM data processing workflow of the DriD-ssDNA-RNAP-σ73-CCNA_03891/CCNA_01149 promoter and RNAP-σ73-CCNA_03891/CCNA_01149 promoter structures. (a) Representative micrographs. (b) A subset of the 2D classes showing clear structural features. (c) Flow diagram of the data processing strategy. (d) Angular distribution maps of the final particle set used in the reconstruction of Cc-DriD-ssDNA-RNAP-σ73-CCNA_03891/CCNA_01149 (ccna) promoter complex. (e) Final map colored by local resolution of the Cc-DriD-ssDNA-RNAP-σ73-CCNA_03891/CCNA_01149 promoter complex between 2.9-7.9Å. (f) Masked and unmasked half-map and model FSC curves used to determine global resolution of the Cc-DriD-ssDNA-RNAP-σ73-CCNA_03891/CCNA_01149 (ccna) promoter complex. (g) Angular distribution maps of the final particle set used in the reconstruction of the Cc-RNAP-σ73-CCNA promoter complex. (h) Final map colored by local resolution of the Cc-RNAP-σ73-CCNA_03891/CCNA_01149 promoter complex dataset between 2.9-7.9Å. (i) Masked and unmasked half-map and model FSC curves used to determine global resolution of the Cc-RNAP-σ73-CCNA_03891/CCNA_01149 promoter complex.

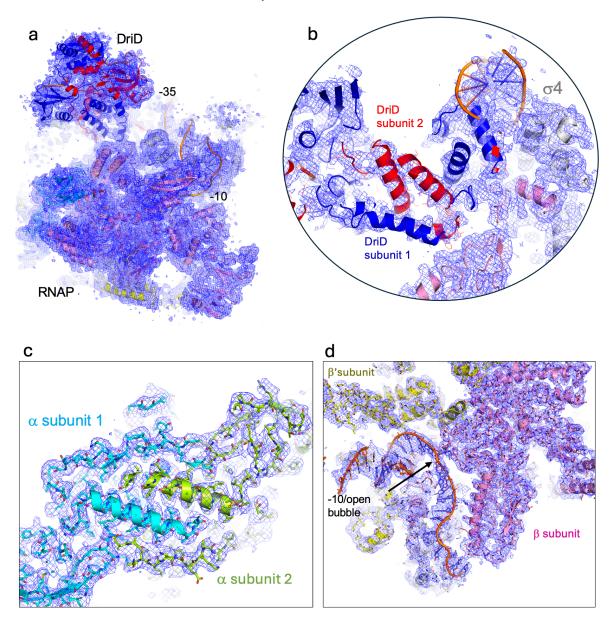

Supplementary Figure 3. Domain organization and asymmetric binding of the DriDssDNA dimer to the promoter. Right shows the overview of the DriDssDNA-RNAP-σ73-driD promoter complex. To the left is a close-up view showing just DriDssDNA with the domains colored as shown in the schematic below. Each domain is also labeled.


Supplementary Figure 4. Overlay of the DriD-ssDNA-target DNA crystal structure onto promoter-RNAP-bound DriD. In the overlay, the DriD-ssDNA-target DNA crystal structure is red and the cryo-EM DriD-ssDNA-RNAP-σ73-promoter structure is colored yellow.

