A validated and explainable deep learning model predicts survival from medical reports

Supplementary Methods

Processing – the dataset
The types of EHRs included consultation reports, radiological reports, clinical notes and hospitalization reports. We extracted the dataset documents from several SQL tables into concatenated .csv files. We filtered out documents recorded after the date of death and documents with less than 250 characters. Among those documents, we further processed the texts dimensions because CamemBERT input dimension is limited to 512 tokens. Based on oncologist recommendations supporting that the most important information is stored at the beginning and at the end of the reports, we truncated text in the middle of longer documents as follows: if a document has more than 512 tokens, we joined the first and last tokens of the document to build a more concise document with 512 tokens maximum. For the CLB cohort, we selected texts with at most 350 words. All texts were changed to lowercase.
We performed a 88-02-10 random split on individual patients from the GR cohort to compose training, validation and GR test sets, respectively. As patients were split - and not individual documents - all documents related to a single patient were necessarily attributed to the same dataset (train, validation or test set) to avoid data leakage during training. For the CLB cohort (used only as external test cohort) we sub-sampled 10 cohorts composed of a random selection of 1000 patients each in order to compute distributions of the performance metrics evaluated.
For each model type (K-memBERT-base, K-memBERT-conflation and K-memBERT-T2, see after), we trained the parameters on the training set, we used the validation set to tune the hyperparameters, and we independently evaluated the performances of each model using the GR test set. Finally we used the CLB test sets to evaluate the generalization performance of the model on another French institution.
Processing – Tokenizer
As for CamemBERT, we used SentencePiece tokenizer (1). SentencePiece extracts prefixes and suffixes, such as "logy", and treats e.g."oncology" as "onco + logy".
Processing – Medical vocabulary
CamemBERT was pre-trained on a non-medical text corpus (vocabulary size of 32,005 tokens). We therefore hypothesized that its tokenizer could miss specific medical terms that are important for our task. We thus expanded the vocabulary by adding the 500 most frequent tokens found in the GR training cohort that were not in the original vocabulary of CamemBERT. Almost all the added tokens referred to medical terms or terms specific to the institution.
Predictions - Labels
We used Gaussian distributions to represent survival time, defined by a mean value and a standard deviation. We denote by the density function of a Gaussian distribution of parameter , i.e.

The training and validation data had no censoring event, so considering the document written at time corresponding to a patient deceased at time , the survival time at time is . Survival time distribution for patients with cancer classically follow an exponential distribution, and such label distribution can lead to unstable training of deep learning model (2). We have thus used the following formula to transform the labels into a standard uniform distribution [0-1] for training: given a survival time , the corresponding label is where is the cumulative distribution function of the exponential law of parameter and is the mean survival time over all medical documents.

To plot and interpret the survival predictions we transformed the labels in [0-1] into real-time survival estimation with the reverse transformation:
f : ℝ → [0, 1]
x → 1-e-x/m
where :
· x : survival time (in days) after the date of document
· m : mean survival time of the training cohort (in days).

Predictions - Loss
Let’s consider a batch of samples of label and the predicted distribution parameters . The objective is to maximize the likelihood , where is the density function of the Gaussian law of parameter . It can be interpreted as the probability of seeing such labels given the predictions. Maximizing the latter product is equivalent to minimizing the following quantity:

Thus we consider the loss as:

This loss is a generalization of the Mean Squared Error, that can be obtained by setting , where represents the mean expected survival time, , the variance or standard deviation which can be interpreted as the inverse of the model confidence. For stability reasons during training, the logarithm of the variance was used instead of the variance, and variance values were arbitrarily limited to a maximum of .
Models architecture
We designed three types of Transformer models: K-memBERT-base to predict patients’ prognosis based on a single medical report, K-memBERT-conflation and K-memBERT-T2 to use several medical reports to make one prediction. On top of these three types of model we fine-tuned CamemBERT-base.
Models architecture - K-memBERT-base
We adapted CamemBERT to design K-memBERT, a model specific to patients affected by cancer. CamemBERT has been trained on a French text corpus, itself derived from the English RoBERTa (3). We have loaded CamemBERT-base For Sequence-Classification from Hugging Face (https://huggingface.co/transformers/index.html) together with the corresponding fast tokenizer designed for vocabulary expansion. We added to CamemBERT tokenizer the most frequent medical vocabulary from our corpus (see Dataset - Preprocessing).
Models architecture –multiple inputs
Physicians often use the medical history (from the previous clinical documents) together with clinical observations to support their decision. We therefore designed two different methods to use a set of sequential documents in K-memBERT: K-memBERT-conflation and K-memBERT-T2.
A complete sorted list of documents of a patient is written where is the total number of documents of this patient, and corresponding times . We consider these documents as being sorted, with the number of medical documents specific to each patient and the label for each prediction.
Models architecture - K-memBERT-Conflation
Conflation is a non-trainable probabilistic method that aggregates multiple predicted distributions (4). An interesting mathematical property of conflation, among others, is that confident predictions (i.e. distribution with a small variance) have more weight in the resulting aggregated distribution.
Let’s be the K-memBERT-base predicted normal distributions of the oldest document of a patient, according to the document selection described above. The product of these gaussian density functions can be interpreted as a probability density function representing the most probable distribution of survival time knowing multiple independent distributions. This product is also a gaussian probability density function up to a constant multiplier, so we rescale it by:

Where the mean and the variance can be calculated using the following relations

is basically a weighted average of whose weights are given by the total variance product divided by the variance in question. Thus, the higher confidence the higher weight in the weighted average.

Yet, considering that the predictions are based on report made at a different date, we have to update the predictions so the timelines are consistent. For example if a model predicted a survival time of 100 days a month before the next report, then it corresponds to a prediction of 70 days for the new report. We thus consider the sorted report dates and we remove to each predictions the time difference to the most recent document, i.e. . As the predicted means correspond to label mapped in , we have to send the values back into the survival time space, remove the time difference, and send send it back in the label space, i.e.

where denotes the positive value.

The conflated means can thus be corrected

[image: https://lh7-us.googleusercontent.com/bgR1VO-xKmzmfMiMlkJzVHykH1V9h8HFxtxkYvObg_OLSxQdIOLpwv8IhMO9EsLX_6thisuC1RSF2dsZt_x3Z8VDBKMSvfbJnauqoax2pbItjDRBZAIAEDk-K8q8HPGoWqJRfkn48LPEeLm35x8BgQ4]

Models architecture - K-memBERT-T2 (stack of transformers)
K-memBERT-T2 consists in a sequence of K-memBERT-base vector transformations of a sequence of documents, fed to a new transformer layer (top layer) with a positional encoding representing the sequence of documents. With sorted documents of a patient and the corresponding dates . , the report is inputted in a trained K-memBERT-base model and we extract the first row of the last hidden state of the encoder (corresponding to the CLS token), denoted . The resulting vector is of size , where denotes the number of expected features in the encoder inputs.
In parallel, in order to leverage the time difference between reports (and not only their index), we computed the time based positional encoding with Time2Vec reprensented by the time difference of the sorted reports with the most recent report, i.e. (5). We denote by the parameters of Time2Vec, where is the dimension of the learned time representation where

