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Supplementary Note 1.  

3D Möbius insulators (MIs) and 3D Möbius Dirac semimetals (MDSs) 

 
Figure S1 | Extended 2D SSH model. a, Tight-binding model. b, Phase diagram versus the 

coupling ratios 𝜆௫/𝛾଴ and 𝜆௬/𝛾଴, which exhibits the trivial insulator, topological insulator 

and Dirac semimetal phases. c, Bulk bands exemplified for the 2D topological insulator with 𝛾଴ = 1 , 𝜆௫ = 2 , and 𝜆௬ = 0.5 . d, The projected band structure along the 𝑘௬  direction 

corresponding to c. e,f, Similar to c and d, but for the 2D Dirac semimetal with 𝜆௬ = 1.5  

compared with the topological insulator case in c and d. 

 

Here we propose a simple layer construction for 3D MIs and MDSs. As shown in Fig. S1a, 

the monolayer model is a 2D extension of the 1D Su-Schrieffer-Heeger (SSH) chain1,2. Its 

Hamiltonian reads ℎଶ஽ = ൫𝛾଴ + 𝜆௫cos𝑘௫ − 𝜆௬cos𝑘௬൯𝜎ଵ + (𝜆௫sin𝑘௫ − 𝜆௬sin𝑘௬)𝜎ଶ,      (S1) 

where 𝛾଴ is the intra-cell hopping, and 𝜆௫ and 𝜆௬ are the inter-cell hoppings along the x and 

y directions, respectively. Here we assume 𝛾଴, 𝜆௫, 𝜆௬ > 0. Note that the chiral symmetry is 

inherited from the SSH chains, since both the inter-cell hoppings 𝜆௫ and 𝜆௬ connect the sites 

of different sublattices. Figure S1b sketches the phase diagram versus the coupling ratios 𝜆௫/𝛾଴  and 𝜆௬/𝛾଴ . Besides a trivial insulator phase, it includes two topological insulator 

phases and one (twofold degenerate) Dirac semimetal phase too1. The phase boundaries are 

defined by 𝜆௫ = 𝛾଴ + 𝜆௬, 𝜆௬ = 𝛾଴ + 𝜆௫, and 𝛾଴ = 𝜆௫ + 𝜆௬. Similar to the 1D SSH model, 

the insulating phases can be characterized by winding numbers, featuring 1D zero-energy edge 

states along the y (or x) direction in the case of 𝜆௫ > 𝛾଴ + 𝜆௬ (or 𝜆௬ > 𝛾଴ + 𝜆௫); the topology 

of the Dirac semimetal phase is characterized by 𝑘௬- and 𝑘௫- dependent winding numbers, 
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manifested as the 1D zero-energy edge states connecting the projected Dirac nodes. The above 

physics is exemplified in Fig. S1c-S1f with specific hopping parameters. 

 

  
Figure S2 | Phase diagram for 3D MI and 3D MDS. a, A layered 3D model (left) and its 

effective decomposition (right), where all in-plane hopping signs are flipped every other layer. 

b, Phase diagram. The phase boundaries feature the generation or annihilation of fourfold 

degenerate Dirac points. 

 

Figure S2a shows the model for constructing the 3D MI and 3D MDS, where the 

monolayer is descriped by Eq. (S1). The resulted 3D system has two ℤଶ topological invariants. 

Figure S2a (bottom right) also shows the equivalent model consisting of two decoupled sectors 

(distinguished with the eigenvalues of ℒ௭), each of which can be viewed as a 2D massive SSH 

model with ±𝑚 = ±2𝑡cos(𝑘௭ 2⁄ ). Figure S2b shows the phase diagram of our 3D model, 

which inherits exactly from its monolayer one. That is, in addition to a 3D trivial insulator 

phase, it exhibits two 3D MI phases evolved from the topological insulator phases in 2D, and 

one 3D MDS phase evolved from the 2D Dirac semimetal phase. The parameters used to 

calculate the band structures for the 3D MI and the 3D MDS in the main text are 𝛾଴ = 1, 𝜆௫ =2 , and 𝑡 = 𝜆௬ = 0.5 , and 𝛾଴ = 1 , 𝜆௫ = 2 , 𝑡 = 0.5 , and 𝜆௬ = 1.5 , respectively. The band 

topologies are characterized by nontrivial ℤଶ  invariants ν௫  and ν௬ , which are simply 

extended from the 2D MI case. 

