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Abstract

Marine dissolved inorganic carbon (DICl) is a key component of the global ocean carbon cycle.
Over recent decades, DIC has increased due to rising anthropogenic CO», but the component of
DIC change due to the biological carbon pump (BCP), which transfers carbon from the surface to
the deep ocean, remains highly uncertain. Using the GOBAI-O> data product and the CANYON-
B and CONTENT algorithms, we reconstructed the 3-dimensional global DIC ot distribution from
2004 to 2022 and decomposed it into DICso (organic matter degradation), DICca (carbonate
dissolution), and DICanm (anthropogenic CO2). We found a significant DICota1 change throughout
the water column, with surface concentrations increasing by ~1.0 £ 0.23 umol kg™ yr™', driven by
DICanth (>90% contribution). Despite a globally constant signal in DICsof, substantial regional
trends emerged. Changes in circulation, particle sinking, and remineralization altered the vertical
and horizontal distributions of DICsf. In some regions, DICsos accumulated at shallower depths,
shortening residence times; in others, it was transported deeper, enhancing long-term storage.
Although these widespread and divergent trends had little net effect on the global DICsos inventory
from 2004-2022, the emerging spatial reorganization of the BCP may signal an evolving instability
in the ocean carbon sink under continued climate forcing.
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Main text

The ocean is a major CO> reservoir and sink. It holds ~37,000 GtC of dissolved inorganic carbon
(DIC)—40 times more than the atmosphere (Siegenthaler & Sarmiento, 1993; Friedlingstein et al.,
2025). Anthropogenic CO; emissions, projected to increase by ~50% by 2050 relative to present
levels (Masson-Delmotte et al., 2021), drove the accumulation of dissolved inorganic carbon (DIC)
in seawater at a rate of ~3.2 + 0.7 GtC per year from 2004 to 2019 (Keppler et al., 2023).

A major pathway for ocean carbon sequestration is the biological carbon pump (BCP), which
transfers carbon from the surface to the ocean interior through two linked fluxes (Frenger et al.,
2024). The export flux is the downward movement of biogenic carbon from the surface ocean
(Dugdale & Goering, 1967; Boyd et al., 2019). The return flux involves the transformation of this
exported carbon back into dissolved inorganic carbon (DIC), followed by its redistribution via
ocean circulation.

The BCP is composed of two pumps which have opposite effects on marine CO- uptake from the
atmosphere. The soft tissue pump removes DIC from the ocean surface through particulate organic
carbon (POC) formation by marine phytoplankton. POC is then exported to depth, where it is
eventually degraded by microbes and returned to DICson (Volk & Hoffert, 1985). The respired
DICsor: that accumulates below the winter mixed layer constitutes the biologically sequestered
carbon relevant to long-term climate regulation. The depth and residence time of this respired
DICsoft govern the BCP’s climate impact (Kwon et al., 2009; Riebesell et al., 2009; Schlunegger
et al., 2019; Frenger et al., 2024). The carbonate counter-pump influences DIC through carbonate
formation in surface waters, which emits CO by reducing alkalinity (Volk & Hoffert, 1985). As
calcium carbonate particles sink and dissolve at depth, they release DICcaw and alkalinity,
neutralizing CO> (Feely et al., 2004; Sulpis et al., 2021). Therefore, the carbonate counter-pump
opposes the soft tissue pump in its effect on marine CO» uptake from the atmosphere (Riebesell et
al., 2009). Through this two-part sequence of processes of an export flux and a return flux, the
BCP reduces atmospheric CO; by at least 163 ppm relative to a world without it (Tjiputra et al.,
2025). The efficiency of the BCP depends mainly on the fraction of exported carbon that is
sequestered in the return flux of the BCP as DICson. This varies by region, and is influenced by
ecosystem structure and functioning (driven by nutrients, temperature, light, and ocean
stratification; Falkowski et al., 2000; Boyd & Trull, 2007), along with the combined effects of
remineralization depth and water residence time in the ocean interior (Ricour et al., 2023).

Despite improved estimates of marine anthropogenic CO: uptake, uncertainties remain in its
spatiotemporal variability and in the response of other DIC sources and sinks to environmental
change (Gruber et al., 2023; Keppler et al., 2023). In particular, the response of the BCP to climate-
driven change is still not well characterized. This gap is listed as a research priority for improving
confidence in major Earth system processes assessed by the Intergovernmental Panel on Climate
Change (IPCC; Pillar et al., 2024). Multiple interacting feedbacks, including changes in
stratification, remineralization, particle dynamics, and ecosystem structure, can either amplify or
dampen carbon sequestration (i.e. DICso1), with regionally divergent outcomes (Henson et al.,
2022). The economic value of BCP-mediated sequestration has been placed at over US$900 billion
per year (Berzaghi et al., 2025). Satellite data suggest a global increase in phytoplankton biomass
in recent decades, though trends remain uncertain and spatially variable (Zhao et al., 2025).
Likewise, the future BCP response remains uncertain, with Earth system models diverging on the
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magnitude and direction of POC export changes across the 21st century, particularly at deeper,
climate-relevant depth horizons (Henson et al., 2022; Walker & Palevsky, 2025).

The global inventory of DICsort has been considered relatively constant over recent decades
compared to DICann (Fig. 1; Gruber et al., 2023). However, studies suggest that since the late 20"
century, POC export and the efficiency of DICson sequestration have varied regionally, driven by
shifts in circulation, nutrient supply, and plankton community structure (Humphreys et al., 2016;
Frob et al., 2018; Keppler et al., 2023; Delaigue et al., 2024). Recent observations show increasing
DIC, with anthropogenic CO; driving gains near the surface and into intermediate depths, while
DICsort appears to have been redistributed—from mid-latitudes to the tropics and from the surface
to depth (>200 m)—without a net gain or loss in global total DICso, based on the residual after
subtracting DICann from the total DIC inventory (Keppler et al., 2023). Climate-driven changes in
circulation, nutrient supply, and plankton community composition may have led to regionally
contrasting patterns in organic carbon export and sequestration of respired DICsoe in the return
flux of the BCP, shifting the geographic pattern of DICso storage hotspots (Ciais et al., 2014;
Henley et al., 2020; Lenborg et al., 2020; Bonino et al., 2021; Chaabane et al., 2024). This suggests
that while the global magnitude of BCP-driven sequestration has not changed, its regional
expression and sequestration efficiency are being reshaped by underlying climatic drivers, either
independently or through shared regulating mechanisms.

