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1. Conventional Fitting of the EXAFS Equation

While the fit presented in figure S1 appears reasonable, the extracted structural parameters
summarized in table S1 indicate the presence of only a single coordinating atom in the first shell.
This outcome was attributed to the fact that the EXAFS theoretical calculations that are used to fit
the experiment predominantly capture the most significant single-scattering contributions from the
nearest neighbor. In highly disordered environments such as molten salts, atoms in the first
coordination shell are distributed over a range of distances. Consequently, the atom closest to the
absorber dominates the EXAFS signal, leading to an apparent underestimation of the coordination
number.

Table S1: Results of traditional EXAFS fitting for NaF-ZrF4 (57-43) %mol
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Figure S1: Conventional EXAFS fit in k-space (left pane) and its corresponding Fourier transform (right pane)

2. FEFF Calculations
Zr K-edge EXAFS spectra were calculated for the ONNE generated structures using FEFF10 code,

where the amplitude reduction factor SZ was set to 1.0, EXAFS kmax was set to 14 A%,

COREHOLE was set to Final State Rule (FSR) and RPATH was set to 6.0 A. A self-consistent
calculation with a 4 A cluster radius was used. A bash script was generated to run multiple FEFF
calculations simultaneously on a high-performance computer (HPC) cluster,

3. Convolutional Neural Network (CNN) Architecture

The CNN architecture consists of two sequential convolutional blocks. The first block takes input
spectra of shape (1, 220) and applies 64 convolutional filters with a kernel size of 3, followed by
batch normalization to stabilize learning and accelerate convergence. The Scaled Exponential
Linear Unit (SELU) activation function was used to promote self-normalizing behavior and
improve robustness of the CNN. This is followed by a max-pooling operation with a kernel size




of 2, which reduces the dimensionality and extracts dominant features while maintaining
translation invariance. A dropout layer with a rate of 0.2 is included to prevent overfitting. The
second convolutional block follows a similar pattern, expanding the number of filters to 128 while
retaining the same normalization, activation function, pooling, and dropout layers. The output from
the convolutional layers is then flattened and passed through a fully connected dense block, starting
with a hidden layer of 768 units (3 x 256), again followed by batch normalization, SELU
activation, and dropout. The final output layer is a linear layer sized to match the target number of
structural outputs. The fine-tuned version was developed by appending additional dense layers to
the base CNN. The output of the frozen base model, a 130-dimensional latent feature vector is
passed through two fully connected layers of 256 units each, using SELU activation and dropout,
followed by a final linear layer mapping back to 300 outputs. The use of SELU activation
throughout the network ensures that the neuron activations remain approximately zero-centered
and unit-normalized, reducing the need for explicit normalization in later layers and improving
training stability.
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Figure 2: Base model CNN architecture used in this study

4. Training and Optimization Details

The model was trained using a batch size of 64 and optimized over 50 epochs using the Adam
optimizer with a learning rate of 0.0001. A weight decay factor of 1x10~ was used to introduce L2
regularization and penalize overly complex models. These hyperparameters were chosen based on
empirical tuning across a validation set and informed by prior studies in similar regression tasks
involving EXAFS inversion. A lower learning rate was selected to ensure stable convergence,



especially given the SELU activation function and the depth of the network. The batch size was
set to balance between gradient estimate stability and training efficiency, while the number of
epochs was chosen to allow the model sufficient time to learn without overfitting, as verified by
early stopping criteria on validation error. The combination of dropout, weight decay, and batch
normalization proved effective in mitigating overfitting and enhancing generalization, especially
in the context of experimental noise and structural diversity inherent in molten salt systems.