 

Supplementary Note 2. 
Construction of the topological invariants 

First, we briefly introduce the theoretical derivation of the topological invariant for the 2D 

MI. Considering the commutation relation ሾℒ௭,𝐻ଶ஽ሿ = 0  and the fact that ℒ௭  can be 

diagonalized as 𝑈ଶ஽ିଵℒ௭𝑈ଶ஽ = −𝑒௜௞೥/ଶ𝜎ଷ𝜌଴ , the 2D Hamiltonian 𝐻ଶ஽  (see main text) is 

block-diagonalizable, 𝑈ଶ஽ିଵ𝐻ଶ஽𝑈ଶ஽ = ℎଶ஽ା ⊕ ℎଶ஽ି , where the unitary matrix 𝑈ଶ஽ =
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⎟⎟⎞  and ℎଶ஽± = ቌ ±2𝑡cos ௞೥ଶ 𝛾௫ + 𝜆௫𝑒௜௞ೣ𝛾௫ + 𝜆௫𝑒ି௜௞ೣ ∓2𝑡cos ௞೥ଶ ቍ . Strikingly, the 

diagonalized Hamiltonian consists of two copies of 1D massive SSH chains with opposite 

onsite energies along the x direction, described by ℎଶ஽ା  and ℎଶ஽ି. A ℤଶ invariant ν can be 

defined3 on any one of them (e.g. ℎଶ஽ି below), ν = ଵଶగ ׬ ℱ𝑑ଶ𝑘ఆ + ଵగ 𝛾(𝑘௭଴) mod 2,                 (S2) 

where ℱ = (∇𝒌 × 𝒜)௬ is Berry curvature of the valence band (described by the wavefunction 𝜓௏), with 𝒜(𝒌) = ⟨𝜓௏|𝑖∇𝒌|𝜓௏⟩ being Berry connection, and 𝛾(𝑘௭଴) = ∮𝑑𝑘௫𝒜௫ is Berry 

phase evaluated along the momentum loop with 𝑘௭ = 𝑘௭଴.3 The integration region of the first 

term is specified as 𝛺 = ሾ𝑘௭଴,𝑘௭଴ + 2𝜋ሿ × 𝑆ଵ, as shown in Fig. S3a, to emphasize the 4π 

periodicity of ℎଶ஽ି along the 𝑘௭ direction. For simplicity, we set 𝑘௭଴ = 0 here (also for the 

following 3D cases). Note that, given the periodicity of ℎଶ஽ି, this ℤଶ invariant measures the 

obstruction of Stokes theorem in the half-Brillouin zone 𝛺. 3 

Now we extend the above derivation of topological invariant to the 3D MI and MDS, in 

which the translation operator is ℒ௭ = ቀ 0 1𝑒௜௞೥ 0ቁ 𝜎ଷ . Again, considering the commutation 

relation [𝐻ଷ஽,ℒ௭] = 0 , the 3D Hamiltonian 𝐻ଷ஽  can be block-diagonalized in the two 

eigenspaces of ℒ௭  (Fig. S2a) via the unitary transformation 𝑈ଷ஽ିଵ𝐻ଷ஽𝑈ଷ஽ = ℎଷ஽ା ⊕ ℎଷ஽ି , 

where ℎଷ஽± ൫𝑘௫,𝑘௬,𝑘௭൯ = ቌ ±2𝑡cos ௞೥ଶ 𝛾଴ + 𝜆௫𝑒௜௞ೣ − 𝜆௬𝑒௜௞೤𝛾଴ + 𝜆௫𝑒ି௜௞ೣ − 𝜆௬𝑒ି௜௞೤ ∓2𝑡cos ௞೥ଶ ቍ  and the 

unitary matrix 𝑈ଷ஽ =
⎝⎜
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⎟⎟⎞. In this case, we can define the ℤଶ 

invariants ν௫ and ν௬ for the 𝑘௫-𝑘௭ and 𝑘௬-𝑘௭ planes, respectively. We consider ν௫ first. 

