Supplementary Material for “Climatology and natural and forced
changes of ENSO variability”

SI1 OLS ill-suited in the presence of CAM noise

Ordinary least-squares regression (OLS) is possibly the most common technique to fit a model/curve
to data. However, here we demonstrate that caution should be exercised as to the suitability of this
method. Sometimes it just does not work. For the purpose of this demonstration, we consider the linear
stochastic differential equation (SDE) featuring the so-called “correlated additive and multiplicative”
(CAM) noise [1] written in the It6 form:

dz = a(z — b)dt + (c(x — b) + d)dW. (S1)

This is a reparametrized version of the SDE in [2] such that b appears as a “location” parameter. The
probability density distribution of x evolving according to this SDE can then be written by substituting
the formulae of the parameter transformation into eq. (2) of [2], yielding:

9e2a(log(f)+d/f)/c?

p(x) = Ny 7 . flz;bye,d) = —be+d + cx, (S2)
where Ny is a normalization constant. Because of the term log(f), it is required that f > 0, implying
a lower boundary of the distribution: b — d/c. Further constraints can be derived as: a/c? < 1/2
and ad/c® < 0 (which we obtained by using the software suit “Mathemtaica”). See p(z) in Fig.
(a) for the choices of a = —1, b = 1, ¢ = 0.2, d = 1, the only scenario that we are considering for
this demonstration. The SDE can be discretized by applying the Euler-Maruyama stochastic integrator
scheme [3], the simplest of its kind, yielding:

Ty = Tp_1 + aAt(zy_1 —b) + (d + c(Tn_1 — b)) VALE, 1. (S3)

For the parameter choices given above, At = 0.01 and a simulation span N = 108 are suitable to reproduce
p(x) numerically (Fig. 92[ (a)). Equation can be rearranged expressing the normal random variable
&n—1 explicitly (or rather that multiplied by d):

Tp — Tp—1 — aAt(xp,_1 —b)
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(S4)

Given an observational data series, x,, n = 1,..., N, that is thought to be governed by , one could
attempt to infer the model parameters a, b, ¢, d — as in OLS — by minimizing the “sum of squares” (of
the right hand side of (S4)):

N
SS~> e (S5)
n=2

This is at least what An et al. [4] did, despite that OLS — linear or nonlinear — assumes the random
increments to be additive [5]. This is clearly not the case here. And in this instance, it seems to
cause some peculiar phenomenon, as showcased in Fig. (a), looking at the dependences SS(a,b, ¢, d)
and SS(a,b,c,d') (in which the primed symbols denote independent variables). These functions of one
variable are slices of the function SS(a’, V', ¢/, d’) of four variables (or an approximation of that considering
that N = 10°) traversing the point in parameter/variable space corresponding to the true value of the
parameters. For some respective ranges of the variables, the graph of the functions are very jagged,
presumably they are sporadically fratal curves (as described in Sec. 5.2.3 of [6]). This most likely implies
uncountably many minima of the function SS(a’,V',¢’,d’"). Around the true values, the 1D dependences
are smooth. However, one might truly have no good idea of the actual values, and, thus, cannot start
the minimum search from a “safe basin of attraction”. We also notice by the SS(a,b’, ¢, d) dependence
that there is no minimum near the true parameter value b. Therefore, if this is not a sign of the proposed
minimum search being an underdefined problem, then that of very considerable biases.

Next, we look at similar slices of the negative log-likelihood function, —log(L), defined by eq. @[) in
Methods shown in Fig. (b). This looks rather promising: the slices have minima just about at the



true values, ¢ showing the largest bias. It is also ¢ for which the slice has multiple minima, owing to the
couple of wiggles of —log(L) for small values of ¢. This is luckily not such a fundamental problem as the
fractality of SS discussed above; the wiggles are due to difficulties with determining the normalization
constant Ny accurately as an integral. For vanishing values of ¢, Ny is increasing beyond any limit and
finite number representation by a digital computer introduces inaccuracies. Still, a minimum search of
—log(L) to the end of inferring the parameter values from data is not successful. This is in fact due to the
underdetermination of the problem for all four parameters of (S1)). Equation (3) and (5) of [7] providing
p(z), unlike our formula , reveals that only two nondimensional parameters do fully determine the
density function. (After all, the fact alone that all four slices have a minimum does not mean that the
function of four variables does have a unique minimum right about there because its minimum might
be a 1D object.) Therefore, MLE that is based on p(x), cannot determine more than two (dimensional)
parameters. This is not a problem in the case of the simple SDE , because we can easily estimate
two parameters as follows:

)
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S1 =Ty, Sy=2a2, S3=Tp,Tn_1,

where the overbar denotes arithmetic average. Furthermore, a connection between the remaining two
parameters can be established:

Sy = 01252 — 2% (10951 + 022 + 03?54 + 2C5C4S5 + CESG,

where N
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Cr=Ata+1, Cy=Ata+b, Cs=VAt(d—ch), Cy= VAl

The connection is a quadratic equation for d depending on c¢. The +ve root is to be taken for d, with
which we end up with a function of a single variable for the likelihood, or —log(L(a,b,c,d(c'))). Tt is
shown in Fig. (b), where we can visually verify that the minimum is indeed just about the true value
¢ = 0.2. The estimate is in fact ¢ = 0.215. This is the estimate to such a precision for any realisation of
N = 10%, which advises us about the bias. We deem it rather small. At the same time, @ = —0.9876,
b= 0.9971, ¢ = 1.0021, as yielded by the above estimator formulae and connection. This suggests that
the estimator of ¢ is the most (or, perhaps, the only) biased one. Furthermore, the problem remains of
course that small ¢’s cannot be estimated reliably in this way. This problem, however, should not be
present for the other MLE estimation technique outlined in Sec. [£.2]

In fact, the classical MLE estimation technique presented in this section is not applicable to the ROM1
model —, because the PDF p(T') is most likely cannot be established analytically. Furthermore, we
would need further “tricks” to estimate as many parameters as many are not determined by the classical
MLE method.

SI2 Forced changes of skewness in view of the ROM1

Here we provide an alternative analysis to that presented in Sec. of the main article
on the ROM2. This one is most likely wrong, because the ROM1 is missing the hetero-
quadratic nonlinearity (a2 7y # 0) arising due to vertical nonlinear dynamical heating, which
is believed to be present in the CESMv2 and MPI-ESM. This situation, however, provides
an opportunity of demonstrating what model misspecification could cause. On the one hand,
we will observe that the coefficient a; 77 of the homo-quadratic term would be misestimated,
thereby recovering some of the skewness lost with missing as 77, On the other hand, out of
the three conceptual models of ENSO considered (Sec. , it is only the ROMI1 for which
we are able to obtain an approximate formula of the skewness that can predict well
the parametric estimate of the forced change of ENSO skewness in the CESMv2.

Only in the CESMv2 do we have a strong signal of decreasing b of the ROM1 under stronger
greenhouse forcing (Fig. . This could be thought to be responsible for the declining positive skewness
in that model (Fig.[4]). But perhaps also a forced change of deterministic nonlinearity (as 1) plays a role;
this is at least what we see in view of the monthly data — but not the pentad data! We seem to be able
to rule out the importance of the change of noise correlations, on the other hand, as the auto-correlation



(AC) of e.g. &p is increasing (Fig. which should enhance skewness whereas the opposite is true. In the
historical or relatively weakly forced period, on the other hand, b seems stationary, but az 7 decreases
slightly and Dt increases, both of which should reduce skewness ~, the latter, Dr, as per [§], yet « is
stationary. Q1: Are the changes of as 77 and Dr too small to impact on the skewness, or is there a
problem with the simple justification regarding D17

We must point out that estimates of as 77 in the different models vastly differ: being about a fifth
in the CESMv2 as compared with the MPI-ESM. Yet, the skewness in the two models, seen in Fig.
(b) and (e) are not that different. This makes sense naively considering that estimates of a; pr are also
vastly different. It is easy to check numerically that the skewness depends both on a7 and a; rr.
Therefore, we are inclined to conclude that we are seeing a compensation effect here.

