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1. Conventional Fitting of the EXAFS Equation 

While the fit presented in figure S1 appears reasonable, the extracted structural parameters 

summarized in table S1 indicate the presence of only a single coordinating atom in the first shell. 

This outcome was attributed to the fact that the EXAFS theoretical calculations that are used to fit 

the experiment predominantly capture the most significant single-scattering contributions from the 

nearest neighbor. In highly disordered environments such as molten salts, atoms in the first 

coordination shell are distributed over a range of distances. Consequently, the atom closest to the 

absorber dominates the EXAFS signal, leading to an apparent underestimation of the coordination 

number. 

 

Table S1: Results of traditional EXAFS fitting for NaF-ZrF4 (57-43) %mol 

N 𝑺𝟎
𝟐 σ2 R 

1.005 +/- 0.55 0.971  0.0011100 1.88438 

 

 

Figure S1: Conventional EXAFS fit in k-space (left pane) and its corresponding Fourier transform (right pane) 

2. FEFF Calculations  

Zr K-edge EXAFS spectra were calculated for the ONNE generated structures using FEFF10 code, 

where the amplitude reduction factor 𝑆0
2 was set to 1.0, EXAFS kmax was set to 14 Å−1, 

COREHOLE was set to Final State Rule (FSR) and RPATH was set to 6.0 Å. A self-consistent 

calculation with a 4 Å cluster radius was used. A bash script was generated to run multiple FEFF 

calculations simultaneously on a high-performance computer (HPC) cluster, 

3. Convolutional Neural Network (CNN) Architecture 

The CNN architecture consists of two sequential convolutional blocks. The first block takes input 

spectra of shape (1, 220) and applies 64 convolutional filters with a kernel size of 3, followed by 

batch normalization to stabilize learning and accelerate convergence. The Scaled Exponential 

Linear Unit (SELU) activation function was used to promote self-normalizing behavior and 

improve robustness of the CNN. This is followed by a max-pooling operation with a kernel size 



of 2, which reduces the dimensionality and extracts dominant features while maintaining 

translation invariance. A dropout layer with a rate of 0.2 is included to prevent overfitting. The 

second convolutional block follows a similar pattern, expanding the number of filters to 128 while 

retaining the same normalization, activation function, pooling, and dropout layers. The output from 

the convolutional layers is then flattened and passed through a fully connected dense block, starting 

with a hidden layer of 768 units (3 × 256), again followed by batch normalization, SELU 

activation, and dropout. The final output layer is a linear layer sized to match the target number of 

structural outputs. The fine-tuned version was developed by appending additional dense layers to 

the base CNN. The output of the frozen base model, a 130-dimensional latent feature vector is 

passed through two fully connected layers of 256 units each, using SELU activation and dropout, 

followed by a final linear layer mapping back to 300 outputs. The use of SELU activation 

throughout the network ensures that the neuron activations remain approximately zero-centered 

and unit-normalized, reducing the need for explicit normalization in later layers and improving 

training stability.  

 

 

Figure 2: Base model CNN architecture used in this study 

4. Training and Optimization Details 

The model was trained using a batch size of 64 and optimized over 50 epochs using the Adam 

optimizer with a learning rate of 0.0001. A weight decay factor of 1×10-5 was used to introduce L2 

regularization and penalize overly complex models. These hyperparameters were chosen based on 

empirical tuning across a validation set and informed by prior studies in similar regression tasks 

involving EXAFS inversion. A lower learning rate was selected to ensure stable convergence, 



especially given the SELU activation function and the depth of the network. The batch size was 

set to balance between gradient estimate stability and training efficiency, while the number of 

epochs was chosen to allow the model sufficient time to learn without overfitting, as verified by 

early stopping criteria on validation error. The combination of dropout, weight decay, and batch 

normalization proved effective in mitigating overfitting and enhancing generalization, especially 

in the context of experimental noise and structural diversity inherent in molten salt systems. 

 

 

 

 

 

 