Similar to the 2D MI case, as shown in Fig. S3b, we focus on ℎଷ஽ି and define ν௫ for any 

projective translation symmetry-preserved momentum plane A with fixed 𝑘௬ = 𝑘௬଴, ν௫ = ଵଶగ ׬ 𝑑ଶ𝑘ℱ஺ + ଵగ 𝛾൫𝑘௬଴, 0൯ mod 2,                 (S3) 

where ℱ = (∇𝒌 × 𝒜)௬ is Berry curvature of the valence band and 𝛾൫𝑘௬଴, 0൯ = ∮𝑑𝑘௫𝒜௫ is 

Berry phase evaluated along the specific momentum loop 𝑏 (see the red arrow). Again, this ℤଶ invariant measures the obstruction of Stokes theorem in the half-Brillouin zone in the plane 

A. Note that the choice of 𝑘௬଴ is arbitrary (since 𝐻ଷ஽ always commutes with ℒ௭), as long as 

the system is gapped at that momentum plane. Specifically, the topological invariant ν௫ = 1 
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for 𝜆௫ > 𝛾଴ + 𝜆௬, which gives rise to Möbius surface states on the y-z surface. Similarly, ν௬ 

can be defined on the projective translation symmetry-preserved momentum plane with fixed 𝑘௫ = 𝑘௫଴, and the topological invariant ν௬ = 1 for 𝜆௬ > 𝛾଴ + 𝜆௫, indicating Möbius surface 

states on the x-z surface. Figure S3c presents the numerical result for the 3D MI considered in 

the main text. It shows that ν௫ = 1 for any 𝑘௬଴ and ν௬ = 0 for any 𝑘௫଴, indicating the 

existence of Möbius surface states only on the y-z surface. Unlike the ℤଶ invariants in a 3D 

MI, ν௫  (ν௬ ) is 𝑘௬଴  (𝑘௫଴ ) dependent in the 3D MDS. This is exemplified in Fig. S3d. 

Specifically, the segment of 𝑘௬଴  with ν௫ = 1 coincides with the segment where Möbius 

surface states emerge at the y-z surface BZ (see main text). Meanwhile, there is a segment of 𝑘௫଴ with ν௬ = 1, which coincides with the segment where Möbius surface states emerge at 

the x-z surface BZ (not shown). 

 

  
Figure S3 | Topological invariants for the 2D MI, 3D MI, and 3D MDS. a, The integration 

domain for evaluating the ℤଶ  invariant ν  for the 2D MI. The red arrow indicates the 

integration direction for the Berry phase 𝛾(𝑘௭଴). b, The integration domain (with a fixed 𝑘௬଴) 

for evaluating the ℤଶ invariant ν௫ for the 3D MI. A similar treatment can be made for the 

calculation of ν௬. c, Numerical topological invariants ν௫ and ν௬ exemplified for the 3D MI 

considered in our main text. d, Similar to c, but for the MDS considered in the main text. The 

hoppings used for c and d are specified in the Supplementary Note 1. 

 

 Finally, we introduce a higher-order version of the ℤଶ invariant for the 3D HOMI. As 

mentioned in the main text, the 3D HOMI is a periodic stack of the extensively studied 



 6 / 12 
 

quadrupole model4,5. For the 2D quadrupole model, the topological invariant (quadrupole 

moment) can be viewed as the quantized polarization defined for Wannier bands. We follow 

this picture and extend the ℤଶ invariants above to a Wannier version 𝝂෤ . Again, we split the 

Hamiltonian of the 3D HOMI (Fig. 2d in the main text) into ℎଷ஽ା ⊕ ℎଷ஽ି, associated with 

ℎଷ஽± ൫𝑘௫,𝑘௬, 𝑘௭൯ =
⎝⎜⎜
⎜⎛ ±2𝑡cos ௞೥ଶ −𝛾௫ − 𝜆௫𝑒௜௞ೣ−𝛾௫ − 𝜆௫𝑒ି௜௞ೣ ∓2𝑡cos ௞೥ଶ 𝛾௬ + 𝜆௬𝑒௜௞೤ 00 −𝛾௬ − 𝜆௬𝑒௜௞೤𝛾௬ + 𝜆௬𝑒௜௞೤ 00 −𝛾௬ − 𝜆௬𝑒ି௜௞೤ ∓2𝑡cos ௞೥ଶ −𝛾௫ − 𝜆௫𝑒௜௞ೣ−𝛾௫ − 𝜆௫𝑒ି௜௞ೣ ±2𝑡cos ௞೥ଶ ⎠⎟⎟

⎟⎞. 