Until now, it has been unclear whether this spatial reorganization of sequestered DICsor reflects
true changes in BCP efficiency or a redistribution of DICso driven by circulation changes. This
has remained unsolved due to observational gaps in space and time. This uncertainty limits the
ability to separate variability in DICsot sequestration from global trends and to evaluate the impact
of the BCP on long-term marine carbon sequestration. One way to address this is by deriving
DICsot: (i.e., the respired and sequestered component of the soft tissue pump) directly from
dissolved oxygen using Redfield stoichiometry, leveraging the global, high-resolution coverage of
dissolved oxygen data from ship campaigns and BGC-Argo to enable spatiotemporally resolved
assessments of biological carbon storage and emerging sequestration patterns (Redfield, 1958;
Redfield, 1963; Anderson & Sarmiento, 1994).

In this study, we estimated 3D fields of DIC across space, time, and depth by applying the
CANYON-B and CONTENT algorithms (Sauzede et al., 2017; Bittig et al., 2018) to the GOBAI-
Oz v2.1 product (Sharp et al., 2023). The resulting dataset, referred to as GCC-DIC (GOBAI-O-
CANYON-B CONTENT-DIC), provides monthly DIC values on a 1° x 1° grid from 2004 to 2022,
spanning 58 depth levels from 2.5 m to 1975 m (with higher resolution nearer the surface). We
used this dataset to compute rates of total DIC change (ADICotl), which we decomposed into its
anthropogenic (ADICanm), biologically respired (ADICsoft), and carbonate pump (ADICcar)
components. To quantify BCP-driven DICsort sequestration, we calculated the accumulation and
redistribution of DICsort below the winter maximum mixed layer depth (MLD) and integrated this
down to 1975 m. For validation, we applied the same decomposition approach to a compilation of
observational time series of carbonate chemistry from Lange et al. (2024). Additionally, we
determined the depth at which 50% of the DICsort inventory was stored and assessed whether it
deepened or shoaled over the study period, indicating changes in DICsor sequestration efficiency
relevant to long-term climate feedbacks.
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122 Figure 1. Global mean rates of change in each DIC component as a function of depth (m) within the upper 1975 m
123 for the GCC-DIC dataset. Components include total DIC (DIC:i; orange), soft-tissue pump DIC (DICsos; green),
124 carbonate pump DIC (DICcarn; light green), and anthropogenic DIC (DICann; black). These vertically resolved rates
125 represent temporal changes in DIC concentrations per unit mass and form the basis for depth-integrated estimates
126 shown in Figure 2. Shaded areas indicate =16 uncertainty. Vertical axis line shows zero change.

127

128  From 2004 to 2022, global mean ADICiota derived from GCC-DIC in the upper 50 m was 1.0 +
129  0.23 umol kg! yr!, consistent with previous studies (Sabine et al., 2004; Gruber, Clement, et al.,
130  2019). The rate of DICal increase attenuated with depth, reaching 0.1 + 0.13 mol kg! yr'! near
131 2000 m (Fig. 1). Over 90% of the DICotl increase in the upper 50 m during the study period (2004—
132 2022) was attributable to ADICanmh. This pattern reflects the dominance of anthropogenic CO»



133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149

invasion over biological or carbonate pump processes on (multi-)decadal timescales, consistent
with expectations under transient climate forcing (Keppler et al., 2023; Frenger et al., 2024).

The contribution of the BCP to ADICiotal, ADICsoft, did not differ from zero within the uncertainty
bounds and remained globally small, with a mean of 0.05 = 0.09 umol kg! yr! in the upper 50 m
(Fig. 1). This negligible contribution was expected, as the BCP primarily redistributes carbon
vertically rather than adding new DIC to the system (Passow & Carlson, 2012), so its net impact
on globally averaged DICal remained small on decadal timescales (Martin et al., 1987; Burd et
al., 2010; Henson et al., 2011; Boyd et al., 2019). This observation is consistent with recent work
emphasizing that the climatic relevance of the BCP arises not from net DIC addition to the ocean’s
interior but from the sequestration of remineralized DICsof at depth, isolating it from the surface
ocean and atmosphere (Frenger et al., 2024). As such, changes in the vertical distribution of DICsor
may reflect evolving storage patterns rather than changes in its global inventory.

ADICecarv did not contribute significantly to global DIC change between 2004 and 2022, as it
remained indistinguishable from zero at all depths, and is therefore excluded from further analysis.

Biological carbon pump redistribution
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Figure 2. Spatial redistribution of the soft tissue pump’s return flux through depth-integrated (i.e., 2.5 to 1975 m)
rates of change in DICsof from 2004 to 2022 for the GCC-DIC product. Units are mol m2 yr'!, calculated by converting
local trends in ADICsof: (Fig. 1) to volumetric units and integrating from 2.5 to 1975 m depth. Locations of independent
ocean time series from the SPOTS compilation (Lange et al., 2024), used for validation, are shown as labelled circles.
Comparison with these in situ time series confirms that GCC-DIC aligns with observed variability while also
highlighting deviations that may stem from short-term fluctuations in trend emergence (Figs. S7, S8, S9; see Methods;
Henson et al., 2016; Lange et al., 2024). Uncertainty in ADICsot: is quantified as the standard deviation across a Monte
Carlo ensemble (n = 1000) incorporating measurement and stoichiometric uncertainty. Stippling highlights grid cells
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where the relative uncertainty exceeds the 90th percentile globally, indicating low signal-to-noise ratios. Contours
lines are drawn every 0.5 mol m? yr'!. Minimum and maximum values are displayed at the ends of the color bar.

Despite no change in ADICsore globally (Fig. 1), our analysis exposes regional shifts in DICson
storage (Fig. 2). This spatial variability reflects climate-driven shifts in physical, biogeochemical,
and ecological processes that are reshaping the efficiency and structure of BCP-driven carbon
sequestration (Zhao et al., 2025).

