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This supplementary information provides a more detailed and comprehensive account of our16

analysis.17

In Section 1, we present a novel framework of iterated multi-player games on hypergraphs to18

study repeated interactions in structured populations.19

In Section 2, we extend the concept of the full cooperation feasible interval to hypergraphs.20

Specifically, we establish the necessary conditions for this concept to hold, and then, by exam-21

ining three representative types of payoff functions, we derive the sufficient conditions under22

which full cooperation is feasible. Furthermore, we theoretically determine the minimum con-23

tinuation probability threshold required to sustain full cooperation on any homogeneous hyper-24

graph.25

In Section 3, we shift our focus to the evolution of player strategies and examine the conditions26

that promote full cooperation among players.27

1 Model Description28

1.1 A framework of iterated multi-player games on hypergraphs29

This paper introduces a general framework to investigate repeated multi-player games on hy-30

pergraph. Specifically, we consider a population of N players, denoted by N = {1, 2, . . . , N},31

engaged inM repeated games, indexed byM = {1, 2, . . . ,M}. The hypergraph is represented32

by an incidence matrix A = {aij} ∈ RN,M , where aij = 1 if i participates in games j, and33

aij = 0 otherwise.34

Each player i is initially assigned an endowment ei ≥ 0, representing their income or the time35

and effort they invest in the game. The vector of endowments is denoted as e = (e1, e2, . . . , eN),36

and without loss of generality, we assume that the endowment vector is normalized such that37 ∑N
i=1 ei = 1. In the case of equal endowments among all players, the endowment vector sim-38

plifies to e = ( 1
N
, 1
N
, . . . , 1

N
).39

Each player may contribute a certain fraction of their endowment to the games in which they40

participate. We define the contribution matrix as X = {xij} ∈ RN×M , where xij represents41

the proportion of contributions from node i to game j. The constraints are 0 ≤ xij ≤ 1 and42

0 ≤
∑M

j=1 xij ≤ 1 for any i. We do not require
∑M

j=1 xij = 1 because individuals may re-43

tain a portion of their endowment without participating in the game. We introduce a shorthand44

notation, X = {1}, to represent the full cooperation where each player contributes their entire45

endowment, meaning
∑M

j=1 xij = 1 for any i. In addition, the full cooperation is not unique.46

The payoffs of public goods gaming are determined by endowments, contribution strategies,47

and individual player productivity. Specifically, given an endowment distribution e and a con-48

3



tribution matrixX = {xij}, players generate a payoff vector u(e, X) ∈ RN , where u represents49

the payoff function of the game. The element ui in the i-th row corresponds to the benefit of50

player i. The total payoff of all game groups in the hypergraph is the sum of the benefits of all51

players, expressed as U(e, X) =
∑N

i=1 ui(e, X).52

1.2 Public goods games create social dilemmas53

In the classical public goods game, players face a dilemma when deciding their strategies. A54

brief overview of the public goods game problem is as follows: Each playermust choosewhether55

to invest a certain amount of money c into the public funds (cooperation strategy) or not (betray56

strategy). The public fund is then multiplied by a factor of r and distributed equally among all57

individuals. The payoff for each player can be expressed in the following form:58

1 . . . k . . . N − 1

cooperator rc
N
− c . . . rck

N
− c . . . rc(N−1)

N
− c

betrayer rc
N

. . . rck
N

. . . rc(N−1)
N

Table 1: The payoffs of cooperators and betrayers in all situations in the public goods game.
The first row shows the number of cooperators, while the second and third rows correspond to
their cooperator payoffs and betrayer payoffs, respectively.

In the public goods game, as illustrated in Table 1, three properties need to be satisfied for the59

game to create a dilemma:60

1. Positive Externality Property: A player desires their companions to cooperate, resulting in61

higher profits for themselves. When the number of cooperators is k, the betrayer’s payoff is62

rck
N
. If one betrayer becomes a cooperator, the betrayer’s payoff becomes rc(k+1)

N
. The positive63

externality property is satisfied by ensuring r > 0.64

2. Incentive of Free-rides Property: Players choose the betrayal strategy to obtain higher bene-65

fits. When k+1 individuals cooperate, the cooperator’s payoff is rc(k+1)
N

−c. If one of the coop-66

erators chooses to betray, their payoff becomes rck
N
. This property is satisfied if rck

N
> rc(k+1)

N
−c,67

which implies r < N .68

3. Optimality of Cooperation Property: From a collective perspective, players need to fully69

cooperate to achieve higher benefits for all players. When the number of cooperators is k, the70

collective payoff is k( rck
N

− c)+(N −k) rck
N

= kc(r−1). Full cooperation results in the highest71

payoff when r > 1.72

Therefore, the game creates a dilemma whenever 1 < r < N . In such situations, players face a73

conflict between their incentives to betray and the collective benefits of cooperation.74
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In this paper, we study a public goods game that generates a dilemma, similar to the one dis-75

cussed above. We consider a public goods game with the following four properties:76

(C) Continuity: The payoff function u(e, X) is continuous with respect to the parameters e77

and X .78

(PE) Positive Externality: Given two contribution matrices X and X ′, where xik = x′
ik and79

xjk ≥ x′
jk for all j ̸= i and k = {1, 2, . . . ,M}, we can conclude that ui(e, X) ≥ ui(e, X

′)80

for all endowment distributions e. The strict inequality ui(e, X) > ui(e, X
′) holds if and81

only if there exists at least one node j in the hyperedge k associated with node i satisfying82

aikajk > 0, ej > 0 and xjk > x
′

jk.83

(IF) Incentive of Free-rides: Given two contributionmatricesX andX ′, where xik < x′
ik and84

xjk = x′
jk for all j ̸= i and k = {1, 2, . . . ,M}, we can conclude that ui(e, X) ≥ ui(e, X

′)85

for all endowment distributions e. The strict inequality ui(e, X) > ui(e, X
′) holds if and86

only if player i’s endowment is positive, ei > 0.87

(OC) Optimality of Cooperation: Given two contributionmatricesX andX ′, where xik ≥ x′
ik88

and xjk ≥ x′
jk for all j ̸= i and k = {1, 2, . . . ,M}, we can conclude that U(e, X) ≥89

U(e, X ′) for all endowment distributions e. The strict inequality U(e, X) > U(e, X ′)90

holds if and only if there is a player i with ei > 0 and xik > x′
ik.91

1.3 Repeated games92

This paper examines a scenario where different individuals interact for the same number of93

rounds across various games. Interactions are repeated over time with a continuation probability94

δ, which represents the likelihood of proceeding to the next round after each iteration. The95

expected number of rounds follows a geometric distribution, with the expected number of rounds96

being 1
1−δ

. All players receive the same endowment in each round, with the initial endowment97

distribution denoted as e. However, the contribution matrix X changes based on the outcome98

of each round of the game. Player i determines the contribution xik(t + 1) for the next round99

based on their previous contribution xik(t) and the payoff obtained.100

The player’s strategy in the repeated game is determined by the percentage of contribution at101

each moment. If we define the contribution matrix at the moment t asX(t) ∈ RN×M , the payoff102

of the repeated game can be defined as a weighted average:103

πi = (1− δ)
∞∑
t=0

δtui(e, X(t)). (1)