Here we focus on the sector ℎଷ஽ି, which can be viewed as a modified quadrupole model with 

staggered onsite energies. Similar to the case of 3D MI, we can define two ℤଶ invariants 𝜈෤௫ 

and 𝜈෤௬  on the 𝑘௫-𝑘௭  and 𝑘௬-𝑘௭  momentum planes, respectively. We consider 𝜈෤௫  in the 

following, and 𝜈෤௬ can be obtained similarly. According to Ref. 4, one can define the Wannier 

band subspaces ห𝓌௫,௞± ൿ = ∑ |𝑢௞௡⟩ൣ𝓋௫,௞± ൧௡௡ୀଵ,ଶ  by diagonalizing the Wilson loop operator, 

where ൣ𝓋௫,௞± ൧௡ is the n-th component of the eigenstates of the Wilson-loop operator, and |𝑢௞௡⟩ 
is the corresponding occupied state of ℎଷ஽ି. Note that here the Wannier band is 𝑘௫ and 𝑘௭ 

dependent in 2D momentum space. Therefore, similar to the definition of the ℤଶ invariants 

for the 3D MI, 𝜈෤௫ can be defined as 𝜈෤௫ = ଵଶగ ׬ 𝑑ଶ𝑘ℱ෨஺ + ଵగ 𝛾෤(0) mod 2,                 (S4) 

Where ℱ෨ = (∇𝒌 × 𝒜ሚ)௬ is the Berry curvature defined for the valence Wannier band 𝓌௫,௞ି , 

with 𝒜ሚ(𝒌) = ൻ𝓌௫,௞ି ห𝑖∇𝒌ห𝓌௫,௞ି ൿ  being the associated Berry connection, and 𝛾෤(0) =∮𝑑𝑘௫𝒜ሚ௫ is Berry phase defined in the Wannier subspace with fixed 𝑘௭ = 0. The integration 

region 𝐴 is a momentum plane similar to the 3D MI case (see Fig. S3b), which emphasizes 

the 4π periodicity of the Wannier band along the 𝑘௭-direction.  

 

 
Figure S4 | Topological invariants calculated for the 3D HOMI. a, 𝜈෤௫ (color) versus the 

coupling ratios 𝛾௫/𝜆௫  and 𝛾௬/𝜆௬ . The red dashed line denotes the theoretically predicted 

phase boundary, which features zero Wannier gap. b, The same as a, but for 𝜈෤௬. 
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Figure S4 shows our numerical results for the two ℤଶ invariants 𝜈෤௫ and 𝜈෤௬ versus the 

coupling ratios 𝛾௫/𝜆௫  and 𝛾௬/𝜆௬ , which are quantized and change values when the 

corresponding Wannier bandgap closes and reopens (red dashed lines). The combination of 

Fig. S4a and Fig. S4b yields the phase diagram. Note that this model can be viewed as a critical 

point of the octupole topological insulator when there is no dimerization along the z direction, 

previously characterized by the octupole moments4-7. The phase boundary revealed by the ℤଶ 

invariants 𝜈෤௫ and 𝜈෤௬ coincide with the previous results obtained by the octupole moments. 

 

Supplementary Note 3.  

Acoustic designs of the 2D MI and 3D HOMI systems 

 

 Physically, the tight-binding models can be implemented with cavity-tube structures in 

acoustic systems6-8, where the cavity resonators emulate atomic orbitals and the narrow tubes 

introduce hoppings between them. The onsite energy depends mostly on the geometry of the 

cavity, while the hopping strength depends mostly on the size of the connecting tubes. 

Interestingly, the key ingredient of the tight-binding model (i.e., 𝜋-flux) to achieve the ℤଶ-

projective translation symmetry can be easily realized in our acoustic crystals, in which the 

sign of hoppings is controlled by the connectivity of the coupling tubes6. Airborne sound is 

considered inside the whole structure, whose walls are regarded as acoustically rigid due to the 

large impedance mismatch to air. Throughout this work, air density 𝜌 = 1.29 kg mିଷ and 

sound speed 𝑐 = 344.8 m sିଵ  are used for full-wave simulations, performed with the 

commercial software COMSOL Multiphysics (Pressure Acoustics Module). 

