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Supplementary Note 1. Cross-attention Mechanism
Let  denote the input feature vectors, where  represents the sequence length and  denotes the feature dimension. Let  represent the feature vectors, where  encompasses the encoder patch tokens and pre-trained decoder gene prompts, and  indicating the target feature sequence length. and represent the query and key vectors respectively, where  denotes an intermediate dimension. represents the value vector, where  denotes the output dimension.
The cross-attention mechanism is formulated as:


where  represents the dimensionality of , and the output is a feature matrix of dimensions .

Supplementary Note 2. Self-attention Mechanism
Let denote the input feature vectors, where  represents the sequence length and n denotes the feature dimension.  and  represent the query and key vectors respectively, where  denotes an intermediate dimension.  represents the value vector, where  denotes the output dimension.
The self-attention mechanism is formulated as:


where  represents the dimensionality of , and the output is a feature matrix of dimensions , with the output dimension matching the input dimension.
This formulation preserves the structural symmetry characteristic of self-attention, where the input sequence attends to itself through learned query-key relationships.


Supplementary Figures
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Fig. S1 Pretrain Decoder Module. Use gene embedding as query to predict expression vector through cross-attention mechanism.
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Fig. S2 Spatial transcriptomic clustering results on the DLPFC dataset. The figure presents spatial clustering results for 12 samples from the DLPFC dataset. Each sample is represented by three spatial clustering maps arranged vertically: ground truth annotation (top), original STAGATE clustering results (middle), and STAGATE results enhanced by CellPatch (bottom, labeled as 'CellPatch').



Fig. S3 UMAP visualizations generated by CellPatch about the spatial domains and their corresponding layer-specific marker genes.



Fig. S4 UMAP visualization of Zheng68k dataset features across pre-training epochs. The panel displays UMAP projections of cell features extracted from CellPatch at epochs 1, 10, 30, 40, and 50 of pre-training. Cell types are distinguished by different colors. The progressive separation of cell type clusters demonstrates CellPatch's increasing discriminative power throughout the pre-training process.


Supplementary Table
Supplementary Table 1. Model Architecture and Runtime Analysis. Parameter counts and inference time(s) for processing 1,000 cells across different input gene number for CellPatch, scBERT, and scGPT.
 
	Model
	CellPatch
	scBERT
	scGPT

	Param Num
	3370405
	9682396
	4423045

	Input Gene Number
	2048
	1.08(±0.09)
	21.42(±2.91)
	6.16(±0.93)	

	
	5000
	1.15(±0.01)
	47.26(±0.59)
	26.17(±0.83)

	
	7000
	1.20(±0.02)
	65.62(±0.84)
	49.08(±1.37)

	
	9000
	1.24(±0.02)
	84.23(±1.05)
	77.06(±1.54)

	
	13000
	1.31(±0.01)
	120.57(±0.21)
	/

	
	16096
	1.41(±0.03)
	/
	/

	
	20000
	1.49(±0.02)
	/
	/

	
	25000
	1.58(±0.02)
	/
	/

	
	30000
	1.71(±0.01)
	/
	/
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