When δ → 1, the player payoff is obtained from the limit of the average payoff in each round104
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[1]:105

πi = lim
T→+∞

1

T

T−1∑
t=0

ui(e, X(t)). (2)
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2 Static equilibrium analysis106

In this section, we explore the concept of subgame perfect equilibrium in repeated games. In107

a one-shot public goods game, the Nash equilibrium results in zero contribution; however, this108

outcome can be altered in a repeated setting [1, 2]. We focus on subgame perfect equilibrium,109

where players contribute their entire endowment in each round of the game. Given the game’s110

history, no player has the incentive to deviate from the strategy of contributing their entire en-111

dowment, making this strategy profile a subgame perfect equilibrium [3]. Subgame perfect112

equilibrium is a more refined concept than Nash equilibrium. While every subgame perfect113

equilibrium is a Nash equilibrium, the reverse is not necessarily true [4].114

2.1 General condition for full cooperation115

The feasible interval of full cooperation represents the range of intervals in which all partici-116

pants will contribute their entire endowment in each round, given the payoff function u and the117

continuation probability δ. In other words, given u and δ, it determines what endowment dis-118

tribution e would allow participants to maintain full cooperation at all times (subgame perfect119

equilibrium). LetEu(δ) = {e = (e1, e2, . . . , eN)} denote the set of all endowment distributions120

that allow for full cooperation. We consider the payoff function u for a generalized linear public121

goods game:122

ui(e, X) =
M∑
k=1

aik
|lk|

N∑
j=1

rjkxjkej + (1−
M∑
k=1

xik)ei, (3)

where rjk is the productivity factor of node j on the k-th hyperedge and |lk| is the number of123

nodes on the k-th hyperedge. We denote byX = {1−i} the situation in which all players except124

i contribute their full endowments, while player i contributes nothing; that is,
∑M

k=1 xik = 0 and125 ∑M
k=1 xjk = 1, ∀j ̸= i. We propose two assumptions.126

Assumption 2.1 ∀rj1 = rj2 = · · · = rjM = rj, ∀j ∈ N .(Asymmetric productivity)127

Assumption 2.2 ∀|l1| = |l2| = · · · = |lM | = σ.(Uniform hypergraph)128

Lemma 2.1 Consider a public goods game with a payoff function u of the form given in Eq.(3)129

and a continuation probability δ, under a given endowment distribution e. Assuming that130

Assumptions2.1 and 2.2 hold, the following three conditions are equivalent:131

1. e ∈ Eu(δ),132

133
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2. The following condition holds for all players i with ei > 0,134

135

δ(ui(e, {1−i})− ui(e,O)) ≥ ui(e, {1−i})− ui(e, {1}), (4)

3. The strategy profile where all players apply the strategy Grim is a subgame perfect equi-136

librium for the given endowment distribution e.137

Proof 1⇒ 2 Satisfying e ∈ Eu(δ) indicates that under a given endowment allocation scheme,138

each player opts for the full cooperation, i.e., X = {1}. First, we need to prove that a player i139

altering their full cooperation does not impact their payoff, thus ui(e, {1}) = ui(e, {1
′}). Here,140

{1′} implies that while all xjk remain constant, only x
′

ik varies with
∑M

k=1 x
′

ik = 1. If this141

condition is not met, any change in player i’s strategy will either increase or decrease its pay-142

off, failing to achieve subgame perfect equilibrium. Considering two different full cooperation143

strategies X = {1} and X ′ = {1′}, player i’s payoff is calculated as:144

ui(e, {1}) =
M∑
k=1

aik
|lk|

N∑
j=1

rjkxjkej + (1−
M∑
k=1

xik)ei

=
M∑
k=1

aik
|lk|

N∑
j ̸=i

rjkxjkej +
M∑
k=1

aik
|lk|

rikxikei + (1−
M∑
k=1

xik)ei

=
M∑
k=1

aik
|lk|

N∑
j ̸=i

rjkxjkej + ei

M∑
k=1

rik
|lk|

xik.

(5)

When assumptions 2.1 and 2.2 are satisfied, the payoff ui(e, {1}) simplifies to:145

ui(e, {1}) =
M∑
k=1

aik
σ

N∑
j ̸=i

rjxjkej + ei

M∑
k=1

ri
σ
xik

=
M∑
k=1

aik
σ

N∑
j ̸=i

rjxjkej +
eiri
σ

M∑
k=1

xik.

(6)

This leads us to conclude that ui(e, {1
′}) =

∑M
k=1

aik
σ

∑N
j ̸=i rjxjkej +

eiri
σ

∑M
k=1 x

′

ik. Given that146 ∑M
k=1 xik =

∑M
k=1 x

′

ik = 1 and xjk remains constant, it follows that ui(e, {1}) = ui(e, {1
′}).147

Next, we introduce a “mutant” who deviates from the full cooperation, its payoff in the subse-148

quent round is ui(e, {1−i}). By the (PE) property, the “mutant’s” minimum payoff would be149

ui(e,O), leading to the conclusion:150

πM ≥ (1− δ)ui(e, {1−i}) + δui(e,O). (7)
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As the full cooperation is a subgame perfect equilibrium, it follows that:151

ui(e, {1}) ≥ (1− δ)ui(e, {1−i}) + δui(e,O), (8)

or equivalently,152

δ(ui(e, {1−i})− ui(e,O)) ≥ ui(e, {1−i})− ui(e, {1}). (9)

2⇒ 3 It is essential to note that the Grim strategy, in the context of repeated multi-player games153

on hypergraphs, implies that initially, all players adopt the full cooperation. Should any player154

choose betrayal, every player within the related hyperedge will also switch to betray. This effect155

cascades to the remaining players and so forth.156

Our objective is to demonstrate that the Grim strategy constitutes a subgame perfect equilibrium.157

Employing the one-time deviation principle [4], we observe that an individual’s betrayal initially158

impacts only their immediate neighbors. As the game progresses, this effect subtly spreads, ulti-159

mately resulting in either universal betrayal or game termination, under the presumption that all160

adhere to the Grim strategy. Importantly, the initial advantage gained by player i from betrayal161

is confined to its adjacent connections, influencing their responses till the game’s conclusion.162

Hence, the betrayal payoff for node i aligns with ui(e,O). The immediate payoff following163

a “mutant” intervention is ui(e, {1−i}), with all subsequent rounds approximated as ui(e,O).164

The continuous payoffs, therefore, are:165

πM = (1− δ)ui(e, {1−i}) + δui(e,O). (10)