The return flux of the soft tissue pump, when integrated over the upper 2 km, appears to have
decreased across the equatorial Atlantic and Indian Oceans, and south subtropical Pacific (Fig. 2).
This trend is consistent with the effects of climate-driven ocean warming, which enhances
stratification, reduces nutrient supply to the euphotic zone, and ultimately limits net primary
production (Laufkétter et al., 2016; Boyd et al., 2019; Wilson et al., 2022; Zhao et al., 2025).
Reduced particle export likely limited the transfer of remineralized carbon to depth, as seen in
subtropical gyres where declining DICsort dominates the sequestration signal (Fig. 2). Increased
stratification may also have shoaled POC remineralization, thereby increasing the proportion of
DICsort retained at shallower depths and reducing the fraction transferred to long-term storage
(Nowicki et al., 2022; Ricour et al., 2023).

Conversely, several regions showed an increase in depth-integrated DICsort over the upper 2 km.
Across most of the Southern Ocean, positive trends in depth-integrated DICsot correspond to areas
where reduced sea-ice extent and enhanced vertical mixing have promoted nutrient supply and
larger phytoplankton blooms (Arteaga et al., 2019; Henley et al., 2020; Sallée et al., 2021). These
conditions likely favored high POC export efficiency, leading to deeper remineralization and
greater accumulation of DICso in the mesopelagic. This aligns with positive depth-integrated
ADICsort across the Southern Hemisphere’s subpolar and subtropical basins, particularly in the
Southern Ocean where vertical profiles also reveal deep remineralization and subsurface
accumulation (Fig. 4a). In these areas, the BCP's return flux may have increased on interannual to
decadal timescales due to climate-driven circulation shifts, including intensified Ekman
divergence and strengthened subduction, which influence the vertical redistribution and retention
timescales of DICsof in the ocean interior (Boyd & Trull, 2007; DeVries et al., 2012).

The vertical redistribution of DICs,f is not solely governed indirectly by nutrient-driven changes
in export efficiency, but also directly by shifts in ecosystem structure. Warming, acidification, and
nutrient limitation have been linked to shifts toward smaller phytoplankton and reduced diatom
dominance, leading to slower-sinking particles with shallower remineralization depths (i.e., more
DICsort in the upper mesopelagic; Laufkatter et al., 2016; Kwiatkowski et al., 2020; Barrett et al.,
2025). These ecosystem shifts may have resulted in the pronounced decrease in depth-integrated
DICsof: observed in the western subtropical Pacific (Fig. 2), regions where enhanced stratification
has reduced overall particle export without compensatory increases in nutrient supply from
upwelling or vertical entrainment. Although stratification can increase shallow DICsofn
accumulation, the net integrated effect is a decrease in long-term carbon storage at depth. These
changes not only reduce POC export efficiency but may also shorten the sequestration timescale
of the resulting DICof:.

In contrast, regions typically associated with high nutrient supply and POC export—such as
equatorial upwelling zones and coastal upwelling systems adjacent to eastern boundary currents—
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show mixed signals in depth-integrated ADICson (Fig. 2). While some areas (e.g. eastern tropical
Pacific) exhibited neutral or weakly positive ADICsort When integrated from 2.5 to 1975 m, others
(e.g. eastern tropical Atlantic near CVOO) showed negative values despite persistent upwelling
(Koseki et al., 2024). These discrepancies likely arose from decoupling between surface POC
export and deeper DICso: sequestration: enhanced POC export at the surface can coincide with
shallower remineralization of organic matter under warming and deoxygenation, reducing the
effectiveness of deep DICsor sequestration despite sustained surface productivity (Marsay et al.,
2015; Weber et al., 2016; Henson et al., 2019; Frenger et al., 2024). While warming accelerates
microbial respiration, moderate deoxygenation may shift remineralization into shallower, suboxic
zones, where anaerobic microbial processes continue the degradation of POC. However, in fully
anoxic or euxinic waters, remineralization may slow, potentially enhancing deep transfer by
limiting zooplankton and aerobic microbial activity (Cavan et al., 2017; Oschlies et al., 2018).

The subpolar gyre of the North Atlantic displays a dipolar pattern, with positive ADICso in the
western subpolar and Arctic outflow regions, but negative values near deep-water formation zones
such as the Labrador and Irminger Seas. These opposing trends suggest that reduced ventilation
and weakened overturning circulation (Yashayaev & Loder, 2016; Caesar et al., 2018) may have
suppressed the delivery of DICsos to the interior in some regions while enhancing subsurface
accumulation elsewhere. In surface layers, anthropogenic CO: uptake can also mask biologically-
driven changes in the DICsn inventory, particularly in regions with strong air—sea CO: fluxes
(Gruber et al., 2023; Asselot et al., 2024; Nowicki et al., 2024). As such, the observed patterns in
ADICsof: reflect net biological effects superimposed on background anthropogenic signals,
especially in high-latitude and high-CO;-flux zones (Gruber, Landschiitzer, et al., 2019; Nowicki
et al., 2024).

Overall, the spatial variability in ADICsort did not signal a globally uniform weakening or
strengthening of the BCP, but rather a redistribution arising from regional changes in POC export
efficiency and the subsequent vertical transport and storage of respired DICsos (Frenger et al.,
2024). Regional processes driven by climate-linked changes in stratification, nutrient pathways,
and ecosystem dynamics appear to offset each other at the global scale (Friedlingstein et al., 2023).
Yet this apparent compensation may be decadal and non-stationary. As regional imbalances
accumulate, they may eventually destabilize the BCP’s global sequestration efficiency,
particularly if key thresholds in stratification or deoxygenation are crossed. Whether this
compensation can persist under accelerating climate change remains an open question.
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Dynamic sequestration horizon
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Figure 3. (a) Net ADICson (mol m?) sequestered below the maximum climatological MLD and down to 1975 m, and
(b) change in DICson 50% sequestration depth (m yr™!), both from 2004 to 2022 based on the GCC-DIC dataset. Values
in (a) reflect the time-integrated accumulation of biologically sequestered carbon below the maximum mixed layer
depth (MLD) extending the depth-integrated annual rates shown in Figure 2. Positive trends in (b) indicate a deepening
of carbon storage; negative trends indicate shoaling. Uncertainties were quantified as the standard deviation across a
Monte Carlo ensemble (n=1000) incorporating measurement and stoichiometric uncertainties. Stippling highlights
grid cells where the relative uncertainty exceeds the 90th percentile globally, indicating low signal-to-noise ratios. In
(a), this uncertainty reflects variability in sequestration estimates while in (b), it indicates greater sensitivity where
changes in sequestration depth are small or highly variable. Contours lines are drawn every 10 mol m™ for (a) and
every 1 m yr'! for (b). Minimum and maximum values for each panel are displayed at the ends of the respective
colorbars. Locations corresponding to the four quadrant scenarios illustrated in Figure 4 are also marked: (a) increasing
carbon storage and deepening remineralization (circle, 55°S 0°E); (b) reduced storage and shoaling remineralization
(square, 58°N 51°W); (c) increased carbon at depth but shallower mean remineralization (triangle, 31.5°N 136.5°E);
and (d) declining storage but deeper remineralization (diamond, 63.5°N 57.5°W).



