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[bookmark: _Ref201488020]Fig. 1 A comparative analysis of the PR curves for YOLOv8s and TRIDENT-YOLO on (a)DUO dataset, (b) RUOD dataset, and (C) UTDAC2020 dataset
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Table 1 Comparison of various methods on the DUO dataset
	Model
	AP (%)
	mAP@0.5
	mAP@.5:.95
	GLOPS
	Params
(M)
	MS

	
	Holothurian
	Echinus
	Scallop
	Starfish
	
	
	
	
	

	Faster-RCNN
	55.5
	62.4
	38.7
	62.5
	75.9
	39.3
	63.2
	41.14
	/

	RetinaNet
	54.4
	56.6
	27.8
	58.3
	70.3
	34.4
	52.62
	36.17
	/

	RT-DETR(Res50)
	86.2
	90.3
	63.5
	91.0
	82.8
	60.9
	85.1
	65.9
	/

	YOLOv5s
	87.0
	92.4
	66.2
	93.3
	84.7
	66.6
	23.9
	9.1
	18.5

	YOLOv5m
	88.7
	92.9
	69.4
	93.7
	86.2
	68.9
	64.5
	25.0
	50.5

	YOLOv7
	66.3
	73.7
	50.8
	74.5
	85.8
	63.1
	103.2
	34.8
	129.7

	YOLOv8s
	87.2
	92.1
	71.2
	92.5
	85.7
	67.6
	28.7
	11.1
	22.5

	YOLOv8m
	88.4
	92.9
	69.5
	93.8
	86.2
	69.6
	78.7
	25.8
	52.0

	YOLOv10s
	86.7
	93.2
	67.9
	93.5
	85.3
	67.5
	24.8
	8.06
	16.5

	YOLOv11s
	88.7
	92.8
	68.9
	93.1
	86.1
	68.6
	21.7
	9.4
	18.7

	YOLOv7-CHS [1]
	/
	/
	/
	/
	84.1
	/
	40.3
	31.98
	/

	RHS-YOLOv8s [2]
	/
	/
	/
	/
	87.1
	69.0
	31.8
	/
	/

	RHS-YOLOv8m [2]
	/
	/
	/
	/
	87.9
	70.6
	76.1
	/
	/

	YOLO-GE [3]
	/
	/
	/
	/
	86.7
	70.3
	/
	/
	/

	Dynamic YOLO [4]
	/
	/
	/
	/
	86.7
	68.6
	12.51
	8.21
	/

	Boosting RCNN [5]
	/
	/
	/
	/
	85.5
	/
	168.1
	48.11
	/

	Mamba-YOLO-B [6]
	87.3
	92.7
	67.4
	93.5
	85.2
	67.0
	49.6
	41.9
	/

	UWNet [6]
	89.3
	93.5
	71.0
	94.4
	87.1
	69.5
	21.1
	13.5
	/

	Aqua-DETR [7]
	67.3
	74.5
	58.3
	75.4
	87.6
	/
	78.33
	50.36
	/

	Reference [8]
	55.9
	61.6
	41.4
	65.4
	/
	/
	/
	/
	/

	Ours (TIDE-YOLO)
	88.3
	93.2
	73.6
	93.3
	87.1
	69.6
	20.7
	6.4
	13.4
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Table 2 Results comparison of various methods on the RUOD dataset
	Model
	P
	R
	mAP@0.5
	mAP@.5:.95
	GFLOPs
	Params

	YOLOv3-tiny
	83.8
	72.2
	80.0
	52.1
	18.9
	12.7

	YOLOv5s
	85.0
	77.6
	84.2
	59.4
	23.8
	9.1

	YOLOv6s
	84.1
	77.
	83.2
	59.2
	44.2
	16.3

	YOLOv7-tiny
	85.2
	80.3
	80.7
	56.3
	13.2
	6.5

	YOLOv8s
	84.5
	78.4
	84.7
	60.6
	28.7
	11.1

	YOLOv8m
	86.1
	79.1
	85.6
	61.9
	79.1
	25.8

	YOLOv9s
	85.2
	78.2
	84.7
	61.2
	27.4
	7.2

	YOLOv10s
	84.3
	77.9
	84.8
	61.3
	24.8
	8.06

	RHS-YOLOv8s[2]
	85.2
	79.1
	86.2
	/
	31.8
	/

	RDL-YOLO[9]
	/
	/
	85.10
	/
	6.9
	/

	YOLO-TADR[10]
	95.33
	55.64
	72.1
	/
	23.9
	40.9

	Reference[8]
	/
	/
	82.6
	54.7
	/
	/

	Bi2F-YOLO[11]
	/
	/
	86.8
	/
	98.9
	32.31

	YOLOv5Plus[12]
	/
	/
	80.5
	/
	8.4
	28.9

	YOLOv6Plus[12]
	/
	/
	79.1
	/
	12.9
	46.7

	YOLOv8Plus[12]
	/
	/
	80.9
	/
	8.9
	31.4

	UODN[13]
	/
	/
	86.3
	/
	43.9
	19.0

	Ours (TRIDENT-YOLO)
	85.7
	79.2
	86.1
	62.0
	20.6
	6.4
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To further demonstrate the model's effectiveness, underwater images were randomly selected from the DUO, RUOD, and UTDAC2020 datasets and tested across various scenarios. Fig. 2, Fig. 3, and Fig. 4 show the visualization outcomes for YOLOv8s, YOLOv10s and TIDE-YOLO. 
[bookmark: _Hlk203472797][image: ]In some cases, the YOLOv8s model accurately identified all targets; however, it also had cases of false positive detections and inaccuracies in bounding box predictions, including overlaps. The TIDE-YOLO model showed improved detection accuracy, fewer omissions, and misdetections in various environments, as well as greater precision in bounding box predictions. The detection results further emphasize the enhanced efficiency of the TIDE-YOLO model.
Fig. 2 Detection performance comparison on the DUO dataset: (a) input image; (b) YOLOv8s; (c) YOLOv10s; (d) TRIDENT-YOLO

[bookmark: _Ref201597748]

[bookmark: _Ref203472835][image: ][image: ]Fig. 3 Detection performance comparison on the RUOD dataset: (a) input image; (b) YOLOv8s; (c) YOLOv10s; (d) TRIDENT-YOLO
[bookmark: _Ref203472855]Fig. 4 Detection performance comparison on the UTDAC2020 dataset: (a) input image; (b) YOLOv8s; (c) YOLOv10s; (d) TRIDENT-YOLO
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