The time positional encoding corresponding to the report is . We then concatenated the time encoding to the report features vector by , where is the concatenation. The input of the KmemBERT-T2 top layer is thus . Note that both the parameters of the top layer and the parameters of Time2Vec are learned during the training, but not the already trained K-memBERT-base model that is thus freezed. K-memBERT-T2 can support various number of input documents, which constitute an hyper-parameter.
Models architecture - CamemBERT-base
We then froze all the layers of the CamemBERT-base model (including its tokenizer not enriched with medical words) and fine-tuned the output layers on our survival prediction task.
Training - Learning Rate Scheduler
In our model, we used a linear scheduler with warmup. This allowed to first increase linearly the learning rate value from 0 to the user-set learning rate (warm-up) and then decreases linearly the learning rate value to 0.
Hyper-parameters for K-memBERT-base
We used the recommended hyper-parameters from RoBERTa and fixed:
· Batch size = 8 to limit memory usage to train the model.
· Optimizer Adam with beta1= 0.9 and beta2=0.999.
· Number of epochs = 100 (stopping training when patience reached 200)
Hyper-parameters for medical history
We defined the hyper-parameter max_ehrs (set to an integer or infinite) to set the maximum number of sequential documents to input in K-memBERT-conflation or K-memBERT-T2. If a patient had fewer documents than max_ehrs, the model took all the documents of this patient. For K-memBERT-T2 the Batch size = 1 for the reason that random batches may not have similar dimensions.
Hyper-parameters – optimization
Optuna is a hyper-parameter optimization framework based on bayesian optimization, which searches efficiently on a given hyper-parameters space to find the best hyper-parameters (6). Hyper-parameters optimization requires training a model for each set of hyper-parameters, which can be computationally costly. We thus reduced hyper-parameters search to learning rate, Weight Decay, dropout and Number of heads for the top layer transformer in K-memBERT-T2.
Metrics - comparison to gold standard prognostic measures
To compare the performance of the K-memBERT model to the routine clinical estimation of patients’ survival, we used the Performance Status (PS). PS is a clinical score to estimate the patients general status and is a gold-standard prognosis measure usually calculated at each consultation (7). We extracted the documents containing the mention of ‘PS=[number]’ in the CLB test cohort. We performed 3 types of analysis: 1) compared the relation of the 4 classes of PS with the true survival and with the predicted survival, 2) evaluated if removing the ‘PS=[number] or ‘Karnofsky=[percentage]’ would change the predicted survival and 3) evaluated how 5 predicted classes from K-memBERTpredictions (intervals [0-0.2]; [0.2-0.4]; [0.4-0.6]; [0.6-0.8] and [0.8-1]) related to the true survival. We computed the confusion matrices and several multi-class classification metrics such as Precision, Recall, overall Accuracy, Balanced Accuracy, Macro-Recall, Macro-Precision and Macro/Micro F1-Score and Cohen's Kappa score (8).
Interpretation of the model prediction
We estimated the importance of each input token to interpret the decisions of the model, using the Integrated Gradient method from the Transformers-interpret library (9) (https://pypi.org/project/transformers-interpret/). Positive values indicate that a word or token contributes to a long predicted survival (token related to good prognosis), while negative values indicate a contribution toward a short predicted survival (token related to bad prognosis). Transformers-interpret support standard transformer architectures, therefore we used K-memBERT-base on 4 sequential documents (as performed by K-memBERT-T2) and aggregated the values on a barplot representing the top 10 absolute token values with their distribution in case of redundant tokens. We have selected 5 random examples from the external CLB cohort, 3 with perfect predictions and 2 with wrong predictions.
Variable importance nevertheless does not provide the relation between tokens, thus does not show the global comprehension of the model. Therefore, we also estimated the attention values corresponding to medical terms (corresponding to the 500 most frequent medical terms in the GR corpus) across 500 random set of documents of the GR test set. We used Bertviz, a library designed to visualize the attention values of each transformer layers and heads for a given input (10) and represented the fraction of the attention values of medical words across the layers of the model. Again, we used KmemBERT-base with Bertviz for feasibility reasons.
Code, libraries and resources
We used Python 3.7, Pytorch 1.7 and Transformers 4.1. Code is available at github/DITEP. For data security, we trained the model on a single in-site GPU (GeForce GTX 1080 Ti).

References
1.	Kudo T, Richardson J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing [Internet]. arXiv; 2018 [cité 30 déc 2022]. Disponible sur: http://arxiv.org/abs/1808.06226
2.	Bishop CM, Bishop P of NCCM. Neural Networks for Pattern Recognition. Clarendon Press; 1995. 501 p.
3.	Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:190711692 [cs] [Internet]. 26 juill 2019 [cité 30 sept 2019]; Disponible sur: http://arxiv.org/abs/1907.11692
4.	Hill TP. Conflations of Probability Distributions. arXiv:08081808 [math] [Internet]. 25 mai 2009 [cité 12 avr 2021]; Disponible sur: http://arxiv.org/abs/0808.1808
5.	Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, et al. Time2Vec: Learning a Vector Representation of Time [Internet]. arXiv; 2019 [cité 30 déc 2022]. Disponible sur: http://arxiv.org/abs/1907.05321
6.	Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A Next-generation Hyperparameter Optimization Framework. arXiv:190710902 [cs, stat] [Internet]. 25 juill 2019 [cité 19 mars 2021]; Disponible sur: http://arxiv.org/abs/1907.10902
7.	Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. déc 1982;5(6):649‑55.
8.	Grandini M, Bagli E, Visani G. Metrics for Multi-Class Classification: an Overview [Internet]. arXiv; 2020 [cité 30 déc 2022]. Disponible sur: http://arxiv.org/abs/2008.05756
9.	Sundararajan M, Taly A, Yan Q. Axiomatic Attribution for Deep Networks [Internet]. arXiv; 2017 [cité 30 déc 2022]. Disponible sur: http://arxiv.org/abs/1703.01365
10.	Vig J. Visualizing Attention in Transformer-Based Language Representation Models [Internet]. arXiv; 2019 [cité 30 déc 2022]. Disponible sur: http://arxiv.org/abs/1904.02679

image2.png
T

Hm

O con flation — log . n

ilogaz logZHa]
=1 j5=1
JF#u

image1.png
Hecon flation — Z 2% H 9,

J#z

