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Table A1A. Comparison of FLS§-treated AMs|| and control AMs. The 10 most significant gene-sets enriched in upregulated genes in the FLS-treated group are presented.
	NAME
	SIZE
	NES*
	NOM p-val†
	FDR q-val‡


	KEGG:RHEUMATOID ARTHRITIS
	73
	2.10
	0.000
	0.000

	KEGG:IL-17 SIGNALING PATHWAY
	71
	2.10
	0.000
	0.000

	REACT:INTERFERON SIGNALING
	134
	2.09
	0.000
	0.000

	KEGG:NF-KAPPA B SIGNALING PATHWAY
	88
	2.07
	0.000
	0.000

	KEGG:CYTOKINE-CYTOKINE RECEPTOR INTERACTION
	168
	2.04
	0.000
	0.000

	KEGG:TNF SIGNALING PATHWAY
	103
	2.04
	0.000
	0.000

	REACT:CYTOKINE SIGNALING IN IMMUNE SYSTEM
	512
	2.03
	0.000
	0.000

	GO_MF_EF_CYTOKINE_ACTIVITY
	47
	2.03
	0.000
	0.000

	REACT:PEPTIDE LIGAND-BINDING RECEPTORS
	61
	2.02
	0.000
	0.000

	GO_BP_EF_IMMUNE_RESPONSE
	88
	2.02
	0.000
	0.000







Table A1B. Comparison of FLS§-treated AMs|| and control AMs. The 10 most significant gene-sets enriched in downregulated genes in the FLS-treated group are presented.
	NAME
	SIZE
	NES*
	NOM p-val†
	FDR q-val‡


	KEGG:OLFACTORY TRANSDUCTION
	26
	-1.95
	0.000
	0.050

	REACT:INTERCONVERSION OF NUCLEOTIDE DI- AND TRIPHOSPHATES
	24
	-1.85
	0.001
	0.215

	KEGG:BASE EXCISION REPAIR
	30
	-1.83
	0.001
	0.195

	KEGG:CARBOHYDRATE DIGESTION AND ABSORPTION
	27
	-1.82
	0.001
	0.187

	GO_BP_EF_OSTEOBLAST DEVELOPMENT
	10
	-1.77
	0.001
	0.313

	GO_BP_EF_INDUCTION OF APOPTOSIS BY INTRACELLULAR SIGNALS
	8
	-1.76
	0.001
	0.309

	REACT:METABOLISM OF FOLATE AND PTERINES
	15
	-1.76
	0.004
	0.301

	REACT:MISMATCH REPAIR
	13
	-1.75
	0.005
	0.311

	KEGG:AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM
	43
	-1.75
	0.002
	0.281

	KEGG:MISMATCH REPAIR
	20
	-1.74
	0.002
	0.287



Table A2A. Comparison of FLS§-treated MDMs** and control MDMs. The 10 most significant gene-sets enriched in upregulated genes in the FLS-treated group are presented.
	NAME
	SIZE
	NES*
	NOM p-val†
	FDR q-val‡

	REACT:INTERFERON SIGNALING
	134
	1.92
	0.000
	0.000

	KEGG:INFLUENZA A
	135
	1.92
	0.000
	0.000

	KEGG:NF-KAPPA B SIGNALING PATHWAY
	88
	1.9
	0.000
	0.000

	REACT:INTERFERON ALPHA/BETA SIGNALING
	39
	1.9
	0.000
	0.000

	GO_BP_EF_RESPONSE_TO_VIRUS
	38
	1.88
	0.000
	0.000

	KEGG:RHEUMATOID ARTHRITIS
	73
	1.87
	0.000
	0.000

	KEGG:NOD-LIKE RECEPTOR SIGNALING PATHWAY
	139
	1.86
	0.000
	0.000

	REACT:INTERFERON GAMMA SIGNALING
	51
	1.85
	0.000
	0.000

	GO_BP_EF_IMMUNE_RESPONSE
	88
	1.83
	0.000
	0.000

	KEGG:INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION
	31
	1.83
	0.000
	0.000






Table A2B. Comparison of FLS§-treated MDMs** and control MDMs. The 10 most significant gene-sets enriched in downregulated genes in the FLS-treated group are presented.
	NAME
	SIZE
	NES*
	NOM p-val†
	FDR q-val‡