Adherence to the inequality condition in 2 ensures that players gain no additional benefit from166

a one-time deviation under the Grim strategy, solidifying its status as a subgame perfect equi-167

librium.168

3 ⇒ 1 With all players adhering to the Grim strategy, they each consistently choose the full169

cooperation in every round. This collective commitment to the Grim strategy inherently es-170

tablishes a subgame perfect equilibrium. Consequently, full cooperation is feasible among all171

participants. □172

Under the condition that Lemma 2.1 is satisfied, the following Lemmas 2.2 and 2.3 can be173

obtained according to Ref. [5].174

Lemma 2.2 We consider that a public good game with payoff function u has the form of Eq.175

(3) and Assumption 2.1 and 2.2 are satisfied.176

1. Suppose δ and δ′ are two continuation probabilities with δ < δ
′ . Then Eu(δ) ⊂ Eu(δ

′
).177
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2. There is a δ′
< 1 such that Eu(δ) ̸= 0 for all δ ≥ δ

′ .178

Lemma 2.3 Consider a public good game with continuation probability δ < 1 and endowment179

distribution e. For any player i, there is an ϵi > 0 such that if player i′s endowment exceeds180

ei = 1− ϵi then full cooperation is infeasible.181

Lemma 2.3 shows that hypergraphs cannot sustain full cooperation if too much of the initial182

endowment is concentrated on a single individual. A similar argument suggests that equal en-183

dowment distribution is most conducive to cooperation. In Ref. [5], it was shown that the payoff184

function u satisfies a linear symmetric payoff function. However, this conclusion does not hold185

when u is nonlinear or asymmetric. In this paper, we find that even a linear symmetric payoff186

function does not guarantee that equal endowments are the most favorable for cooperation in187

the hypergraph.188

2.2 Linear symmetric payoff189

In the following, we consider the public goods game payoff function u that satisfies the condi-190

tions of Assumptions 2.1 and 2.2 as a linear symmetric payoff function.191

ui(e, X) =
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei, (11)

where r is the productivity coefficient common to all nodes. We first determine the range of192

parameters based on the three properties (PE), (IF), (OC).193

1.(PE) property satisfies the condition:194

ui(e, X) =
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei

=
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ

M∑
k=1

xikei + (1−
M∑
k=1

xik)ei.

(12)

The expression shows that we need to make r > 0 to satisfy the condition.195

10



2.(IF) property satisfies the condition:196

ui(e, X) =
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei

=
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ

M∑
k=1

xikei + (1−
M∑
k=1

xik)ei

=
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
M∑
k=1

(
r

σ
− 1)xikei + ei.

(13)

The expression shows that we need to make r < σ to satisfy the condition.197

3.(OC) property satisfies the condition:198

U(e, X) =
N∑
i=1

ui(e, X) =
N∑
i=1

[
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei]

=
N∑
i=1

[
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ

M∑
k=1

xikei + (1−
M∑
k=1

xik)ei]

=
N∑
i=1

[
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
M∑
k=1

(
r

σ
− 1)xikei + ei]

=
r

σ

M∑
k=1

a1k

N∑
j ̸=1

xjkej +
r

σ

M∑
k=1

x1ke1 −
M∑
k=1

x1ke1 + e1

+
r

σ

M∑
k=1

a2k

N∑
j ̸=1,j ̸=2

xjkej +
r

σ

M∑
k=1

a2kx1ke1 +
r

σ

M∑
k=1

x2ke2 −
M∑
k=1

x2ke2 + e2

+ . . .

+
r

σ

M∑
k=1

aNk

N∑
j ̸=1,j ̸=N

xjkej +
r

σ

M∑
k=1

aNkx1ke1 +
r

σ

M∑
k=1

xNkeN −
M∑
k=1

xNkeN + eN

= e1[
r

σ

M∑
k=1

(a2kx1k + a3kx1k + · · ·+ aNkx1k + x1k −
σ

r
x1k) + 1]

+ e2[
r

σ

M∑
k=1

(a1kx2k + a3kx2k + · · ·+ aNkx2k + x2k −
σ

r
x2k) + 1]

+ . . .

+ eN [
r

σ

M∑
k=1

(a1kxNk + a2kxNk + · · ·+ a(N−1)kxNk + xNk −
σ

r
xNk) + 1].

(14)
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The expression shows that we need to make
∑N

j=1 ajk > σ
r
with ∀k to satisfy the condition.199

Where
∑N

j=1 ajk = σ, the property (OC) is satisfied as long as there is r > 1.200

In summary, the three properties are satisfied, and the parameter r needs to satisfy 1 < r < σ.201

Next, we start to discuss the feasible interval of full cooperation in the public goods game under202

the linear symmetric payoff function.203

Theorem 2.1 The payoff function of a public goods game is given by Eq. (11). For a contri-204

bution matrix X and a productivity coefficient 1 < r < σ, e ∈ Eu(δ) holds if the continuation205

probability δ ≥ max{ei}(σ−r)

rmin{ei}
∑M

k=1

∑N
j ̸=i aikxjk

with ∀i, and the equal endowments e = ( 1
N
, 1
N
, . . . , 1

N
)206

also belong to e ∈ Eu(δ).207

Proof According to Lemma 2.1, we first calculate the three payoff functions.208

ui(e, {1−i}) =
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej + ei,

ui(e,O) = ei,

ui(e, {1}) =
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ
ei.

(15)

Applying Lemma 2.1, we obtain sufficient conditions under which the endowment vector e209

belongs to the full cooperation feasible set Eu(δ), as follows:210

δ(ui(e, {1−i})− ui(e,O)) ≥ ui(e, {1−i})− ui(e, {1})

⇒ δ(
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej + ei − ei) ≥
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej + ei −
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej −
r

σ
ei

⇒ δ
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej ≥ (1− r

σ
)ei

⇒ δ ≥ (σ − r)ei

r
∑M

k=1 aik
∑N

j ̸=i xjkej
,

(16)

where it is required that inequality (16) holds for all players i with ei > 0. Enlarging the right-211

hand side of inequality (16) can satisfy all i holds:212

δ ≥ max{ei}(σ − r)

rmin{ei}
∑M

k=1

∑N
j ̸=i aikxjk

≥ (σ − r)ei

r
∑M

k=1 aik
∑N

j ̸=i xjkej
=

(σ − r)

r
∑M

k=1 aik
∑N

j ̸=i xjk
ej
ei

. (17)

Thus e is feasible for full cooperation as long as inequality (17) is satisfied. Equal endowments213
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e = ( 1
N
, 1
N
, . . . , 1