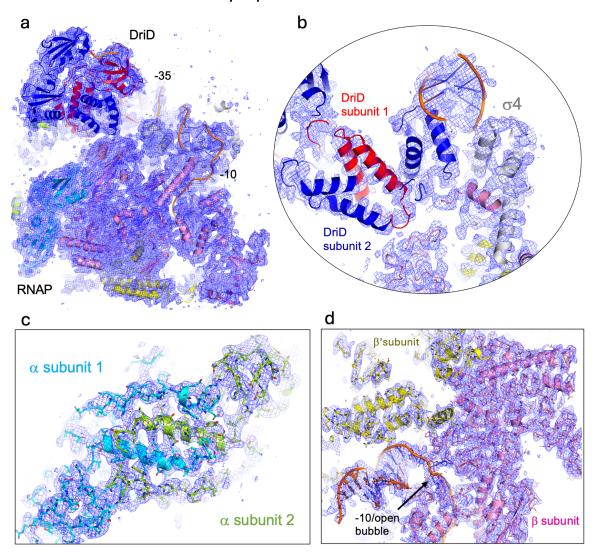

Supplementary Figure 5. FP binding isotherm showing binding of WT DriD (red circles) and DriD(G18K-A20K) (blue squares) in the presence of 100 μ M ssDNA binding to target DNA. Three technical replicates were done for each.


Supplementary Figure 6. β -galactosidase assays of the P_{didA} -lacZ as a readout for DriD-mediated transcription activation. Strains bearing a P_{didA} -lacZ, a driD deletion, and either no plasmid, an empty vector, a wild-type driD complementation or the mutant driD (G18K-A20K) were treated with zeocin to induce didA transcription activation. Mean and standard deviation of three biological replicates are shown.

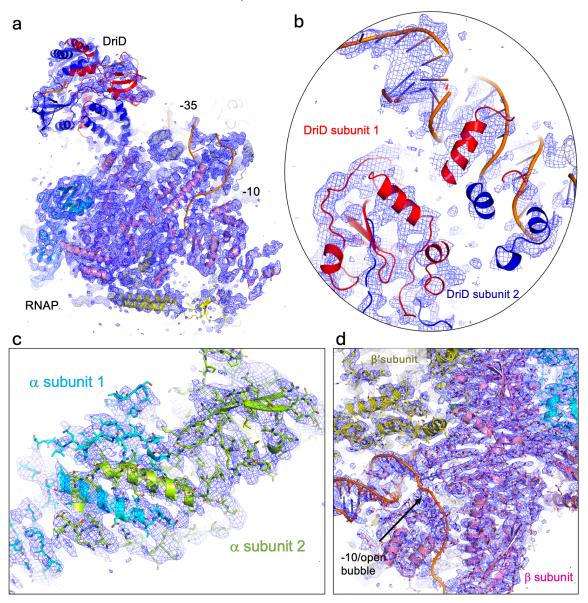
Supplementary Figure 7. FP binding isotherm showing binding of α CTD to WT DriD-ssDNA-target DNA (red circles) and to DriD(R121E-R122E-P125E-E128R)-ssDNA-target DNA (blue squares). Three technical replicates were done for each.



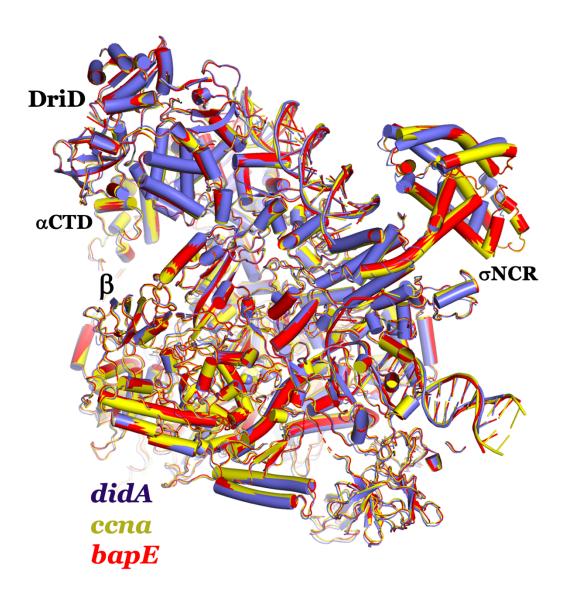
Supplementary Figure 8. Cryo-EM data processing workflow of the DriD-ssDNA-RNAP-σ73-didA promoter structure. (a) A few representative micrographs. (b) A subset of the 2D classes showing clear structural features. (c) Flow diagram of the data processing strategy. (d) Angular distribution maps of the final particle set used in the reconstruction of *Cc*-DriD-ssDNA-RNAP-σ73-didA promoter complex. (e) Final map colored by local resolution of *Cc*-DriD-ssDNA-RNAP-σ73-didA promoter complex between 3.3-8.1 Å. (f) Masked and unmasked half-map and model FSC curves used to determine global resolution.