 

 Figures S5a and S5d demonstrate the detailed unit-cell geometries of our acoustic MI in 

2D and HOMI in 3D, respectively. Specifically, each cuboid cavity resonator has a size of 30 mm × 15 mm × 8 mm, which ensures a dipole resonance of frequency ~5746 Hz far away 

from the other undesired cavity modes. For our 2D MI structure, the lattice constants are 𝑎 =𝑐 = 75 mm, and the square tubes of widths 𝑤ଵ = 3 mm and 𝑤ଶ = 7 mm correspond to the 

couplings 𝑡 = 𝛾௫ and 𝜆௫ in the tight-binding model. For our 3D HOMI system, the lattice 

constants are 𝑎 = 𝑐 = 72.6 mm and 𝑐 = 43.6 mm, and the widths of the square tubes are 𝑤ଵ = 1.8 mm and 𝑤ଶ = 5.0 mm in the x-y plane and 𝑤ଷ = 2.2 mm along the z direction, 

which correspond to the couplings 𝛾௫ = 𝛾௬ and 𝜆௫ = 𝜆௬ and 𝑡, respectively. In both cases, 

the sign of the hoppings, controlled by the spatial positions of the coupling tubes with respect 

to the cavities, is consistent with those depicted in Figs. 2a and 2d (see main text). 
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Figure S5 | Acoustic constructions of the 2D MI and 3D HOMI. a, Unit-cell geometry of 

the 2D acoustic MI, where the connecting tubes corresponding to positive and negative 

couplings are marked in red and blue, respectively. b, Bulk band structure of the designed 2D 

acoustic MI (blue circles), compared with the result of tight-binding modelling (red lines). c, 

Projected spectra of the 2D acoustic MI (left) and its comparative result of tight-binding 

modelling (right). d-f, Similar to a-c, but for the 3D HOMI. 

 

We fit the effective parameters (onsite energy and hoppings) based on the bulk dispersion 

simulated with COMSOL Multiphysics, in which high-symmetry momenta are particularly 

taken into accounted. Figures S5b and S5e show the bulk band structures of our 2D MI and 3D 

HOMI, respectively. Notice that the numerical bulk bands are not strictly twofold degenerate 

as predicted by theory, due to the presence of unavoidable long-range and inter-mode couplings 

that weakly break the symmetries in the real structures. (This effect may be reduced by 

introducing more narrower coupling tubes and using the resonant cavity modes far away from 

the others.) Therefore, to fit the bulk dispersion as a whole, we consider the average frequency 

of the split bands. For the case of 2D MI, we fit the onsite energy 𝑓଴ = ଵଶ (𝑓௰ + 𝑓௹), where 𝑓௰ 

and 𝑓௹ are average frequencies of the conduction and valence bands at the 𝛤 and 𝛭 points, 

respectively. We also fit the hoppings based on the relations 𝜆௫ − 𝛾௫ = ଵଶ  ∆ெ and 𝜆௫ + 𝛾௫ = ଵଶ  ∆௓ achieved from the eigen problem, where ∆ெ and ∆௓ are respectively the band gaps at 

the 𝛭 and  𝑍 points. For the 3D HOMI, we fit the onsite energy 𝑓଴ = ଵଶ (𝑓௰ + 𝑓஺), and the 

hoppings based on the relations ඥ2(𝜆௬ + 𝛾௬)ଶ + 4𝑡ଶ = ଵଶ  ∆௰, ඥ2(𝜆௬ − 𝛾௬)ଶ + 4𝑡ଶ = ଵଶ  ∆ெ, 

and √2(𝜆௬ − 𝛾௬) =  ଵଶ  ∆஺, where all the notions follow the convention above. Note that for 
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simplicity we have used the same coupling tubes to simulate the hoppings 𝛾௫ and 𝑡 in the 2D 

MI case, and the same coupling tubes to simulate the hoppings 𝛾௫ (𝜆௫) and 𝛾௬ (𝜆௬) in the 3D 