N
) must also be feasible for full cooperation.214

δ ≥ max{ei}(σ − r)

rmin{ei}
∑M

k=1

∑N
j ̸=i aikxjk

≥
(σ − r) 1

N

r 1
N

∑M
k=1 aik

∑N
j ̸=i xjk

, (18)

where the inequality holds formax{ei} ≥ 1
N
andmin{ei} ≤ 1

N
. □215

Inequality (18) in Theorem 2.1 indicates that node i is most likely to deviate from full coopera-216

tion when the other nodes in all the hyperedges that node i participates in contribute the lowest217

sum to these hyperedges. In other words, under the equal endowment condition, if the hyper-218

degree of node i is 1 and the number of participating contributing nodes is σ − 1, it will have a219

higher probability of deviating from full cooperation easily. In a hypergraph, nodes with lower220

hyperdegree (players involved in fewer public goods games) will have a slightly higher proba-221

bility of deviating from full cooperation. Turning to inequality (17), for an arbitrary endowment222

distribution, node i is more likely to deviate from full cooperation when its endowment is low223

and hyperdegree is small.224

Theorem 2.1 is only a sufficient condition, it does not mean that other δ that do not satisfy the225

condition are not feasible for full cooperation. Moreover, Theorem 2.1 shows that equal endow-226

ments are not feasible for full cooperation as long as the condition is satisfied. In the following,227

we present an example in which equal endowments are not feasible for full cooperation, yet a228

non-empty feasible interval for full cooperation still exists.229

Consider a set of linear symmetric payoff functions:230

u1(e, X) =
r

3
(x11e1 + x21e2 + x31e3) + (1− x11)e1,

u2(e, X) =
r

3
(x11e1 + x21e2 + x31e3 + x22e2 + x32e3 + x42e4) + (1− x21 − x22)e2,

u3(e, X) =
r

3
(x11e1 + x21e2 + x31e3 + x22e2 + x32e3 + x42e4) + (1− x31 − x32)e3,

u4(e, X) =
r

3
(x22e2 + x32e3 + x42e4) + (1− x42)e4.

(19)

Let x11 = 1, x21 = 1
3
, x22 = 2

3
, x31 = 2

3
, x32 = 1

3
, x42 = 1. Then for equal endowments231

e = (1
4
, 1
4
, 1
4
, 1
4
), δ need to satisfy the following condition:232

δ1 ≥
3− r

r
,

δ2 ≥
3− r

3r
,

δ3 ≥
3− r

3r
,

δ4 ≥
3− r

r
.

(20)
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Thus it is only necessary to make δ ≥ 3−r
r

so that equal distribution is feasible for full coop-233

eration. In the following, we apply a perturbation to the equal endowments and the perturbed234

endowments e′
= (1

4
− ϵ, 1

4
+2ϵ, 1

4
, 1
4
− ϵ). Below we calculate the δ conditions it has to satisfy:235

δ1 ≥
3− r

r
1+ 8ϵ

3

1−4ϵ

,

δ2 ≥
3− r

r 3−8ϵ
1+8ϵ

,

δ3 ≥
3− r

3r
,

δ4 ≥
3− r

r 1+4ϵ
1−4ϵ

(21)

The perturbed endowments only need to satisfy δ ≥ 3−r

r
1+8ϵ

3
1−4ϵ

to make it feasible for full coopera-236

tion. Comparing the two values, we find that whenever we take δ ∈ [ 3−r

r
1+8ϵ

3
1−4ϵ

, 3−r
r
], we make the237

equal endowments not feasible for full cooperation and will still have feasible intervals of full238

cooperation. We obtain the following corollary:239

Corollary 1 There exists a linear symmetric public goods game function u such thatEu(δ) ̸= ∅,240

but e = ( 1
N
, 1
N
, . . . , 1

N
) ̸= Eu(δ).241

In addition, we find that the total payoff is the same for any feasible interval of full cooperation242

under the linear symmetric payoff function.243

Corollary 2 The payoff function u of the public goods game under any linear symmetric payoff244

function satisfies∀e1, e2 ∈ Eu(δ) andX(0) = {1}, we can get
∑N

i=1 πi(e1, {1}) =
∑N

i=1 πi(e2, {1}) =245

r.246

Proof Since the initial moment X(0) = {1} and e ∈ Eu(δ), the initial contribution matrix247

X(t) = X(0) is maintained for all subsequent moments. It is straightforward to calculate the248

14



total payoff:249

N∑
i=1

πi(e, {1}) =
N∑
i=1

(1− δ)
∞∑
t=0

δtui(e, {1}) =
N∑
i=1

ui(e, {1}) = U(e, {1}).

U(e, {1}) = e1[
r

σ

M∑
k=1

(a2kx1k + a3kx1k + · · ·+ aNkx1k + x1k −
σ

r
x1k) + 1]

+ e2[
r

σ

M∑
k=1

(a1kx2k + a3kx2k + · · ·+ aNkx2k + x2k −
σ

r
x2k) + 1]

+ . . .

+ eN [
r

σ

M∑
k=1

(a1kxNk + a2kxNk + · · ·+ a(N−1)kxNk + xNk −
σ

r
xNk) + 1]

= e1[
r

σ

M∑
k=1

(
N∑
j=1

ajk −
σ

r
)x1k + 1] + · · ·+ eN [

r

σ

M∑
k=1

(
N∑
j=1

ajk −
σ

r
)xNk + 1]

= e1[
r

σ
(σ − σ

r
)

M∑
k=1

x1k + 1] + · · ·+ eN [
r

σ
(σ − σ

r
)

M∑
k=1

xNk + 1]

= r(
N∑
i=1

ei) = r

(22)

□250

In Ref. [5] it was shown that the equal endowments are the most favorable for cooperation in251

a public goods game with a linear symmetric payoff function. However, Corollary 1 reveals252

that, in multi-player public goods games on hypergraphs, even equal endowments under linear253

symmetric payoff functions are not the most favorable for promoting cooperation. In addition,254

Corollary 2 finds that as long as the distribution of endowments falls within the feasible interval255

of full cooperation and the initial state is fully cooperative, the total payoff of the game is the256

same as the highest.257

2.3 Linear asymmetric payoff258

We extend the symmetric payoff function so that the productivity coefficients need only satisfy259

Assumption 2.1. Consider the public goods game payoff function u:260

ui(e, X) =
M∑
k=1

aik
σ

N∑
j=1

rjxjkej + (1−
M∑
k=1

xik)ei. (23)

We still first discuss the range of values of the parameter rj .261
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1.(PE) property satisfies the condition:262

ui(e, X) =
M∑
k=1

aik
σ

N∑
j=1

rjxjkej + (1−
M∑
k=1

xik)ei

=
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej +
1

σ

M∑
k=1

rixikei + ei −
M∑
k=1

xikei.

(24)

The expression shows that we need to make rj > 0 with ∀j to satisfy the condition.263

2.(IF) property satisfies the condition:264

ui(e, X) =
M∑
k=1

aik
σ

N∑
j=1

rjxjkej + (1−
M∑
k=1

xik)ei

=
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej +
1

σ

M∑
k=1

rixikei + ei −
M∑
k=1

xikei

=
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej +
M∑
k=1

(
ri
σ
− 1)xikei + ei.