Supplementary Figure 9. Cryo-EM data processing workflow of the DriD-ssDNA-RNAP-σ73-bapE promoter structure. (a) A few representative micrographs. (b) A subset of the 2D classes showing clear structural features. (c) Flow diagram of the data processing strategy. (d) Angular distribution maps of the final particle set used in the reconstruction of Cc-DriD-ssDNA-RNAP-σ73-bapE promoter complex. (e) Final map colored by local resolution of Cc-DriD-ssDNA-RNAP-σ73-bapE promoter complex between 3.3-8.1 Å. (f) Masked and unmasked half-map and model FSC curves used to determine global resolution.

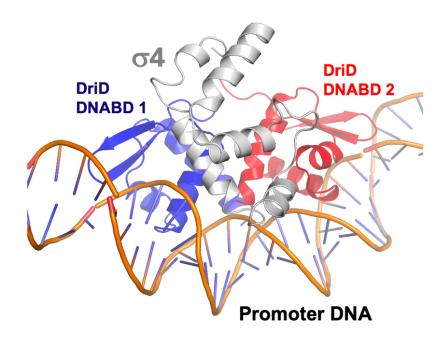
DriD-ssDNA-RNAP-σ73-ccna promoter structure


Supplementary Figure 10. Representative densities for the cryo-EM DriD-ssDNA-RNAP- σ 73- $CCNA_03891/CCNA_01149$ promoter DNA complex. Shown is representative density for various regions of the structure, including the overall structure. (a) overall structure with the cryo-EM map included with the structural domains, DriD and DNA colored as in Figure 1 (map contour 1.7 σ). (b) Close up of the DriD DNABD region around the DNA and the σ 4 domain. (c) Close up of the RNAP α subunit dimer region. (d) Desnity for the DNA open bubble and the β and β 3 subunits. Map contour for the two lower figures is 2.4 σ .

DriD-ssDNA-RNAP-σ73-bapE promoter structure



Supplementary Figure 11. Representative densities for the cryo-EM DriD-ssDNA-RNAP- σ 73-bapE promoter DNA complex. Shown is representative density for various regions of the structure, including the overall structure. (a) Overall structure with the cryo-EM map included with the structural domains, DriD and DNA colored as in Figure 4 (b). (b) Close up of the DriD DNABD region around the DNA and the σ 4 domain. The map contour is 4.7 σ . (c) Close up of the RNAP α subunit dimer region. (d) Density for the DNA open bubble and the β and β ' subunits (map contour 5.2 σ).


DriD-ssDNA-RNAP-σ73-didA promoter structure

Supplementary Figure 12. Representative densities for the cryo-EM DriD-ssDNA-RNAP- σ 73-didA promoter DNA complex. Shown is representative density for various regions of the structure, including the overall structure. (a) Overall structure with the cryo-EM map included with the structural domains. (b) Close up of the DriD DNABD region around the DNA and the σ 4 domain. The map contour for the top panels is 4.3 σ . (c) Close up of the RNAP α subunit dimer region. (d) Density for the DNA open bubble and the β and β ' subunits. Map contour of 5.3 σ .

Supplementary Figure 13. Overlay of DriD-ssDNA promoter complexes. Colored in yellow, violet and light_blue are the DriD-ssDNA-RNAP-σ73-*CCNA_03891/CCNA_01149* (*ccna*), DriD-ssDNA-RNAP-σ73-*bapE* and DriD-ssDNA-RNAP-σ73-*didA* promoter complexes, respectively. The complex overlays with rmsds of less than 1.9 Å indicating they are essentially identical in their arrangements.