249
250

251
252
253
254
255
256
257
258
259
260
261
262
263

a) + DICsoft, + 50% depth [O - Southern Ocean Region] b) - DICsoft, - 50% depth [0 - North Atlantic Region]
0

250 4 q

500 A q

1000 A 4

Depth (m)

1250 A q

1500 A d

1750 A q

2000 T T T T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

ADICsoft (pmol kg~t yr=1) ADICsoft (pmol kg™t yr=1)
c) + DICsost, - 50% depth [A - North Pacific Region] d) - DICsft, + 50% depth [ - North Atlantic Region]

250 4 q
500 4 1
750 q

1000 A q

Depth (m)

1250 q

1500 A i

1750 A 9

2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 -1.00 -075 -050 -025 0.00 025 050 075 100
ADICsof (umol kg~ yr=1) ADICgott (Hmol kg™t yr=1)

Local ADICsore = Global mean ADICsoft Max MLD ---- 50% depth (2004) - 50% depth (2022)

Figure 4. Local rates of change in DICso as a function of depth (m) within the upper 1975 m for the GCC-DIC dataset
at four representative locations, as shown in Figure 2. Global mean rate of change in DICson as seen in Figure 1 is
shown in green. The horizontal red line indicates the site-specific maximum climatological mixed layer depth
(MLDnax) from Holte et al. (2017), while the dashed and dotted lines show the yearly mean 50% sequestration depths
of DIC, for 2004 and 2022, respectively. Panels illustrate four scenarios following Figure 3: (a) increasing carbon
storage and deepening remineralization (circle, 55°S 0°E); (b) reduced storage and shoaling remineralization (square,
58°N 51°W); (c) increased carbon at depth but shallower mean remineralization (triangle, 31.5°N 136.5°E); and (d)
declining storage but deeper remineralization (diamond, 63.5°N 57.5°W). Note the different x-axis range for c). These
locations were selected to illustrate extreme cases of each scenario, acknowledging that the clarity of the signal
depends on the magnitude of change in either DICson (Fig. 3a) or in the 50% sequestration depth (Fig. 3b). Despite
this heterogeneity, the pairwise Wasserstein distances between residual profiles (computed as the difference between
the maximum and minimum annual DICsot: profiles at each grid cell; see Methods and Supplementary Information)
remained low within each scenario (mean WD: 2.8-3.9 pmol m kg'!; Table S3), indicating coherent vertical patterns
across the global ocean.
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The BCP’s reorganization extends beyond surface POC export, altering both the depth and
duration of respired DICsof: retention in the ocean interior. (DeVries et al., 2012; Boyd et al., 2019;
Ricour et al., 2023). The depth at which biologically sequestered DICsor: accumulates plays a key
role in regulating atmospheric CO,, with deeper storage associated with longer isolation times
(DeVries et al., 2012). This vertical dimension is evident in the total amount of DICsos stored
below the winter mixed layer (Fig. 3a; Fig. 4) and in the shifting depth at which that carbon is
retained (Fig. 3b; Fig. 4), both of which show distinct regional trends over the 2004—2022 period.

Simultaneous changes in DICs inventory and sequestration depth indicate a coordinated
reorganization of the BCP, reflecting shifts in both the magnitude and vertical structure of carbon
storage (Fig. 3; Fig. 4). Regions with increases in both, like in the Southern Ocean and parts of the
subtropical South Atlantic and Indian gyres, point to strengthened export of POC and deeper
remineralization to DICsos, suggesting enhanced long-term sequestration potential (Fig. 3; Fig. 4a).
Conversely, regions where both are negative, including parts of the western subtropical North
Pacific, reflect shoaling of DICss return pathways and possible decreases in the sequestration
efficiency of this respired carbon (Fig. 4b; Wilson et al., 2022; Siegel et al., 2023). However, in
several regions, the relationship between DICsort accumulation and sequestration depth is
decoupled, reflecting divergent trajectories in vertical carbon retention (Fig. 4c-d). While the
depth-integrated DICsore signal offers a direct measure of long-term carbon storage, changes in
sequestration depth provides insight into future trajectories. A shoaling trend could imply a gradual
re-exposure of previously isolated DICsof to the surface mixed layer, while deepening may signal
enhanced isolation. The emergence of these divergent patterns, where changes in DICsof: inventory
and sequestration depth do not align, suggests that vertical sequestration structure may be
increasingly climate-sensitive, shaped by warming, stratification, oxygenation, and ecosystem
shifts (Boyd et al., 2016; DeVries, 2018; Bindoff et al., 2019; Boyd et al., 2019; Li et al., 2020;
Wilson et al., 2022; Zhao et al., 2025). While the exact mechanisms remain unresolved, the spatial
coherence of these trends is consistent with a potential reorganization of the biological carbon
pump, which could represent an emerging feedback in the Earth’s climate system.

Sequestration of biologically stored carbon (both as POC and respired DICsot) occurs across a
broad range of depths, rather than being limited to the deep ocean below 2000 m. This has been
highlighted by recent work showing that regional circulation and remineralization patterns govern
the depth at which biologically derived carbon is retained (Ricour et al., 2023). Variability in
sequestration depth of DICson is emerging as a determinant driver of climate sensitivity, one that
can alter carbon retention timescales and accumulate long-term impacts, even in the absence of
major shifts in the magnitude of surface export of POC (Ricour et al., 2023). This vertical
decoupling of export, remineralization, and depth of storage has the potential to destabilize
regional carbon retention patterns and weaken the BCP’s role as a long-term carbon sink (Wilson
et al., 2022; Siegel et al., 2023). Model intercomparison studies show that this uncertainty grows
with depth, with CMIP6 projections of POC flux at 1000 m ranging from a 4% increase to a 55%
decline by 2100, highlighting major differences in how transfer efficiency and deep-ocean
sequestration are parameterized (Walker & Palevsky, 2025).