HOMI case. Through extracting the eigenfrequencies at high-symmetry momenta from the 

numerical band structures, the fitting process leads to 𝑓଴ ≈ 5689 Hz, 𝑡 = 𝛾௫ ≈ 68 Hz and 𝜆௫ ≈ 261 Hz for our 2D MI, and 𝑓଴ ≈ 5769 Hz, 𝑡 ≈ 50 Hz, 𝛾௫ = 𝛾௬ ≈ 11 Hz, and 𝜆௫ =𝜆௬ ≈ 157 Hz for our 3D HOMI. Note that the onsite energies for the coupled 2D and 3D 

structures slightly deviate (less than 1%) from that estimated with a single cavity resonator. 

As shown in Fig. S5b and Fig. S5e, the full-wave simulated bulk bands (blue circles) are 

fitted well by the results (red lines) calculated from the tight-binding models with the effective 

hoppings and onsite energies. Note that the numerical bulk bands are not strictly symmetrical 

about the central frequency 𝑓଴, and also not strictly twofold (or fourfold) degenerate, owing to 

the presence of longer-range couplings and couplings to other cavity modes. These unwanted 

effects can be reduced through an optimization process6. The effectiveness of the fitting 

parameters is further demonstrated in the edge and hinge spectra in Fig. S5e and Fig. S5f. 

 

Supplementary Note 4.  

Acoustic response to local excitations for the 2D MI 

 
 

Figure S6 | Experimental acoustic response to local excitations in the 2D MI. a, Normalized 

bulk (cyan) and edge (red) spectra of the 2D MI, measured respectively at the sites colored in 

the inset. b, Intensity profiles extracted at two representative frequencies, exhibiting 

unambiguously as bulk (6000 Hz) and edge (5720 Hz) states. 
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 We have also measured the acoustic response to local excitations6,7 in the 2D MI. Instead 

of using the sample considered in the main text, here we consider a narrower sample (with all 

others being the same). Figure S6a shows the average intensity spectra extracted for the bulk 

and edge regions (see inset). The results coincide with the simulated band structure in Fig. S5c. 

Note that the edge spectrum (red line) exhibits a moderate dip around 5720 Hz due to the lower 

density of states in the middle of the edge bands, while the two peaks correspond to the 

frequency edges of the edge bands. The presence of the Möbius edge states can be further 

demonstrated in Fig. S6b, the intensity profile plotted at 5720 Hz (right panel), which is in 

sharp contrast to the bulk states plotted at 6000 Hz (left panel). 
 

Supplementary Note 5. 

Experimental scheme for detecting the eigenvalues of the projective translation symmetry 

  

Here we describe the experimental scheme for detecting the eigenvalues of the projective 

translation symmetry. We focus on the 2D MI case and a similar treatment can be done for the 

3D HOMI system. 

In general, an edge state can be written in the form of |𝜓⟩ = (𝜙஺,𝜙஻,𝜙஼ ,𝜙஽)், where 𝜙௜ 
represents the component of the sublattice 𝑖 (𝑖 = 𝐴~ 𝐷, as labeled in the inset of Fig. S7a). 

For brevity, the exponential decay of the eigenstate away from the sample edge is not explicitly 

expressed. When the projective translation operator ℒ௭ = 𝜎ଷ ቀ 0 1𝑒௜௞೥ 0ቁ acts on |𝜓⟩, we have ℒ௫|𝜓⟩ = ൫𝜙஻,𝜙஺𝑒௜௞೥ ,−𝜙஽,−𝜙஼𝑒௜௞೥൯் = ℓ௦(𝜙஺,𝜙஻,𝜙஼ ,𝜙஽)்,        (S5) 

where ℓ௦ = 𝑠𝑒௜௞೥ ଶ⁄  (𝑠 = ±) are the eigenvalues of ℒ௭. Therefore, the eigenvalues ℓ௦ can be 

written in terms of 𝜙஺ and 𝜙஻  (i.e., ℓ௦ = 𝜙஻ 𝜙஺⁄  = 𝜙஺𝑒௜௞೥ 𝜙஻⁄ ) or in terms of 𝜙஼  and 𝜙஽ (i.e., ℓ௦ = −𝜙஽ 𝜙஼⁄  = −𝜙஼𝑒௜௞೥ 𝜙஽⁄ ). In real measurements, we prefer ℓ௦ = 𝜙஻ 𝜙஺⁄  or ℓ௦ = −𝜙஽ 𝜙஼⁄  for compactness. More specifically, we apply ℓ௦ = 𝜙஻ 𝜙஺⁄  for the bottom 

edge and ℓ௦ = −𝜙஽ 𝜙஼⁄  for the top edge, considering the facts that the edge state concentrates 

on the sublattices 𝐴 and 𝐵 at the bottom edge and on the sublattices 𝐶 and 𝐷 at the top 

edge (as exemplified in Fig. S7b), respectively. 