Supplementary Figure 14. The -35 promoter elements in DriD regulated promoters are located at the center of the DriD target DNA binding sites. Shown is a close-up of just the DriD DNABDs, colored blue and red and labeled, bound to the $CCNA_03891/CCNA_01149$ promoter with the $\sigma4$ domain, colored grey, included. Notably, the DriD DNABDs sandwich the bound $\sigma4$ domain, which docks onto the -35 element.

6

Supplementary Table 1. Cryo-EM analyses and structure statistics

	DriD-ssDNA-RNAP- \u00f373-driD/ccna promoter	RNAP- 073 -driD/ccna promoter	DriD-ssDNA-RNAP- 073-didA promoter	DriD-ssDNA-RNAP- #73-bapE promote
	PDB: 9PFV	PDB: 9PGH	PDB: 9PGA	PDB: 9PFQ
	EMD-71615	EMD-71632	EMD-71624	EMD-71610
Data callection and Buscassins				
Data collection and Processing	T'. (D. L.)	Ti	Th. (5 to 1)	T' (D. l)
Electron microscope	Titan Krios (Duke)	Titan Krios (Duke)	Titan Krios (Duke)	Titan Krios (Duke)
Detector	К3	К3	К3	К3
Magnification	81,000x	81,000x	81,000x	81,000x
Voltage (keV)	300	300	300	300
Electron exposure (e-/Å^2)	58.7	58.7	56.6	59
Number of frames per movie	60	60	60	60
Defocus range (μm)	-0.8 to -2.5	-0.8 to -2.5	-0.8 to -2.5	-0.8 to -2.5
Pixel size (Å)	1.08	1.08	1.08	1.08
Initial micrographs	15406	15406	18683	12255
Final micrographs	14781	14781	16387	11122
Total extracted particles (no.)	2,373,048	2,373,048	2,019,352	811,774
Refined particles (no.)	1,357,922	1,357,922	828,014	807,385
Reconstruction				
Final particles (no.)	68,485	150,644	23,172	13,962
Box size (unbinned) (pixels)	384	384	450	450
Symmetry imposed	C1	C1	C1	C1
FSC 0.143 (unmasked/masked) (Å)	4.41/4.10	4.41/3.77	4.31/4.22	4.46/4.22
Map sharpening B-factor (Å^2)	-75.86	-97.37	-35.4	-31
spisoNet Misalignment and Anisotropy Correction				
FSC 0.143 (masked) (Å)	3.7	3.54	4.33	4.3
Map sharpening B-factor (Å^2)	-59.11	-70.45	-35.4	-31
Phenix Density Modification (Å)	3.7	NA	3.98	4.24
Refinement				
Model composition	26.229	20.040	25 747	26.042
Non-hydrogen atoms	36,328	30,040	35,717	36,042
Protein residues	4,461	3,718	4,425	4,453
Nucleotides	125	97	121	121
lons/Ligands	3	3	3	3
MolProbity score	1.97	1.99	2.22	2.02
Clash score	9.38	10.3	15.19	10.68
Bonds (RMSD)				
Bond lengths (Å)	0.003	0.004	0.004	0.004
Bond angles (°)	0.556	0.658	0.677	0.697
Ramachandran plot (%)				
Favored (%)	92.31	92.75	90.49	92.16
Allowed (%)	7.69	7.25	9.51	7.79
Disallowed (%)	0.00	0.00	0.00	0.05