	KEGG:MISMATCH REPAIR
	20
	-1.91
	0.000
	0.084

	REACT:DISEASES OF DNA REPAIR
	31
	-1.87
	0.003
	0.112

	KEGG:BASE EXCISION REPAIR
	30
	-1.82
	0.001
	0.176

	REACT:PCNA-DEPENDENT LONG PATCH BASE EXCISION REPAIR
	20
	-1.81
	0.002
	0.151

	REACT:RESOLUTION OF ABASIC SITES (AP SITES)
	35
	-1.78
	0.002
	0.197

	KEGG:NUCLEOTIDE EXCISION REPAIR
	42
	-1.78
	0.000
	0.166

	GO_BP_EF_MISMATCH_REPAIR
	10
	-1.77
	0.002
	0.168

	GO_BP_EF_REGULATION OF DNA-DEPENDENT TRANSCRIPTION ELONGATION
	10
	-1.74
	0.004
	0.260

	GO_MF_EF_MISMATCHED DNA BINDING
	9
	-1.73
	0.001
	0.246

	GO_BP_EF_POSITIVE REGULATION OF HISTONE ACETYLATION
	9
	-1.73
	0.001
	0.235





Table A3A. Comparison of AMs|| and MDMs** based on the magnitude of gene expression change influenced by FLS§ exposure. The 10 most significant gene-sets enriched in upregulated genes in MDMs are presented.
	NAME
	SIZE
	NES*
	NOM p-val†
	FDR q-val‡

	REACT:INTERFERON ALPHA/BETA SIGNALING
	39
	2.09
	0.000
	0.000

	KEGG:INFLUENZA A
	135
	2.08
	0.000
	0.000

	REACT:INTERFERON SIGNALING
	134
	2.05
	0.000
	0.000

	KEGG:HEPATITIS C
	119
	2.04
	0.000
	0.000

	KEGG:MEASLES
	120
	2.02
	0.000
	0.001

	REACT:ANTIVIRAL MECHANISM BY IFN-STIMULATED GENES
	73
	1.96
	0.000
	0.005

	GO_MF_EF_DOUBLE-STRANDED RNA BINDING
	35
	1.90
	0.000
	0.020

	KEGG:EPSTEIN-BARR VIRUS INFECTION
	174
	1.90
	0.000
	0.018

	[bookmark: __DdeLink__707_3813939313]REACT:INTERFERON GAMMA SIGNALING
	51
	1.89
	0.001
	0.024

	GO_BP_EF_DEFENSE RESPONSE TO VIRUS
	43
	1.89
	0.000
	0.023



Table A3B. Comparison of AMs|| and MDMs** based on the magnitude of gene expression change influenced by FLS§ exposure. The 10 most significant gene-sets enriched in downregulated genes in MDMs are presented.
	NAME
	SIZE
	NES*
	NOM p-val†
	FDR q-val‡

	REACT:TRANSCRIPTION OF E2F TARGETS UNDER NEGATIVE CONTROL BY DREAM COMPLEX
	19
	-1.90
	0.001
	0.771

	KEGG:MINERAL ABSORPTION
	37
	-1.89
	0.000
	0.393

	REACT:INHIBITION OF REPLICATION INITIATION OF DAMAGED DNA BY RB1/E2F1
	12
	-1.84
	0.002
	0.599

	REACT:TRANSCRIPTION OF E2F TARGETS UNDER NEGATIVE CONTROL BY P107 (RBL1) AND P130 (RBL2) IN COMPLEX WITH HDAC1
	15
	-1.80
	0.001
	0.738