(25)

The expression shows that we need to make rj < σ with ∀j to satisfy the condition.265

3.(OC) property satisfies the condition:266

U(e, X) =
N∑
i=1

ui(e, X) =
N∑
i=1

[
M∑
k=1

aik
σ

N∑
j=1

rjxjkej + (1−
M∑
k=1

xik)ei]

= e1[
r1
σ

M∑
k=1

(a2kx1k + a3kx1k + · · ·+ aNkx1k + x1k −
σ

r1
x1k) + 1]

+ e2[
r2
σ

M∑
k=1

(a1kx2k + a3kx2k + · · ·+ aNkx2k + x2k −
σ

r2
x2k) + 1]

+ . . .

+ eN [
rN
σ

M∑
k=1

(a1kxNk + a2kxNk + · · ·+ a(N−1)kxNk + xNk −
σ

rN
xNk) + 1].

(26)

The expression shows that we need to make
∑N

j=1 ajk > σ
ri
with ∀k, i to satisfy the condition.267

Where
∑N

j=1 ajk = σ, the property (OC) is satisfied as long as there is ri > 1 with ∀i.268

In summary, the three properties hold provided that the parameter ri satisfies 1 < ri < σ with ∀i.269

In the following, we discuss the feasible interval of full cooperation under the linear asymmetric270

payoff function.271
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Theorem 2.2 The payoff function of a public goods game is given by Eq. (23). For a con-272

tribution matrix X and productivity coefficient 1 < ri < σ with ∀i, e ∈ Eu(δ) holds if the273

continuation probability δ ≥ max{ei(σ−ri)}
min{eiri}

∑M
k=1

∑N
j ̸=i aikxjk

with ∀i.274

Proof Similar to the proof of Theorem 2.1. According to Lemma 2.1, we calculate the 3 payoff275

functions.276

ui(e, {1−i}) =
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej + ei,

ui(e,O) = ei,

ui(e, {1}) =
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej +
ri
σ
ei.

(27)

Applying Lemma 2.1, we derive sufficient conditions under which the endowment vector e lies277

within the full cooperation feasible set Eu(δ), as follows:278

δ(ui(e, {1−i})− ui(e,O)) ≥ ui(e, {1−i})− ui(e, {1})

⇒ δ(
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej + ei − ei) ≥
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej + ei −
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej −
ri
σ
ei

⇒ δ
1

σ

M∑
k=1

aik

N∑
j ̸=i

rjxjkej ≥ (1− ri
σ
)ei

⇒ δ ≥ (σ − ri)ei∑M
k=1 aik

∑N
j ̸=i rjxjkej

,

(28)

where it is required that inequality (28) holds for all players i with ei > 0. Enlarging the right-279

hand side of inequality (28) can satisfy all i holds:280

δ ≥ max{(σ − ri)ei}
min{eiri}

∑M
k=1

∑N
j ̸=i aikxjk

≥ (σ − ri)ei∑M
k=1 aik

∑N
j ̸=i rjxjkej

. (29)

Thus e is fully cooperative as long as inequality (29) is satisfied. □281

Remark 1 The sufficient conditions in Theorem 2.2 do not guarantee that equal endowments282

are also feasible for full cooperation.283

Theorem 2.2 gives a sufficient condition for the continuation probability δ of full cooperation284

under the asymmetric payoff function. The key factor for node i to deviate from full cooperation285

that can be obtained from inequality 29 is the combined
∑

j ̸=i rjxjkej value of the associated286
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hyperedge of node i. When node i is less associated and has a lower production coefficient ri,287

it will be more likely to deviate from cooperation.288

Similar to Corollary 1 and Corollary 2, we can obtain similar conclusions under the asymmetric289

payoff function.290

Corollary 3 There exists a linear asymmetric public goods game payoff function u such that291

Eu(δ) ̸= ∅, but e = ( 1
N
, 1
N
, . . . , 1

N
) ̸= Eu(δ).292

We still consider the example in Corollary 1 by simply varying the productivity coefficient r.293

Consider a set of asymmetric payoff functions:294

u1(e, X) =
1

3
(r1x11e1 + r2x21e2 + r3x31e3) + (1− x11)e1,

u2(e, X) =
1

3
(r1x11e1 + r2x21e2 + r3x31e3 + r2x22e2 + r3x32e3 + r4x42e4) + (1− x21 − x22)e2,

u3(e, X) =
1

3
(r1x11e1 + r2x21e2 + r3x31e3 + r2x22e2 + r3x32e3 + r4x42e4) + (1− x31 − x32)e3,

u4(e, X) =
1

3
(r2x22e2 + r3x32e3 + r4x42e4) + (1− x42)e4.

(30)

Let x11 = 1, x21 =
1
3
, x22 =

2
3
, x31 =

2
3
, x32 =

1
3
, x42 = 1, r1 = 2+ϵ, r2 = 2, r3 = 2, r4 = 2+ϵ.295

Then for equal endowments e = (1
4
, 1
4
, 1
4
, 1
4
), δ need to satisfy the following condition:296

δ1 ≥
3− 2− ϵ

21
3
+ 22

3

=
1− ϵ

2
,

δ2 ≥
3− 2

2 + ϵ+ 2 + 2 + ϵ
=

1

6 + 2ϵ
,

δ3 ≥
3− 2

2 + ϵ+ 2 + 2 + ϵ
=

1

6 + 2ϵ
,

δ4 ≥
3− 2− ϵ

22
3
+ 21

3

=
1− ϵ

2
.

(31)

Thus it is only necessary to make δ ≥ 1−ϵ
2

so that equal distribution is feasible for full coop-297

eration. In the following, we apply a perturbation to the equal endowments and the perturbed298
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endowments e′
= (1

4
− ϵ, 1

4
+2ϵ, 1

4
, 1
4
− ϵ). Below we calculate the δ conditions it has to satisfy:299

δ1 ≥
(3− 2− ϵ)(1

4
− ϵ)

2(1
4
+ 2ϵ)1

3
+ 21

4
2
3

=
(1− ϵ)(1− 4ϵ)

2 + 16
3
ϵ

,

δ2 ≥
(3− 2)(1

4
+ 2ϵ)

(2 + ϵ)(1
4
− ϵ) + 21

4
+ (2 + ϵ)(1

4
− ϵ)

=
1 + 8ϵ

6 + 2ϵ− (2 + ϵ)(4ϵ)
,

δ3 ≥
(3− 2)1

4

(2 + ϵ)(1
4
− ϵ) + 2(1

4
+ 2ϵ) + (2 + ϵ)(1

4
− ϵ)

=
1

6 + 2ϵ+ 16ϵ− (2 + ϵ)(4ϵ)
,

δ4 ≥
(3− 2− ϵ)(1

4
− ϵ)

2(1
4
+ 2ϵ)2

3
+ 21

4
1
3

=
(1− ϵ)(1− 4ϵ)

2 + 32
3
ϵ

(32)