Notice that the eigenvalue winding can be fully reflected by its phase evolution in the 

frequency-momentum spectrum, since the magnitude of ℓ௦ is always unitary. More explicitly, 

we can extract the phase of eigenvalue, arg(ℓ௦), according to the formulae arg(ℓ௦) = arg(𝜙஽) − arg(𝜙஼) + 𝜋,                 (S6a) arg(ℓ௦) = arg(𝜙஻) − arg(𝜙஺),                   (S6b)             

for the top and bottom edges, respectively. Therefore, the phase information of ℓ௦ can be 

simply obtained from the phase difference between two different sublattices in a single unit 

cell, which greatly facilitates our experimental identification for the phase signature of the 

Möbius edge states. Below, assisted with a detailed numerical example, we demonstrate how 

the eigenvalue’s phase evolution is measured in our experiments. 
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Figure S7 | Detecting the eigenvalues of the projective translation symmetry. a, Phase 

winding (color) of the eigenvalues ℓ± encoded to the edge state dispersions (symbols). The 

color lines are simulated with a ribbon structure finite in the x direction but periodical in the z 

direction, and the color circles are simulated with a sample finite in both directions. Inset: Unit-

cell geometry, labeled by four sublattices 𝐴~𝐷. b, Amplitude (left) and phase (right) patterns 

for an edge state simulated with the ribbon structure. It shows that the pressure field 

concentrates on the sublattices 𝐶 and 𝐷 for the top edge state of the sample. Note that here 

we intentionally consider 5580 Hz (associated with 𝑘௭ = 0  or equivalently 𝑘௭ = 2𝜋/𝑐) to 

show the out-of-phase pattern on the sublattices 𝐶 and 𝐷, which leads to arg(ℓ௦) = 0 or 

equivalently 2𝜋 [see Eq. (S6a)]. c, Numerical setup for extracting the band structure of the 

edge states and the associated phase information of ℓ௦. The former is obtained by Fourier 

transforming the pressure fields of all equivalent 𝐶 and 𝐷 sublattices along the top edge, 

while the latter is simply obtained from the 𝐶 and 𝐷 sublattices marked in the sample. 

 

Take the top edge as an example. Figure S7c shows our numerical setup, which resembles 

the experimental one in Fig. 3a (see main text). An acoustic point-source is positioned in the 

middle of the top edge, which excites the edge states propagating in the ±𝑧  directions 

simultaneously. Specifically, the rightward- and leftward-propagating edge states correspond 

to the ℓା and ℓି sectors, respectively. Therefore, one can detect the ℓା-locked and ℓି-

valued edge states in the right and left sample regions, respectively. (Note that reflections of 

the edge states from the lateral ends can be ignored thanks to the presence of the propagation 
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dissipation in real experiments. This is captured in our full-wave simulations by adding a tiny 

imaginary part to the sound speed.) To identify the Möbius twist in ℓ௦  in the frequency-

momentum space, we first acquire the numerical band structure of the 1D edge states, which 

can be obtained from spatial Fourier transform like that implemented for our experiments (that 

is, for each momentum 𝑘௭ we extract the peaked frequency as ‘eigenfrequency’). Then, we 

calculate arg(ℓ௦) at each (𝑘௭-dependent) ‘eigenfrequency’ according to Eq. (S6a) by using 

the phases extracted from the sublattices 𝐶 and 𝐷 in any given unit away from the source 

(see Fig. S7c). Figure S7a shows the numerical band structure (color dots) encoded with the 

phase information of the eigenvalues ℓ௦. It reproduces well the eigenproblem result (color 

lines) calculated for a perfect structure periodic in the z direction. 
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