In any case, the compensation, agreeing with the numerical experience, implies that a decreasing
|a1 77| would increase v, which falsifies a naive reading of [§]. This also means that under strong forcing,
the increase of |ay rr| should decrease v — competing with the decreasing b. Q2: Which one is the
dominant factor, then, if there is one?

The situation is different in the MPI-ESM. There, as 77 is steadily increasing and b is practically zero
throughout the simulation period. Consistently, the skewness increases, as discussed above. Perhaps the
increasing auto-correlation of {7 also contributes beside as 77, although only after year 2000, not in the
rather weakly forced historical period. It could be thought that the change of as 77 is not an artefact in
relation with the said compensation effect because a; 7 does not change when ay 71 already changes.

Considering the CESM2-LE, answering the two questions, Q1 and Q2, Q1 pertaining to the weakly
forced historical period and Q2 to the strongly forced future period, is attempted here by performing
dimensional analysis of the ROM1. See the derivation of the dimensionless ROM2 in Sec. [2.3] as
well as the definitions of dimensionless parameters all of which have |a; 77| in the denomi-
nator of a fraction raised to various powers.

Concerning Q2, this inverse proportionality with |a; 77| explains why the increase of |a1 rr| reduces
the skewness of T, yr. However, we would also like to know if the increase of |aq 7| or possibly the
decrease of b in CESMv2 is the more dominant effect. This would be a straightforward analysis if yp
depended linearly on |ai rr| and b. However, while it might be the case wrt. b, because of the said
inverse proportionality and the various powers |a; pr| is raised to in defining the #’s, it looks unlikely
wrt. |a1,pr|. In the case of nonlinear dependence, though, the analysis is not much more complicated,
only that beside the contributions (wrt. some reference, say, the first value in a time series, pertaining
to the background state) of the respective variables, there is also a nonlinear interaction term. Let us
pretend for now as if noise correlations did not matter. Considering Fig. (d), first, it seems that
while the individual contributions are —ve, the interaction term is +ve, opposing. Second, it is also clear
that the changes of |a; 7| and b cause most of the changes of ypr under strong late 21st c. forcing.
Third, none of them is dominant, but, intriguingly, their contributions are approximately equal. Then,
the discrepancy between the grey curve of total change and the purple one accounting for the changes of
only |a1 77| and b appears to be largely due to a precipitous drop of as rr somewhat after 2050 (Fig. [4)).
That is, considerable changes of D7, A, ®, a1 n7, a1, do not make much difference. In fact, 7 does not
show measurable dependence on A, ®, aj pp, Or @, a1 pp, at all. We have come up with an approximate
formula for the skewness:

YT = Yn + Vs = Sanfn(O‘Z,TT) + SDst(ﬂ)v (863)
In(a2rr) = Q217 (S6b)
fs(B) = B (S6c)
©n R €1+ caaq pr + c;;aihh, (S6d)

)

Ps R Cy, (S6e

with constant ¢’s, fairly accurate (Figs. [5| (a), 4] (b)) in the regime of the changes of the parameters of
the ROM1 fitted to the monthly CESM2-LE data. Notably, because of the additive terms, changes of v
due to changes of ay pr alone and 8 alone (or ag pr alone and b alone), clearly, v, and s (‘n’ (‘s’) for
‘nonlinearity’ (‘state dependence’)), are superimposable (Fig. (a)). (They would be superimposable,
of course, even if the dependence of yr on either of as pr and S, i.e., fn(aorr) or fo(8), is nonlinear,
which is actually true but noticeable for rather larger changes of those.) Then, the “factor” ¢, for ag rr
depends on a subset of other 7’s, while b features a constant factor, s = ¢4. Although, both factors
(but also f,,(as,rr) and fs(8) with some restrictions of the functional forms) most probably depend on



(possibly all, except for as 7 and B) 7’s in the full range of permissible parameter values. (In fact, we
started out with quadratic polynomials for all of f,,(+), fs(-), @n(---), @s(--+), not on a theoretical basis
but just using a truncated Taylor series for approzimation, counting 22 terms (without intercepts/offsets
in fr,(+), fs(+)), and eliminated terms successively when we saw (in diagrams like Fig.[5| (b)) approximately
identical pairs of time series or pairs symmetrical to the t-axis — one of the pair(s) randomly selected
were eliminated. The process involved several iterations of term elimination. Only do we believe
to be exact. Otherwise, because of the certain dependence of ¢,, on oy pr and aq pp, parameters of the
h-equation, we can point out that in modelling ENSO (well, its skewness, at least), it is essential to
account for the dynamics of the mixed layer depth (h) and its coupling to the SST (T') (a counterexample
being [7]). Fig. 5| (b) is testimony to this claim.