The perturbed endowments only need to satisfy δ ≥ (1−ϵ)(1−4ϵ)

2+ 16
3
ϵ

to make it feasible for full300

cooperation. Comparing the two values, we find that whenever we take δ ∈ [ (1−ϵ)(1−4ϵ)

2+ 16
3
ϵ

, 1−ϵ
2
],301

we make the equal endowments not feasible for full cooperation and will still have feasible302

intervals of full cooperation.303

Corollary 4 The payoff function u of the public goods game under any linear asymmetric payoff304

function satisfies ∀e ∈ Eu(δ) and X(0) = {1}, we can get
∑N

i=1 πi(e1, {1}) =
∑N

i=1 riei.305

Proof Since the initial moment X(0) = {1} and e ∈ Eu(δ), the initial contribution matrix306

X(t) = X(0) is maintained for all subsequent moments. It is straightforward to calculate the307

total payoff:308

U(e, {1}) = e1[
r1
σ

M∑
k=1

(a2kx1k + a3kx1k + · · ·+ aNkx1k + x1k −
σ

r1
x1k) + 1]

+ e2[
r2
σ

M∑
k=1

(a1kx2k + a3kx2k + · · ·+ aNkx2k + x2k −
σ

r2
x2k) + 1]

+ . . .

+ eN [
rN
σ

M∑
k=1

(a1kxNk + a2kxNk + · · ·+ a(N−1)kxNk + xNk −
σ

rN
xNk) + 1]

= e1[
r1
σ

M∑
k=1

(
N∑
j=1

ajk −
σ

r1
)x1k + 1] + · · ·+ eN [

rN
σ

M∑
k=1

(
N∑
j=1

ajk −
σ

rN
)xNk + 1]

= e1[
r1
σ
(σ − σ

r1
)

M∑
k=1

x1k + 1] + · · ·+ eN [
rN
σ
(σ − σ

rN
)

M∑
k=1

xNk + 1]

=
N∑
i=1

riei

(33)
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□309

Corollary 4 shows that different initial endowments within the full cooperation interval Eu(δ)310

also have different total payoffs.311

2.4 An example of a nonlinear symmetric payoff312

We consider the example of a nonlinear symmetric public goods game with a payoff function ui313

of the following form:314

ui(e, X) = c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
r

σ

M∑
k=1

aik

N∑
j=1

xjkej − (1−
M∑
k=1

xik)ei, (34)

where N(i) denotes the set of neighboring nodes of node i associated with hyperedges and315

c > 0. The nonlinear part means that the two highest actual values of endowments around node316

i will have an additional effect on it. Lemma 2.1 is satisfied by the condition that the payoff317

function ui form is linear. We are considering a nonlinear payoff function and need to verify318

that ui(e, 1) = ui(e, 1
′
).319

ui(e, {1}) = c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
r

σ

M∑
k=1

aik

N∑
j=1

xjkej − (1−
M∑
k=1

xik)ei

= c max
p,q∈N(i)

{ep + eq}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
eiri
σ

M∑
k=1

xik = ui(e, {1
′}).

(35)

Here it can also be extended to consider a nonlinear asymmetric payoff function, whose non-320

linear part is denoted as max
p,q∈N(i)

{
∑M

k=1(rpxpkep + rqxqkeq)}. It still satisfies the condition that321

ui(e, {1}) = ui(e, {1
′}). We verify the parameter conditions the three properties satisfy for a322

nonlinear payoff function of the form Eq.(34).323

1.(PE) property satisfies the condition:324

ui(e, X) = c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei

= c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ

M∑
k=1

xikei + (1−
M∑
k=1

xik)ei.

(36)

The expression shows that we need to make r > 0 to satisfy the condition.325
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2.(IF) property satisfies the condition:326

ui(e, X) = c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei

= c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ

M∑
k=1

xikei + (1−
M∑
k=1

xik)ei

= c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
M∑
k=1

(
r

σ
− 1)xikei + ei.

(37)

The expression shows that we need to make r < σ to satisfy the condition.327

3.(OC) property satisfies the condition:328

U(e, X) =
N∑
i=1

ui(e, X) =
N∑
i=1

[c max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}+
M∑
k=1

aik
σ

N∑
j=1

rxjkej + (1−
M∑
k=1

xik)ei]

= e1[
r

σ

M∑
k=1

(a2kx1k + a3kx1k + · · ·+ aNkx1k + x1k −
σ

r
x1k) + 1]

+ e2[
r

σ

M∑
k=1

(a1kx2k + a3kx2k + · · ·+ aNkx2k + x2k −
σ

r
x2k) + 1]

+ . . .

+ eN [
r

σ

M∑
k=1

(a1kxNk + a2kxNk + · · ·+ a(N−1)kxNk + xNk −
σ

r
xNk) + 1]

+ c
N∑
i=1

max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}.

(38)

The expression shows that we need to make
∑N

j=1 ajk > σ
r
with ∀k to satisfy the condition.329

Where
∑N

j=1 ajk = σ, the property (OC) is satisfied as long as there is r > 1.330

In summary, the nonlinear part is multiplied by a productivity factor c > 0, which leads to the331

satisfaction of the three property principle parameters r and linear symmetric payoff function332

consistent with 1 < r < σ. Next, we discuss the conditions satisfied by the fully cooperative333

feasible interval of the nonlinear symmetric payoff function.334

Theorem 2.3 The payoff function of a public goods game is given by Eq. (34). For a contri-335

bution matrix X and productivity coefficient 1 < r < σ , e ∈ Eu(δ) holds if the continuation336

probability δ ≥ (σ−r)ei
σc max

p,q∈N(i)
{ep+eq}+r

∑M
k=1 aik

∑N
j ̸=i xjkej

with ∀i.337
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Proof According to Lemma 2.1, we calculate the 3 payoff functions.338

ui(e, {1−i}) = c max
p,q∈N(i)

{ep + eq}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej + ei,

ui(e,O) = ei,

ui(e, {1}) = c max
p,q∈N(i)

{ep + eq}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej +
r

σ
ei.