However, current Earth system models do not fully account for this climate-sensitive variability
in carbon sequestration (Henson et al., 2022; Wilson et al., 2022). Most rely on fixed
remineralization profiles and assume constant sequestration depths, despite mounting evidence
that both are responsive to climate-driven changes in ocean physics and ecosystem structure
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(Ricour et al., 2023). Additional stressors, such as ocean acidification, are already altering
carbonate mineral production and the chemical buffering capacity of seawater, introducing further
biogeochemical feedbacks (Barrett et al., 2025). Failing to incorporate these mechanisms may bias
projections of future ocean carbon uptake and its capacity to moderate anthropogenic emissions
(Henson et al., 2022; Gruber et al., 2023; Koeve et al., 2024; Barrett et al., 2025).

As model projections diverge on whether POC export will strengthen, weaken, or redistribute
under climate change (Henson et al., 2022), observed changes in the depth and distribution of
DICsof: provide a critical constraint on the BCP. The emergence of coherent trends, both positive
and negative, may represent the first detectable signs of BCP destabilization (Fig. 2; Fig. 3; Fig.
4). Although a complete mechanistic understanding is still emerging, these patterns may serve as
early warning signals of how climate-driven changes in the upper ocean are beginning to reshape
deep ocean carbon storage, even before global net export fluxes shift appreciably. (Gruber et al.,
2023; Koeve et al., 2024).

Together, these findings point to a shift in how we should assess the stability of the BCP. While
globally averaged ADIC;of: has remained virtually zero in recent decades, this apparent consistency
masks regional and vertical imbalances in where and how carbon is sequestered. Such structural
changes, particularly in sequestration depth and thus retention time, may precede a change in
efficiency of the marine carbon sink. Export flux alone is not a sufficient indicator of BCP
efficiency. Instead, the depth at which respired carbon is stored, how long it remains sequestered,
and its eventual fate should all be considered to evaluate the BCP’s evolving role in climate
regulation. As climate change intensifies, monitoring the relationship between export and long-
term storage of marine DICson will be critical for projecting how future feedbacks between ocean
biology, circulation and the atmosphere will affect atmospheric CO> levels and the global carbon
cycle.
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Methods

GOBAI-O; v2.1 database

GOBAI-O2, short for Gridded Ocean Biogeochemistry from Artificial Intelligence — Oxygen
(Sharp et al., 2023), is a data product that provides three-dimensional monthly fields of dissolved
oxygen. Covering 86% of the global ocean area on a 1° x 1° latitude-longitude grid, GOBAI-O»
v2.1 spans from 2004 to 2022 and extends from the ocean surface down to a depth of 2 km across
58 levels. It was constructed using machine learning algorithms, specifically random forest
regressions and feed-forward neural networks, trained on oxygen concentration ([O2]) data from
discrete shipboard measurements and autonomous sensors on BGC-Argo floats (Sharp et al.,
2023). The application of these algorithms to three-dimensional monthly gridded fields of
temperature and salinity was validated using both real observations and simulated data from Earth
system model outputs. The temperature and salinity input fields were derived from the Argo
climatology of Roemmich and Gilson (2009). The total combined uncertainty is 7.6 pmol kg'! on
average globally, reaching 11.2 umol kg! at 150 dbar, which aligns with a root mean square
deviation (RMSD) of 8.8 pmol kg™, independently validated by withholding data from the model
training set.

Reconstruction of DIC time series using CANYON-B and CONTENT algorithms

The CANYON-B (CArbonate system and Nutrients concentration from hYdrological properties
and Oxygen using a Neural-network) and CONTENT (CONsisTency EstimatioN and amounT)
algorithms were developed for estimating dissolved inorganic carbon (DIC), total alkalinity (TA),
pH, and partial pressure of CO; (pCO2), as well as nutrients (Sauzede et al., 2017; Bittig et al.,
2018) . CANYON-B is a Bayesian neural network that estimates nutrients and carbonate system
variables from oxygen concentration, temperature, and salinity, based on biogeochemical
relationships identified in the GLODAPv2 bottle dataset (Sauzéde et al., 2017). In contrast,
CONTENT refines and integrates the four carbonate system variables, ensuring internal
consistency with established carbonate chemistry (Bittig et al., 2018).

Both algorithms include uncertainty estimates, which were formulated by incorporating local
environmental conditions. They were validated against independent GO-SHIP bottle data and in
situ sensor observations, including biogeochemical floats and shipboard sensors, and have
demonstrated favorable performance relative to other estimation approaches. The CONTENT
algorithm estimates the uncertainty of DIC with values ranging from 7.7 umol kg! at the 10th
percentile to 11.8 pmol kg™! at the 90th percentile, with a median (50th percentile) uncertainty of
9.1 umol kg'! (Bittig et al., 2018).

The GOBAI-O> dataset (i.e. T, S and O»; v.2.1; see previous section) was integrated into the
CANYON-B and CONTENT algorithms to derive key CO; system parameters. Among these, DIC
and TA were estimated on a 1° x 1° grid from 2004 to 2022, covering 58 depth levels from 2.5 m
to 1975 m (Figs. S1-S2 in Supplementary Information).

Throughout this study, the term GCC-DIC (GOBAI-O; CANYON-B CONTENT-DIC) refers to
DIC estimates derived from the application of the CANYON-B and CONTENT algorithms to the
GOBAI-O, dataset (see Figs. S1-S2 in the Supplementary Information) and is used
interchangeably with “reconstruction.”
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Independent ocean CO; time series

To validate the changes observed in the GCC-DIC product, we analyzed independent ocean CO:
time series data at selected ocean time series stations from the Synthesis Product for Ocean Time
Series (SPOTS; Table S1, Fig. S7 in Supplementary Information) product Lange et al. (2024).
Figure S7 illustrates the selected profiles through time at each site, based on predefined neutral
density boundaries. This selection ensures a consistent water mass is analyzed across years,
maximizing temporal coverage while retaining sufficient data density for robust trend detection.

