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SI Fig. 1. The equilibrium in the long-run 1.5xCO2 and 3xCO2 simulations. a The global volume mean ocean temperature. b The
global mean top-of-atmosphere (TOA) net radiation flux. The transparent curves indicate the annual mean, while the solid curves indicate
the 100-year mean.
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a Bottom Water Temperature (JJA) b Bottom 18Osw (JJA)

c Bottom Water Temperature (DJF) d Bottom 18Osw (DJF)

e Bottom Water Temperature (JJA DJF) f Bottom 18Osw (JJA DJF)
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SI Fig. 2. The seasonal bottom (below 3 km) mean water temperature (BWT) and δ 18Osw fields in the 3xCO2 simulation. a-b The
boreal summer (JJA). c-d The boreal winter (DJF). e-f The small difference between the boreal summer and the boreal winter showing
minimal seasonal variability.
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SI Fig. 3. The maximum likelihood (MLE) estimation of the Miocene Climatic Optimum (MCO) warmth in global mean surface
temperature (GMST) relative to the preindustrial (PI) under different assumptions of the MCO global mean seawater pH and
δ 18Osw. Different choices of the MCO global mean seawater δ 18Osw are noted in the figure, including the one used in this study and those
used in previous studys. R22/E24: Rohling et al. (2022)2 and Evans et al. (2024)3; C11: Cramer et al. (2011)4; L15: Lear et al. (2015)5.
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a Sea Surface Temperature (MLE; JJA)

b Sea Surface Temperature (MLE; JJA Annual)
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SI Fig. 4. The maximum likelihood estimation (MLE) of the boreal summer sea surface temperature (SST) field. a The boreal
summer (JJA) field. b The difference between JJA and the annual mean (Annual).
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Site ID Paleo Lat (◦) Paleo Long (◦) Modern Lat (◦) Modern Long (◦) Depth (m) Mean (h) SD (h)

DSDP2376 -8.86 54.32 -7.08 58.12 1623 1.615500 0.170154
DSDP2896 -2.80 162.86 -0.50 154.91 2224 1.374615 0.209030
DSDP3177 -14.29 204.97 -11.00 197.74 2598 1.571786 0.220656
DSDP4088 61.03 334.06 63.38 330.99 1624 0.733333 0.041633
DSDP5636, 9 31.73 317.92 33.64 316.00 3786 1.406970 0.242313
DSDP5746, 10 1.14 228.98 8.00 226.67 4561 1.339695 0.217692
DSDP58811 -32.35 158.87 -26.11 159.93 1533 1.272273 0.313064
DSDP59011 -37.19 159.98 -31.17 159.96 1533 1.023529 0.253228
DSDP59111 -37.49 158.00 -31.58 158.95 2131 1.268750 0.342907
DSDP6089 40.96 328.92 42.84 325.96 3526 1.125833 0.206638
DSDP6676 2.66 334.69 4.57 336.99 3529 1.450750 0.247825
NGHP-01-01A12 10.45 64.55 15.30 70.90 2663 1.530889 0.595047
ODP7049 -49.37 3.30 -46.88 7.42 2541 1.055000 0.176777
ODP74413 -61.18 79.13 -61.57 79.90 2317 1.847778 0.234456
ODP7479 -54.49 74.96 -54.81 72.99 1695 1.586892 0.546643
ODP76114 -24.64 109.92 -16.74 115.54 2179 1.314253 0.153499
ODP80615 -2.02 162.95 0.32 154.96 2519 1.273939 0.262392
ODP114616 20.86 113.00 19.46 117.01 2091 1.049022 0.290060
ODP117117 -55.59 148.69 -48.50 151.00 2150 1.336810 0.208507
ODP123718 -18.46 269.86 -16.01 283.62 3212 1.432607 0.248239
U133619 4.76 235.00 7.70 231.75 4286 1.532886 0.197610
U133720 1.03 232.00 3.83 236.79 4476 1.336185 0.270719
U133821 -0.11 247.91 2.51 241.99 4210 1.448941 0.234350

SI Table 1. The benthic foraminiferal records during the Miocene Climatic Optimum (MCO) with paleo and modern locations. SD:
standard deviation.

Site ID Proxy Paleo Lat (◦) Paleo Long (◦) Mean (◦C) SD (◦C)

60822 UK37 41.33 336.48 28.7 1.5
60822 TEX86 41.35 336.49 28.9 4.4
73023 TEX86 7.30 57.19 32.7 2.1
76124 Mg/Ca -23.74 112.50 29.2 2.0
88425 UK37 48.74 179.52 20.2 1.5
92526 UK37 2.55 321.59 28.1 1.5
92526 TEX86 2.55 321.59 28.1 2.5
92627 Mg/Ca 1.57 322.70 27.8 2.0
95928, 29 TEX86 1.27 353.80 30.0 3.0
98230 UK37 56.56 342.53 27.5 1.5
98231 TEX86 56.03 342.66 25.4 3.0
98231 UK37 56.00 342.64 23.7 0.5
117117 Mg/Ca -55.57 149.76 16.6 2.0
114632 Mg/Ca 21.29 117.66 27.8 2.0
U133833 UK37 -7.50 254.10 28.7 1.5
U135634 TEX86 -61.59 133.74 17.4 2.5
AND2A35 TEX86 -77.06 156.62 5.8 2.5

SI Table 2. The Miocene Climatic Optimum (MCO) sea surface temperature proxy records at various sites. SD: standard deviation.
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