(39)

Applying Lemma 2.1, we derive sufficient conditions under which the endowment vector e lies339

within the full cooperation feasible set Eu(δ), as follows:340

δ(ui(e, {1−i})− ui(e,O)) ≥ ui(e, {1−i})− ui(e, {1})

⇒ δ(c max
p,q∈N(i)

{ep + eq}+
r

σ

M∑
k=1

aik

N∑
j ̸=i

xjkej) ≥ (1− r

σ
)ei

⇒ δ ≥ (σ − r)ei

σc max
p,q∈N(i)

{ep + eq}+ r
∑M

k=1 aik
∑N

j ̸=i xjkej
,

(40)

where it is required that inequality (40) holds for all players i with ei > 0. □341

Theorem 2.3 shows that the nonlinear part of the payoff function affects the feasible interval of342

full cooperation mainly in the distribution of endowment inequality. When two of the remaining343

nodes in the hyperedge associated with a node have relatively high endowments, it gives the344

node a higher probability of full cooperation. This is because the value of the nonlinear part345

max
p,q∈N(i)

{ep+ eq} will be relatively larger, making the conditions for the continuation probability346

δ to be satisfied relatively weaker.347

Corollary 5 There exists a nonlinear symmetric public goods game functionu such thatEu(δ) ̸=348

∅, but e = ( 1
N
, 1
N
, . . . , 1

N
) ̸= Eu(δ).349

We consider the example in Corollary 1. Consider a set of nonlinear symmetric payoff functions:350

u1(e, X) =
r

3
(x11e1 + x21e2 + x31e3) + (1− x11)e1 + c((x21 + x22)e2 + (x31 + x32)e3),

u2(e, X) =
r

3
(x11e1 + x21e2 + x31e3 + x22e2 + x32e3 + x42e4) + (1− x21 − x22)e2 + c max

p,q∈N(2)
{ep + eq},

u3(e, X) =
r

3
(x11e1 + x21e2 + x31e3 + x22e2 + x32e3 + x42e4) + (1− x31 − x32)e3 + c max

p,q∈N(3)
{ep + eq},

u4(e, X) =
r

3
(x22e2 + x32e3 + x42e4) + (1− x42)e4 + c((x21 + x22)e2 + (x31 + x32)e3).

(41)

Let x11 = 1, x21 = 1
3
, x22 = 2

3
, x31 = 2

3
, x32 = 1

3
, x42 = 1. Then for equal endowments351
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e = (1
4
, 1
4
, 1
4
, 1
4
), δ needs to satisfy the following condition:352

δ1 ≥
(3− r)1

4

3c1
2
+ r(1

3
1
4
+ 2

3
1
4
)
=

3− r

6c+ r
,

δ2 ≥
(3− r)1

4

3c1
2
+ r(11

4
+ 11

4
+ 11

4
)
=

3− r

6c+ 3r

δ3 ≥
(3− r)1

4

3c1
2
+ r(11

4
+ 11

4
+ 11

4
)
=

3− r

6c+ 3r
,

δ4 ≥
(3− r)1

4

3c1
2
+ r(2

3
1
4
+ 1

3
1
4
)
=

3− r

6c+ r
.

(42)

Thus it is only necessary to make δ ≥ 3−r
6c+r

so that equal distribution is feasible for full coop-353

eration. In the following, we apply a perturbation to the equal endowments and the perturbed354

endowments e′
= (1

4
− ϵ, 1

4
+2ϵ, 1

4
− ϵ, 1

4
). Below we calculate the δ conditions it has to satisfy:355

δ1 ≥
(3− r)(1

4
− ϵ)

3c(1
2
+ ϵ) + r(1

3
(1
4
+ 2ϵ) + 2

3
(1
4
− ϵ))

=
(3− r)(1− 4ϵ)

6c+ 8cϵ+ r
,

δ2 ≥
(3− r)(1

4
+ 2ϵ)

3c(1
2
− ϵ) + r(1

4
− ϵ+ 1

4
− ϵ+ 1

4
)
,

δ3 ≥
(3− r)(1

4
− ϵ)

2c(1
2
+ 2ϵ) + r(1

4
− ϵ+ 1

4
+ 2ϵ+ 1

4
)
,

δ4 ≥
(3− r)1

4

3c(1
2
+ ϵ) + r(2

3
(1
4
+ 2ϵ) + 1

3
(1
4
− ϵ))

=
(3− r)

6c+ 8cϵ+ r + 4rϵ
.

(43)

The perturbed endowments only need to satisfy δ ≥ max{ (3−r)(1−4ϵ)
6c+8cϵ+r

, (3−r)
6c+8cϵ+r+4rϵ

} to make356

it feasible for full cooperation. Comparing the two values, we find that whenever we take357

δ ∈ [max{ (3−r)(1−4ϵ)
6c+8cϵ+r

, (3−r)
6c+8cϵ+r+4rϵ

}, 3−r
6c+r

], we make the equal endowments not feasible for full358

cooperation and will still have feasible intervals of full cooperation.359

Corollary 6 The payoff function u of the public goods game under any nonlinear symmetric360

payoff function satisfies ∀e ∈ Eu(δ) and X(0) = {1}, we can get
∑N

i=1 πi(e1, {1}) = r +361

c
∑N

i=1 max
p,q∈N(i)

{ep + eq}.362

Proof Since the initial moment X(0) = {1} and e ∈ Eu(δ), the initial contribution matrix363

X(t) = X(0) is maintained for all subsequent moments. It is straightforward to calculate the364
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total payoff:365

U(e, {1}) = e1[
r1
σ

M∑
k=1

(a2kx1k + a3kx1k + · · ·+ aNkx1k + x1k −
σ

r1
x1k) + 1]

+ e2[
r2
σ

M∑
k=1

(a1kx2k + a3kx2k + · · ·+ aNkx2k + x2k −
σ

r2
x2k) + 1]

+ . . .

+ eN [
rN
σ

M∑
k=1

(a1kxNk + a2kxNk + · · ·+ a(N−1)kxNk + xNk −
σ

rN
xNk) + 1]

+ c

N∑
i=1

max
p,q∈N(i)

{
M∑
k=1

(xpkep + xqkeq)}

= r + c
N∑
i=1

max
p,q∈N(i)

{ep + eq}.

(44)

□366

Corollary 6 suggests that different endowment distributions in the fully cooperative interval367

Eu(δ) will have different total payoffs.368

2.5 Maximally cooperative endowment distribution369

This subsection will present a distribution of endowments for the most favorable cooperation.370

First, the smallest continuation probability of full cooperation is defined. When the continuation371

probability is large enough, there is always a feasible interval for full cooperation. By Lemma372

2.2, the feasible interval of full cooperation will gradually become smaller as δ becomes smaller.373

There will be a critical smallest continuation probability, which we define as374

δ∗u = inf{δ ∈ [0, 1]|Eu(δ) ̸= ∅}. (45)

The maximal cooperative endowment distribution concept can be defined with the above defi-375

nition of minimal continuation probability.376

Definition 1 Given a public goods game with payoff function u, a endowment distribution e∗ =377

{e∗1, . . . , e∗N} is the maximal cooperative endowment distribution satisfying e∗ ∈ Eu(δ
∗
u).378

The above definition combined with Lemma 2.2 shows that the maximal cooperative endow-379

ment distribution e∗ must be in the fully cooperative feasible interval whenever the continuation380

probability δ ≥ δ∗, due toEu(δ
∗) ⊂ Eu(δ). But we want to find this smallest continuation prob-381
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ability as an optimization problem, and we consider a simple problem in our research model,382

the two-player multiple public goods game problem.383

Theorem 2.4 Consider a linear asymmetric payoff function u for a two-player dual public384

goods game as385

u1 =
1

2
(r1x11e1 + r1x12e1 + r2x21e2 + r2x22e2) + (1− x11 − x12)e1,

u2 =
1

2
(r1x11e1 + r1x12e1 + r2x21e2 + r2x22e2) + (1− x21 − x22)e2.