Subsequently, each time series was analyzed to identify either a positive or negative rate of change
across the study period (2004—2022) in DIC and its components, in relation to its position within
the global analysis conducted using the synthetic product. The key objective was to evaluate
whether the long-term trends reconstructed by GCC-DIC at selected sites are consistent with
independent in situ observations. Results from the in-situ time series validating GCC-DIC are
presented in Figures S8, S9 and S10, as well as Table S2 in the Supplementary Information.

The same analytical approach, detailed in the subsequent Methods sections, was applied to both
the GCC-DIC product and the SPOTS in situ time series, unless stated otherwise.

Decomposition of DIC components

The changes in DIC within the ocean are primarily governed by three processes: the absorption of
anthropogenic CO; from the atmosphere (DICanm), the action of the BCP responsible for natural
carbon cycling (DICsort), and the carbonate pump, which is linked to the formation and dissolution
of calcium carbonate (Volk & Hoffert, 1985; Gruber et al., 1996). These processes contribute to
DIC as follows:

DIC = DIC,, + DIC,yf + DICearp (1).

The uptake of anthropogenic CO: is often referred to as the solubility pump. Assuming no
significant trends in the air-sea CO; disequilibrium over the long term, the anthropogenic (DICant)
is effectively equivalent to the solubility-derived DIC (DICsor), ignoring short-term and regional
disequilibrium variations. The rationale for considering DICiseq = 0 is supported by the minimal
impact of long-term disequilibrium trends on the global carbon uptake over the periods studied
(Jones et al., 2014; Nowicki et al., 2024).

DICanth = DICsq — DICdiseq ~ DICyq (2),

Biological activity transforms dissolved inorganic nutrients into particulate organic matter through
the processes of photosynthesis and remineralization and is known as the soft tissue
pump(Redfield, 1958; Redfield, 1963; Volk & Hoffert, 1985). This process drives the downward
export of particulate organic carbon (POC) from the surface ocean, followed by its microbial
remineralization into DICf at depth, and the subsequent redistribution of respired DICsof by
ocean circulation (Dugdale & Goering, 1967; Boyd et al., 2019). The efficiency and depth of
remineralization regulate the extent of DICsor sequestration and its climate impact over relevant
timescales (Figure S3 in Supplementary Information).
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This transformation follows specific stoichiometric proportions, quantified by the Redfield ratio,
which describes the relationship between the elemental composition of marine organic matter and
the nutrients consumed (Redfield, 1958). These materials are transported to deeper waters by
gravitational settling and biological transport, where they decompose back to inorganic forms,
thereby consuming oxygen and increasing apparent oxygen utilization (AOU). AOU represents
the difference between the oxygen concentration at saturation (the theoretical maximum in
equilibrium with the atmosphere) and the actual oxygen concentration in seawater, with higher
values indicating more oxygen consumption due to remineralization (Garcia & Gordon, 1992).
The impact of remineralization on DIC, termed DICsoft, can be quantified using the Redfield ratio
as:

DICpae = —Reo, - AOU (3).
In this study, we used the ratio from (Anderson & Sarmiento, 1994) as follows:

P:N:C: 0, (4).
1:16:117: —170

Thus, R¢/o,can be assumed to be a constant value of -0.688 + 0.092 (Anderson & Sarmiento,
1994).

The formation and dissolution of calcium carbonate, described as the carbonate pump, are
associated with changes in TA. The carbonate-related DIC.arn is affected by the ratio of nitrogen
to oxygen during these processes, represented as:

DICcar = 0.5 (TA — Ry, - AOU) (5),

where Ry /0, is -0.0941 £ 0.0081 (Anderson & Sarmiento, 1994), indicating how carbonate
processes alter DIC by a two-fold increase in TA.

While the Redfield ratio is known to exhibit regional and temporal variability, its use as a constant
here provides a first-order global estimate of biologically driven DIC changes, consistent with
prior large-scale studies (Anderson & Sarmiento, 1994; Gruber et al., 1996). Similarly, the use of
AOU as a proxy for remineralization-driven DIC changes offers a widely accepted and practical
approach for estimating DIC;or at large spatial scales. Nevertheless, AOU-based methods assume
that surface waters are in equilibrium with the atmosphere at the time of subduction, which may
not always hold true—particularly in regions such as the North Atlantic, where rapid subduction
can preserve disequilibrium signals (Ito et al., 2004; Sulpis et al., 2023). While such deviations are
unlikely to dominate global-scale estimates, they may introduce regional biases and should be
considered when interpreting patterns of biological carbon cycling.

Neutral density and pressure dimensions

In theory, neutral density surfaces represent oceanic mixing processes that occur along isopycnal
surfaces. However, adopting the neutral density dimension means forgoing a gridded product,
which facilitates practical analysis of changes in DIC components across the global ocean. Thus,
in our study, we determined whether vertical water mass movements (heave), averaged over the
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studied period, could be adequately analyzed within the pressure dimension, or if using neutral
density was necessary.

To explore the differences between pressure and neutral density as analytical dimensions, pixels
from various ocean basins were isolated and analyzed in both pressure and neutral density spaces
(see Figure S4 of the Supplementary Information).

We then assessed the variations in pressure across different ocean basins by quantifying how the
relationship between pressure and neutral density fluctuated over time. For each predefined ocean
basin, we calculated the ratio of pressure (P) to neutral density (y) for all pressure levels in the 4D
synthetic product:

(6).

Rati P
atiop;, = —
Y

Using the ratio of pressure to neutral density provides normalization across basins, enabling
consistent comparison of regions with different absolute values of pressure and density.
Additionally, it simplifies dimensional consistency and highlights subtle fluctuations over time,
making it more sensitive to small-scale variability. By comparing these ratios to their mean values
over the entire time period (2004-2022), we were able to determine residuals, which represent
deviations from the mean relationship between pressure and neutral density:

P p
Residuals = ; - (—) (7).

y mean

This part of the analysis revealed no significant long-term trends in the pressure/y (gamma) ratio,
indicating that pressure has remained stable with respect to neutral density over the study period.
This conclusion is supported by linear regressions on the time series of mean residuals across all
pressure levels, which showed no significant trends in any ocean basin (p > 0.05; Fig. S4 in the
Supplementary Information, see Methods for details).