Supplementary Table 2. Strains used in this study

Strains	Description	Source
ML76	CB15N wild-type	1
ML77	CB15N rec526	2
ML3757	CB15N ΔdriD::tet ^R	3
ML3760	CB15N pRVMCS-2(kan^R):: P_{driD} - $driD$; $\Delta driD$:: tet^R , $\Delta didA$, $hfaB$:: P_{didA} - $lacZ$	3
KG570	CB15N $\Delta driD::tet^R$, $\Delta didA$, $hfaB::P_{didA}$ -lacZ	4
ML2174	CB15N ΔdriD	5
KG720	CB15N hfaB::P _{didA} -lacZ	This study
KG721	CB15N $\Delta driD$, $hfaB::P_{didA}-lacZ$	This study
KG722	CB15N Δ <i>driD</i> , <i>hfaB</i> ::P _{didA} -lacZ, pRVMCS-2 (empty)	This study
KG723	CB15N $\Delta driD$, $hfaB::P_{didA}-lacZ$, pRVMCS-2:: P_{driD} - $driD$	This study
KG724	CB15N hfaB::P _{03891/01149} -lacZ	This study
KG725	CB15N $\Delta driD$, $hfaB::P_{03891/01149}-lacZ$	This study
KG726	CB15N Δ <i>driD</i> , <i>hfaB</i> ::P _{03891/01149} -lacZ, pRVMCS-2 (empty)	This study
KG727	CB15N $\Delta driD$, $hfaB::P_{03891/01149}$ - $lacZ$, pRVMCS-2:: P_{driD} - $driD$	This study
KG728	CB15N hfaB::P _{driD} -lacZ	This study
KG729	CB15N $\Delta driD$, $hfaB::P_{driD}-lacZ$	This study
KG730	CB15N Δ <i>driD</i> , <i>hfaB</i> ::P _{driD} -lacZ, pRVMCS-2 (empty)	This study
KG731	CB15N $\Delta driD$, $hfaB::P_{driD}-lacZ$, pRVMCS-2:: P_{driD} - $driD$	This study
KG732	CB15N $\Delta driD::tet^R$, $\Delta didA$, $hfaB::P_{didA}$ -lacZ, pRVMCS-2:: P_{driD} - $driD$ (G18K A20K)	This study
KG733	CB15N $\Delta driD::tet^R$, $\Delta didA$, $hfaB::P_{didA}$ -lacZ, pRVMCS-2:: P_{driD} - $driD^*$	This study

Supplementary Table 3. Plasmids used in this study

Plasmids	Description	Source
pRVMCS-2 (empty)	low-copy vector bearing inducible promoter and kan ^R	6
pNPTS138	used to create genome modifications via homologous recombination	6
pNPTS138-hfaB::lacZ	pNPTS138 bearing lacZ flanked by <i>hfaB</i> upstream and downstream homology regions	This study
pRVMCS-2:: P _{driD} -driD	pRVMCS-2 with P _{driD} -driD at SacI/SacII	3
pRVMCS-2:: P _{driD} -driD (G18K A20K)	pRVMCS-2 with P _{driD} -driD (G18K A20K) at SacI/SacII	This study
pNPTS138-hfaB::P _{didA} -lacZ	pNPTS138 bearing hfaB-P _{didA} -lacZ-hfaB	This study
pNPTS138-hfaB::P _{driD} -lacZ	pNPTS138 bearing hfaB-P _{driD} -lacZ-hfaB	This study
pNPTS138- hfaB::P _{03891/01149} -lacZ	pNPTS138 bearing hfaB-P _{03891/01149} -lacZ-hfaB	This study