	REACT:ACTIVATION OF PUMA AND TRANSLOCATION TO MITOCHONDRIA
	8
	-1.79
	0.002
	0.648

	GO_MF_EF_METALLOCARBOXYPEPTIDASE ACTIVITY
	9
	-1.79
	0.001
	0.547

	GO_BP_EF_VESICLE DOCKING INVOLVED IN EXOCYTOSIS
	12
	-1.78
	0.002
	0.562

	GO_CC_EF_INTRINSIC TO ENDOPLASMIC RETICULUM MEMBRANE
	11
	-1.76
	0.005
	0.575

	REACT:E2F MEDIATED REGULATION OF DNA REPLICATION
	21
	-1.73
	0.009
	0.705

	GO_MF_EF_CORE PROMOTER BINDING
	13
	-1.72
	0.006
	0.719


















Figure A1. Overview of RNA-seq mapping.
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Figure A2. Heatmap of the top 50 differentially expressed genes between control AMs and MDMs, an FDR <0.05 and absolute log2 fold change >1 and a minimum of 3 fragments per kilobase of transcript per million mapped reads.
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Figure A3. Multidimensional scaling plot.
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Figure A4. Sample clustering plot. 
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Figure A5. Gene-set enrichment analysis of the differentially expressed genes between control and FLS-stimulated alveolar macrophages. Each node represents a gene-set. FDR: false discovery rate q-value, centre of each node. NES: normalized enrichment score, edge of each node. Connecting lines: genes overlap between sets. Size of the node: number of genes annotated to the gene-set. Threshold for FDR was set at 0.05. Cytokine signaling is the most prominent biological theme upregulated by FLS.
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Figure A5. Among the genes upregulated by FLS exposure in AMs (Figure A5) were genes encoding cytokines and chemokines such as TNF, IL-1, IL-6 and CCL5. Similar patterns were previously observed with exposure of AMs to LPS alone, wherein upregulation of pathways including “toll-like receptor cascade” and “proinflammatory response” were reported (1). The NF-κB signaling pathway was identified as a major biological process in AMs exposed to FLS. This pathway is a key mediator of pro-inflammatory gene expression that is triggered by a variety of stimuli, including ligands of pattern-recognition and cytokine receptors (2). Dectin-1 mediated NF-κB signaling, which results from the binding of β-glucan on fungal spores, was also identified (3-5). The stimulus mixture contained LPS, which activates NF-κB via both MyD88-dependent and MyD88-independent TLR signaling. Thus, activation of NF-κB signaling is an expected response of AMs from healthy horses to these types of stimuli. As over-activation of NF-κB signaling is a hallmark of inflammatory disease (2), it might suggest that similar to humans with chronic inflammatory lung diseases (6, 7), AMs from asthmatic horses could have excessive NF-κB activation with FLS exposure. MyD88-dependent signaling induces the activation of the IL-10 pathway, which was observed in AMs with FLS exposure; however, IL-10 was not detected in the cell culture supernatant of AMs (8). Since the IL-10 gene was upregulated, this suggests that in a potent proinflammatory environment, the production or secretion of this anti-inflammatory protein was interfered with by the inhibition of the phosphatidylinositol 3 kinase-Akt pathway (9). The IL-17 signaling pathway was also upregulated with FLS exposure in AMs. IL-17 is a proinflammatory cytokine that recruits and activates neutrophils (10). Activation of the IL-17 signaling pathway combined with the upregulation of CXCL8 supports a role for AMs in neutrophil mobilization in inflammatory lung diseases including sEA. Apoptosis-associated pathways were also activated in AMs exposed to FLS. Activation of AM apoptosis could result from LPS-induced production of TNF and autocrine exposure (11), as previously reported in horses (1). Overrepresentation of apoptotic signaling pathways in BALF leukocytes was reported in horses with sEA (12, 13), and apoptosis of AMs was also a feature of pulmonary inflammation in mice with pneumonia (14). However, in addition to LPS, our challenge material contained silica particles, which once phagocytosed, may induce apoptosis and cause cell death (15). The FLS-induced activation of apoptotic pathways of AMs may thus indicate a mechanism of inflammation generalizable to diverse lung diseases including silicosis, pneumonia, and asthma  (12, 14, 15).
Figure A6. Gene-set enrichment analysis of the differentially expressed genes between control and FLS-stimulated monocyte-derived macrophages. Data presented as in Figure E4. Cytokine signaling in immune response is the most prominent biological theme upregulated by FLS exposure.
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Figure A6. Similar to AMs, FLS-exposed MDMs had abundant upregulated genes, many of which were genes encoding inflammatory cytokines including TNF, IL-10 and CCL5. It was previously reported that LPS-exposed equine monocytes expressed genes encoding TNF, IL-10 and IL-1β but not CCL5 or IFNβ. Therefore, it was concluded that LPS exposure activated the MyD88-dependent pathway but not the MyD88-independent pathway (16). In contrast, here, over-expression of genes from both pathways were detected in MDMs: genes encoding TNF and IL-10 from the MyD88-dependent pathway, and genes encoding CCL5, IFNβ and CXCL10 from the MyD88-independent pathway. The fungal spores in the challenge material would likely cause β-glucan-mediated dectin-1 signaling, which could have contributed to the activation of MyD88-independent pathways and the production of IFNβ (4, 17).
The main biological theme activated by FLS exposure in MDMs was “cytokine signaling in immune response” (Figure 3). Additionally, we observed enrichment in the “toll-like cascade”, “anti-viral immune response” and “programmed cell death” pathways. The immunological pathways triggered by FLS were similar to the pathways activated in the early stages of viral infections (18, 19), even though the exposure material did not contain viral components. This finding supports an innate immune response driven by recognition of conserved molecules that induce broadly utilized pathways (20). Pathways regulating apoptosis were also activated in MDMs after FLS exposure (Figure E5). Such activation of apoptotic and chemotactic pathways in AMs and MDMs may facilitate replacement of resident AMs and infiltration of leukocytes, including blood monocytes, into the lung during inflammatory diseases (21).


Figure A7. Visualization of differentially expressed genes between control and FLS-stimulated alveolar macrophages. The volcano plot was generated from differential gene expression results obtained from DESeq2. Red dots indicate 1569 genes significantly upregulated, and blue dots indicate 1246 genes significantly downregulated.
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Figure A8. Visualization of differentially expressed genes between control and FLS- stimulated monocyte-derived macrophages. The volcano plot is generated as in Figure 2; 1624 genes were significantly upregulated, and 1164 genes were significantly downregulated.
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Description automatically generated]Figure A9. Visualization of differentially expressed genes between alveolar macrophages and monocyte-derived macrophages reflecting the effect of FLS on expression change.  The volcano plot is presented as in Figure 2; 391 genes were significantly upregulated in MDMs and 198 genes were significantly upregulated in AMs. 
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