To make these deviations interpretable in terms of pressure changes, we converted the residuals
back into pressure variations:

P
AP = Residuals x 5 (8).

This allowed us to quantify the minimum and maximum pressure changes at each pressure level
for every basin. These extreme pressure variations provide insight into the range of variability in
the relationship between pressure and neutral density across different ocean basins and time
periods.

The largest deviation (AP) observed across the study period (2004 — 2022) was approximately 6
dbar, occurring in the North Atlantic (Figure S6 of the Supplementary Information). This
corresponds to ~6m, a relatively small fluctuation in the context of oceanic processes. Given the
absence of consistent trends in Ratiop/, and considering that the analysis integrates over the entire
pressure column, these variations appear insignificant. Therefore, the pressure dimension remains
a reliable and practical choice for the continuation of this analysis (Fig. 3, Fig. S9 of the
Supplementary Information). For simplicity, we use pressure and depth interchangeably, as the
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difference remains small (<~2%) down to 2000 m and does not affect the interpretation of our
results (Saunders & Fofonoff, 1976; Wunsch & Webb, 1979).

Rates of change in DIC components

To quantify changes in each component of DIC, we employed an ordinary least-squares linear
regression on the gridded 4D product GCC-DIC. We first computed annual global mean vertical
profiles by averaging across all latitude and longitude grid points. Linear trends were then
estimated at each depth level based on these yearly global averages (Fig. 1).

Then, change was analyzed at a finer resolution for each pixel within the gridded product, allowing
for spatially resolved trend estimates. Linear regression was applied to each grid cell’s time series
to compute annual rates of change (umol kg™! yr'!) for DIC and its components. To estimate depth-
integrated changes, these trends were first converted to mol m yr'! using in situ density. Each
trend value was then scaled by the thickness of the layer it represents, defined as the pressure
difference between consecutive levels (i.e., between depth level i and i+1). The resulting values
were summed across all levels to obtain the total change over the water column (mol m2 yr?),
effectively representing a local DIC budget. Finally, the depth-weighted mean DIC trend was
computed by dividing the total by the full water column thickness (Fig. 2). This approach provides
a depth-integrated rate of change in units of mol m2 yr!.

Independent ocean time series were not uniformly gridded like GCC-DIC, thus interpolation was
necessary to align them correctly. All variables were vertically interpolated along the pressure
dimension using piecewise cubic Hermite interpolating polynomials (Fritsch & Carlson, 1980).
This method uses monotonic cubic splines to precisely calculate the values at new points,
facilitating depth-specific analysis. Then, an ordinary least squares linear regression was applied
to each pressure level to determine the rate of change in each variable over time along the water
column (Fig. 3, Fig. S8 and S9 of the Supplementary Information).

Calculation of DIC;s fluxes below the MLD

The mixed layer depth (MLD) was derived from the Argo-based climatology compiled by Holte
et al. (2017). This method uses a combination of profile shape analysis, threshold, and gradient
criteria to estimate MLD from individual Argo profiles. The climatology includes over 2.6 million
Argo profiles collected between 2000 and 2022 and provides monthly MLD statistics on a 1° x 1°
grid. For this study, we used the global maximum MLD, calculated as the average of the three
deepest MLDs within each monthly bin, to define the lower boundary of the surface layer for
carbon storage analysis (Fig. S11 in the Supplementary Information).

To align the MLD product with the DIC product, the maximum climatological MLD was extracted
for each grid cell and interpolated onto the DIC product’s latitude and longitude grid using bilinear
interpolation. This ensures that MLD values are spatially consistent with the DIC measurements
while preserving the original MLD distribution.

Following the determination of the MLD, DICson concentrations were considered for the water
column extending from the MLD to the bottom (i.e., 2000 m). DICor was initially presented in
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umol kg! and was converted to mol m™ using in situ density measurements, facilitating an accurate
representation of DIC quantities per volume of seawater.

To integrate DICsor vertically through the water column, the thickness of each discrete layer
(defined by the product’s pressure increments) was calculated. The total amount of DICsos
sequestered below the MLD was then quantified by summing the products of DIC concentrations
(in mol m™?) and the corresponding layer thicknesses across the entire depth range below the MLD.
This integration yielded an estimate of the total moles of DICo per square meter of seabed area
(mol m2), providing a comprehensive measure of DIC storage within the sub-MLD water column.

To assess changes in DICof storage over time, the differences in integrated DICsos from one time
point to the next were calculated (i.e., using the monthly resolution of GCC-DIC). Summing of
these differences provided a cumulative measure of net new DICsos sequestration (Fig. 2b).

Change in 50% DIC;t sequestration depth

To assess temporal variations in the depth of DICsor sequestration below the MLD, we computed
the cumulative integrated dissolved inorganic carbon (DIC) concentrations below the MLD at each
time-series site. As for the calculation of DICsos fluxes, the climatological MLD was extracted for
each site’s latitude and longitude and interpolated onto the DIC product’s spatial grid using
nearest-neighbor interpolation.

To calculate the sequestration depth of DICsor, we first determined the total integrated DICson
below the MLD at each site by multiplying DICsort concentrations by the seawater density at each
depth level and summing over all levels. The 50% sequestration depth was then identified as the
shallowest depth at which the cumulative integrated DICsor exceeded 50% of the total integrated
DICsort below the MLD. This depth represents the median sequestration depth of DICson over time
and serves as an indicator of changes in vertical carbon storage.

DICsoft sequestration depth time series were smoothed using locally weighted scatterplot
smoothing (LOESS; smoothing fraction = 0.5) to reduce high-frequency variability (Cleveland,
1979; Cleveland & Devlin, 1988). LOESS smoothing was applied specifically to the DICson
sequestration depth because this variable represents a derived percentile-based metric (i.e., the
50% depth of integrated DICso) that is highly sensitive to short-term fluctuations, especially in
shallow depth levels with steep gradients. Unlike concentration-based variables, which benefit
from a high signal-to-noise ratio due to volume integration, the 50% sequestration depth is a single-
point threshold that can shift significantly with small changes in the vertical profile. Moreover,
sequestration depth is not consistently defined at all time steps (e.g., when integrated DICsos is
very low, the 50% threshold may fall near a noisy transition zone), which increases the need for a
robust smoothing method like LOESS to isolate long-term.