Supplementary Table 4. Oligonucleotides used in this study

Oligonucleotides	Sequence
qRT-PCR of rpoA	
oKRG360	ACATCGTCTACATCGGCGAC
oKRG361	GGCGAGCACTTCCTTGATCT
qRT-PCR of driD	
oKRG322	ACCTGAAGGTGCTCGACAAG
oKRG323	GTCGTGATAGATGCCGAAGC
qRT-PCR of didA	
oKRG356	GCTCATGCTGTTCGTGGTC
oKRG357	CTACCAGCCCCAGTGACG
qRT-PCR of CCNA_0.	3891
oKRG723	CTTCGCCGACATCCATCGC
oKRG724	GGTGACGCGGACGATCTG
qRT-PCR of CCNA_0	1149
oKRG717	CGGTCAGCAACGCCGTCAAC
oKRG718	GAGGCCGTAACCGGTCAGG
Cloning of hfaB UHR make pNPTS138-hfaB	(627/628), DHR (629/630) and <i>lacZ</i> (802/803) into pNPTS138 to
oKRG627	cagcagCTTAAGTGTCCTGGTTCGACGTCACAGC
oKRG628	cagcagGTCGACACCCGACGGCCTGAAGGG
oKRG629	cagcagAAGCTTGGATGTTGTAGTTCAGCTCGGTGATGC
oKRG630	cagcagACTAGTAACAATACCGTCATCGTCAATTCCAGCC
oKRG802	gatcgtcgacATGACCATGATTACGGAT
oKRG803	tactacAAGCTTTTATTTTTGACACCAGACCAACTG
Cloning of didA promo	oter to make pNPTS138-hfaB::P _{didA} -lacZ
oKRG783	cagcaggtcgacGGTGATCGTCTGGCCCATGG
oKRG784	cagcaggatccTCTCCTTcCcctcatctgatggaagcgacc
Cloning of driD promo	oter to make pNPTS138-hfaB::P _{driD} -lacZ
oKRG785	cagcaggtcgacCGAAGGTCCTTGGGTTCTCCAG
oKRG786	cagcagggatccTCTCCTTcTCATACGACCGTTTCTGTCGC
Cloning of CCNA_038	91/01149 promoter to make pNPTS138-hfaB::P03891/01149-lacZ
oKRG799	cagcaggtcgacGccgccgtcATACGACC
oKRG800	cagcagggatccTCTCCTTcCttgggttctccAGGGGTGATG
PCR of driD for fusion	cloning

oKRG316	GATCCCGCGGTTCATGCCCTGGCTCCTACCAC	
oKRG317	GATCGAGCTCGTCAGGCGCAGAGACGCAGGGGTTC	
Cloning of pRVMCS-2::P _{driD} -driD (G18K A20K)		
	,	
oKRG797	GCTGGCTAAGTCCAAAGAGGGGCTG	

Supplementary References

- 1. Evinger, M. & Agabian, N. (1977) Envelope-associated nucleoid from *Caulobacter crescentus* stalked and swarmer cells. *J. Bacteriol.* **132**, 294-301 (1977).
- 2. O'Neill, E.A., Hynes R.H. & Bender R.A. (1985) Recombination deficient mutant of *Caulobacter crescentus*. *Mol. Gen. Genet.* **198**, 275-278 (1985).
- 3. Gozzi, K., Salinas, R., Nguyen, V.D., Laub, M.T. & Schumacher, M. ssDNA is an allosteric regulator of the *C. crescentus* SOS-independent DNA damage response transcription activator, DriD. *Genes & Dev.* **36**, 618-633 (2022).
- 4. Schumacher, M.A., Cannistraci E., Salinas, R., Lloyd, D., Messner, E. & Gozzi, K. Structure of the WYL-domain containing transcription activator, DriD, in complex with ssDNA effector and DNA target site. *Nucleic Acids Res.* **52**, 1435-1449 (2023).
- 5. Modell, J.W., Kambara, T.K., Perchuck, B.S. & Laub, M.T. A DNA damage-induced, SOS-independent checkpoint regulates cell division in *Caulobacter crescentus*. *PLoS Biol.* **12**, e1001977 (2014).
- 6. Thanbichler, M., Iniesta, A.A. & Shapiro, L. A comprehensive set of plasmids for vanillateand xylose- inducible gene expression in *Caulobacter crescentus*. *Nucleic Acids Res.* **35**, 3137 (2007).