Aided by eq. , finally we turn to our other question, Q1, pertaining to changes of the skewness,
or the lack of change, under the weaker historical forcing. Considering the definition of the 7’s on which
the factor ¢, depends, we can say that yr increases with Dp. (Again, a naive reading of [8] would thus
be a mistake.) Therefore, chances are that effects of changes of Dy and as pr largely cancel one another.
Fig. [5] (¢) shows that this is indeed the case, although the cancelling effects themselves, individually, are
rather small.

Yet, a gross problem with the analysis here is that the ROM1 fitted to the CESM2-LE would not
feature the level of skewness. It is about half of that of the CESM2-LE. It is another matter that the
CESM2-LE itself features an unrealistically small skewness. See further discussions in Sec. [3| regarding
the problem of model misspecification.

SI3 Forced changes of ENSO variability in view of the DROM+
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Figure S 1: Slices of the “sum of squares” S.S (top) and the negative log-likelihood @), functions of a
single variable, quantities to minimise in the methods of regression and Maximum Likelihood Estimation.
They pertain to our demo example .
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Figure S 2: Analytic and simulated probability density function p(x) (a) and the negative log-likelihood
depending on just one parameter value (b) for our demo example .
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Figure S 4: Monte Carlo (MC) experiments in relation with our new skewness formula . (a)
Demonstration of the superposition of contributions to the skewness made by nonzero values if as 77 and
b. (b) Scatter plot to validate eq. . For the two different diagrams, the output of two different MC
experiments are used. (a) 11 equally spaced sample values of az 77 (b) are defined between 0 and 3 (-3
and 3); the other parameters are fixed at values of: a; rr = —1, a1, 7 = 0.3, a1 pr = —13, a1 pp = 0.2,
A=12, =44, Dy =0.3, D;, = 15, loosely corresponding to figures seen in Table [I} The ranges for
the variations of ag rr and b are large enough so that the dependence of v on them is already clear to
be nonlinear. The simulations of the ROM1 are run over a span of 50,000 years with a small At =1/10
[month] for accuracy. On the vertical axis we measure a prediction of the skewness from a subset of
the simulation output assuming superposition holds. Markers are lined up tightly around the line of
unit slope going through the origin, indicating superposition. (b) This is rather a true MC experiments
with random realisations of the parameter values within respective ranges using a uniform probability
density. The ranges are corresponding to the ranges roughly realised by the CESM2-LE data as seen in
Fig. as,rr : [—0.02,0.05], b : [-0.03,0.03], a1,7r : [—1.8,—0.2], a1,z : [0.1,0.6], a1 pr : [-13,-9],
aipp : [—0.6,0.2], A:[0.7,1.1], ® = 4.4 (no need to vary due to symmetry), Dy : [0.5,1.5], Dy, : [10, 13].
Parameter value combinations not permitted for stable dynamics do come up (notice how the forced
change of aj pp, goes from —ve to +ve values, resulting a change from —ve to +ve feedback.), which are
simply ignored. Simulation time span and step size are the same as for the other experiment. On the
horizontal (vertical) axis we measure the skewness directly estimated from the simulation time series
of T (predicted by eq. ) The markers are not tightly around a straight line, however, the linear
correlation coefficient is 0.87; plus see Fig. [5| (a) as for the validation.
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Figure S 5: Predictions of ENSO skewness using our new formula , including the influence of various
ROMI1 parameters/physical factors. (a) Validation of by comparing the direct measurement of the
skewness of the ROM1 fitted to the monthly CESM2-LE data (time series copied from Fig. §13|(a)) to the
prediction by the formula using the time series of the ROM1 parameters (as seen in Fig. inferred by
the same fit. (b) The four terms of (S6)), j corresponding to the constants ¢;. (c) So called “all but one”
scenarios [9], when the influence of a forcing factor is assessed through fixing it to a constant value while
all other forcing factors are as originally realised. (d) A “reciprocal” approach to (c) in that we fix all
forcing factors except retaining the original values of, say, one. The latter would show the “contribution”
of that factor to the grand total in the specific sense that this contribution is a response to that factor in
a system where the responses to all forcing factors are linear [10]. When the response characteristics are
nonlinear, then a “single forcing” experiment can be misleading because of nonlinear interactions in the
case of multiple forcings acting at the same time, something that the “single forcing” experiment cannot
indicate. Of course, if the sum total of all possible “single forcing” experiments do not add up to the
outcome when all forcing factors are active, it is an indication of nonlinearity.
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Figure S 7: Diagnostics of the fitted ROM1 model — to the SODAv3.3.1 data, I: normality and
auto- and cross-correlation of residuals. Pairs of horizontal blue lines bracket correlation data points that
are not significantly non-zero. We used Matlab’s autocorr and crosscorr. Unfortunately, not only the
residuals &7, &, correlate, but also the state variable T' seems to causally affect £, in violation with the
assumption of the MLE fitting (Methods [4.2).
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Figure S 13: Diagnostics of the fitted ROM1 model — to the CESM2-LE and MPI-GE data
sets corresponding to Fig. 4 III. Panel(s) (b) ((a) and (c)) is (are) based on pentad (monthly) data.
Curves in blue, vermillion and gold belong in that order to the direct estimate from the LE data (copying
curves from Fig. @, skewness of the ROM1 without- and with taking noise correlations into account.
For the ROM1 results, the skewness was estimated from simulations of spans of 10,000 years using a
time step At the same as the data resolution from which the ROM1 parameters were estimated. We do
not know why the ROMI1 fit to the CESM2-LE data is not yielding accurate standard deviation for the
strongest of forcing magnitudes examined. Vertical lines of the gold curve are due to outliers as a result
of a divergent simulation. The latter is probably due to a too large At (read the captions of Figs.
S@) and/or parameter value combinations not permitted for stable dynamics, possibly because of the
unreliability of the parameter estimates. The latter might very well be down to “bifurcations” suffered
by the (nonautonomous) system — the Earth system model is indeed a much more intricate system than
the ROMI1.
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fitted to the MPI-GE data.
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Figure S 15: Like Fig. @r but for the parameters of the DROM+ (3) fitted to the CESM2-LE data.
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SI. NO. Model No. of Period Scenario
Members