Both GCC-DIC and the SPOT in-situ time series required a method to resolve seasonal and
interannual variability. Interannual fluctuations are expected in long-term records, but uneven
sampling complicates deseasonalization. LOESS adaptively smooths data by weighting nearby
observations, capturing broad trends, and filtering short-term noise. Temporal trends were
quantified using ordinary least squares (OLS) linear regression on the smoothed time series, from
which the slope (m yr'!) and p-value were extracted. Differences in sequestration depth between
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the first (Q1) and last (Q4) quartiles of the observation period were evaluated using a two-sample
Welch’s t-test (Welch, 1947), with changes considered significant at p < 0.05.

Uncertainty estimates for the temporal trends were calculated by propagating the standard errors
from the linear regression. Standard errors for mean sequestration depths in Q1 and Q4 were
computed as the standard deviation divided by the square root of the number of observations. The
total uncertainty in sequestration depth change was propagated from these standard errors using
standard error propagation methods.

Error Propagation

To account for uncertainties in DIC component trends, we implemented a Monte Carlo simulation
with 1,000 iterations. In each iteration, random perturbations were introduced to DIC, alkalinity,
and apparent oxygen utilization (AOU) based on their respective measurement uncertainties. DIC
and TA uncertainties were derived from the CANYON-B algorithm, and AOU uncertainties
included both the measurement errors in dissolved oxygen and those associated with the
CONTENT-derived oxygen saturation (Sauzéde et al., 2017; Bittig et al., 2018). These
uncertainties were assumed to follow Gaussian distributions with standard deviations matched to
the reported algorithmic uncertainties at each data point.

In addition, uncertainties in the soft-tissue and carbonate pump scaling factors were incorporated
by perturbing their values using normal distributions derived from reported errors (Anderson &
Sarmiento, 1994). For the soft-tissue pump, variability in the respiratory quotient (C:02) was
explicitly modeled by drawing values from a normal distribution with a mean of -0.688 and a
standard deviation of 0.092. Similarly, for the carbonate pump, the N:O: ratio (used in estimating
the carbonate-driven DIC component) was sampled from a distribution centered on -0.0941 with
a standard deviation of 0.0081.

For each perturbed product, a linear regression was applied at both the global (Fig. 1) and pixel
levels (Fig. 2 and 3) to estimate trends in DIC and its components. At the pixel level, perturbed
trends were converted to mol/m?® using in-situ density and depth-integrated by scaling them with
layer thickness. The Monte Carlo ensemble provided a distribution of possible DIC trends, from
which the final estimate was taken as the ensemble mean, while uncertainty was quantified as the
standard deviation across all iterations. For global trends, area-weighted averaging was applied
across latitude and longitude before computing the final uncertainty estimate. This approach
ensures robust error propagation, capturing both measurement uncertainties and variability in
scaling relationships.

To estimate uncertainty in the change and sequestration of soft-tissue-driven DIC (DICsof) below
the MLD (Fig. 2, 3 and 4) a separate Monte Carlo approach was implemented. In each iteration,
perturbed AOU values were used to estimate DICsof using a randomly sampled soft-tissue pump
scaling factor. The sequestration estimate was constrained to depths below the maximum
climatological MLD, interpolated onto the DIC product for consistency. DICsn values were
converted to mol/m?® using in-situ density and integrated over depth using layer thickness derived
from pressure differences. The resulting depth-integrated sequestration rates were computed at
each time step, with uncertainties propagated iteratively using Welford’s method (Welford, 1962;
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Knuth, 1969). Specifically, for each new iteration X,,, the updated mean p,and variance 02 were
computed recursively as:

Xn — —
Mp = Hp-1 + - Pn-t (9)'
n
62 = g2 + (Xn - un—l)(xn - un) (10).
n — Yn-1
n

This method provides an efficient way to update statistical estimates without storing all previous
values, ensuring accurate uncertainty quantification over the Monte Carlo iterations while
remaining computationally inexpensive.

To assess long-term sequestration trends, year-to-year differences in depth-integrated DICson
sequestration were computed, and cumulative sequestration was estimated via a running sum over
time. Uncertainty in the cumulative sequestration was derived by propagating standard deviations
across time steps. The final sequestration estimates and associated uncertainties provide a robust
quantification of the storage of biologically driven DIC below the MLD.

Vertical profile classification and analysis by quadrant scenario

To explore the vertical structure of biologically driven carbon storage changes, we identified four
types of pixels based on their classification in Figure 3a and Figure 3b. Figure 3a shows the net
change in DICson sequestration below the maximum climatological mixed layer depth (MLD),
while Figure 3b shows the trend in the 50% sequestration depth of DICsort. Combining the sign of
the change from both panels, we categorized each grid cell into one of four scenarios: (1) increased
DICsof sequestration and deeper sequestration depth; (2) decreased DICsont sequestration and
shallower sequestration depth; (3) increased DICson sequestration but shoaling sequestration depth;
and (4) decreased DICsof sequestration but deepening sequestration depth.

For each scenario, we analyzed changes in vertical structure by calculating residual profiles of
DICsont. These were defined at each pixel as the difference between the DICsor profiles in the mean
year of maximum and the mean year of minimum using the full water column (2.5-1975 m). This
allowed us to isolate the most pronounced temporal changes in carbon storage structure, rather
than relying on a linear trend.

To assess the spatial coherence of these vertical changes within each scenario, we calculated
pairwise Wasserstein distances between all residual profiles in that scenario. The Wasserstein
distance quantifies how much DICsort would need to be vertically redistributed to transform one
profile into another, providing a physically intuitive measure of dissimilarity. Because DICsor: is
expressed in units of pmol kg™! and is distributed over the water column (in m), the resulting
distance has units of pmol mkg!. A low mean distance implies a consistent pattern of change
across pixels, while a higher value indicates greater variability in vertical structure.

Because some scenarios contained thousands of valid grid cells, we also repeated the analysis on
arandom 20% subsample of residuals within each scenario. Results from this reduced sample were
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highly consistent with the full-sample values, confirming that the observed coherence is robust
and not an artifact of large sample size (Table S4 in Supplementary Information).

To illustrate the four conceptual scenarios defined by Figure 3a and 3b, we isolated one extreme
case per scenario (i.e., the highest product of ADIC;ort and sequestration depth trend) and visualized
its residual profile in Figure 4.
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