1 CESM2 100 1850-2100 SSP 370

2 MPI-ESM 63 1850-2100 RCP 8.5, RCP4.5

3 MIROC6 50 1850-2100 SSP5-8.5

4 CanESM5 50 1850-2100  SSP585, SSP370,
SSP245

5 CanESM2 50 1950-2100 RCP 8.5

6 CESM1 40 1920-2100 RCP 8.5

7 CSIRO-MK3.6 30 1850-2100 RCP 8.5

8 GFDL ESM2M 30 1950-2100 RCP 8.5

9 GFDL-CM3 20 1920-2100 RCP8.5

10 MIROC-ES2L 10 1850-2100  SSP-585, SSP370,
SSP245

11 MPI-ESM1-2-LR 10 1850-2100  SSP-585, SSP370,
SSP245

12 ACCESS-ESM1-5 10 1850-2300  SSP-585, SSP370,
SSP245

Table 1: Data sets of initial condition large ensembles used to analyse the modelling robustness of ENSO
variance (amplitude) in Figs. and §21} Annual mean data is used.
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Figure S 20: ENSO standard deviation (o¢) as a function of time being the forced change (left) or the
forced change of the global mean surface temperature (right). Only data belonging to the strongest
forcing scenario used to create these diagrams.
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Figure S 21: Left: Similar to Fig. §20| but all available data is used as indicated in Table Only
those models are featured for which more than one forcing scenarios are applied. Extreme right: For one
particular model, we have a run extended out to the year 2300. Here we can see an eventual decline of
ENSO amplitude also for this model.
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