(46)

The smallest continuation probability δ∗u and the maximal cooperative endowment distuibution386

e∗ = (e∗1, e
∗
2) are given by387

δ∗u =

√
(2− r1)(2− r2)

r1r2
and

e∗1
e∗2

=

√
(2− r2)r2
(2− r1)r1

. (47)

388

Proof For any continuation probability δ and endowment distribution e = (e1, e2), e ∈ Eu(δ)389

if and only if390

δ ≥ (2− r1)e1
r2e2

,

δ ≥ (2− r2)e2
r1e1

.

(48)

The interval range of e1
e2
is obtained by transforming the inequality391

2− r2
δr1

≤ e1
e2

≤ δr2
2− r1

. (49)

The sufficient condition for e ∈ Eu(δ) to exist is 2−r2
δr1

≤ δr2
2−r1

. When this condition is satisfied,392

δ ≥ δ∗u. A critical condition for the lower bound is simply to let both sides of the inequality be393

taken equally. We can get δ∗u =
√

(2−r1)(2−r2)
r1r2

, and also e∗1
e∗2

=
√

(2−r2)r2
(2−r1)r1

. □394

The result in Theorem 2.4 eventually degenerates into a linear asymmetric model result for the395

two-person public goods game [5].396

2.6 Smallest continuation probability for homogeneous hypergraphs397

In the following discussion, we address the issue of smallest continuation probability within the398

framework of homogeneous hypergraph. The term “homogeneous” refers to a broad general-399

ization encompassing three distinct aspects: the structure of the hypergraph, the productivity400
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of the individuals, and the configuration of the contribution matrix. Our demonstration of the401

smallest continuation probability establishes that all three sub-properties must uniformly satisfy402

this homogeneity criterion.403

We postulate that the average hyperdegree of the network is k (i.e., each individual is connected404

to k hyperedges). The productivity expectations for all individuals are symmetrical. In the405

contribution matrix X , any non-zero element is valued at 1
k
. Provided these three homogeneity406

conditions are met, the following theorem can be derived.407

Theorem 2.5 Consider a linear symmetric payoff function u in a public goods game involving408

σ players, where each player participates in k public goods games. All players contribute a409

proportion 1
k
to each of the k public goods games in which they are involved. The smallest410

continuation probability δ∗u and the continuation probability for equal endowments δ∗equal are411

identical, given by:412

δ∗u = δ∗equal =
σ − r

r(σ − 1)
. (50)

413

Proof First, we compute the continuation probability δ∗equal under equal endowment, based on414

the linear symmetric case. The calculation is as follows:415

δ∗equal =
(σ − r)ei

r
∑M

k=1 aik
∑N

j ̸=i xjkej
=

(σ − r) 1
N

rk 1
k
(σ − 1) 1

N

=
σ − r

r(σ − 1)
. (51)

In the following, we aim to demonstrate that for any perturbation from the equal endowments416

scenario, there exists at least one node i where δ∗i exceeds δ∗equal. Consequently, no perturbation417

can reduce δ∗u below δ∗equal, establishing it as the smallest continuation probability. We consider a418

perturbed endowment vector e defined as


1

N
+ ϵi1 ,

1

N
+ ϵi2 , . . . ,

1

N
+ ϵim︸ ︷︷ ︸

m

,
1

N
− ϵim+1 , . . . ,

1

N
− ϵiN︸ ︷︷ ︸

N−m

,419

consisting ofm positive andN−m negative perturbations. These perturbations satisfy
∑m

k=1 ϵik =420 ∑N
k=m+1 ϵik , where ϵik ∈ [0, 1

N
] for all k ∈ [m + 1, N ] and ϵik ∈ [0, N−m

N
] for all k ∈ [1,m].421

The sequence i1 to iN represents any permutation of 1 through N . Next, we calculate δ∗im for422
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the initialm positive perturbations:423

δ∗i1 =
k(σ − r)

[
1
N
+ ϵi1

]
r
[∑N

j ̸={i1,...,im} P
(i1)
j

(
1
N
− ϵj

)
+
∑

j={i2,...,im} P
(i1)
j

(
1
N
+ ϵj

)]
=

k(σ − r)
[
1
N
+ ϵi1

]
r
[
k(σ − 1) 1

N
−
∑N

j ̸={i1,...,im} P
(i1)
j ϵj +

∑
j={i2,...,im} P

(i1)
j ϵj

]
=

(σ − r)

r(σ − 1)
+

σ−r
r(σ−1)

Nr
[∑N

j ̸={i1,...,im} P
(i1)
j ϵj −

∑
j={i2,...,im} P

(i1)
j ϵj

]
+ k(σ − r)Nϵi1

kr(σ − 1)−Nr
[∑N

j ̸={i1,...,im} P
(i1)
j ϵj −

∑
j={i2,...,im} P

(i1)
j ϵj

] .

(52)

Here, P (i1)
j denotes the number of nodes j associated with node i1 through hyperedges, which is424

an unspecified quantity. Nevertheless, it is known that the sum of these associations for nodes425

not included in the set {i1, . . . , im} and those within the set {i2, . . . , im} totals k(σ − 1). We426

can then express this relationship as follows:427

N∑
j ̸={i1,...,im}

P
(i1)
j ϵj ≤

1

N

N∑
j ̸={i1,...,im}

P
(i1)
j ≤ 1

N
k(σ − 1). (53)

Thus, it must hold that428

kr(σ − 1)−Nr

 N∑
j ̸={i1,...,im}

P
(i1)
j ϵj −

∑
j={i2,...,im}

P
(i1)
j ϵj


≥ kr(σ − 1)−Nr

N∑
j ̸={i1,...,im}

P
(i1)
j ϵj

≥ kr(σ − 1)−Nr
1

N
k(σ − 1)

≥ 0.

(54)

We have proven that the denominator in Eq. (52) is non-negative. Now, it remains to demon-429

strate that the numerator is also positive. We enumerate the continuation probabilities for the430

remainingm− 1 perturbations, δ∗im , as follows:431 
δ∗i1 =

(σ−r)
r(σ−1)

+
σ−r

r(σ−1)
Nr

[∑N
j ̸={i1,...,im} P

(i1)
j ϵj−

∑
j={i2,...,im} P

(i1)
j ϵj

]
+k(σ−r)Nϵi1

kr(σ−1)−Nr
[∑N

j ̸={i1,...,im} P
(i1)
j ϵj−

∑
j={i2,...,im} P

(i1)
j ϵj

] ,

...

δ∗im = (σ−r)
r(σ−1)

+
σ−r

r(σ−1)
Nr

[∑N
j ̸={i1,...,im} P

(im)
j ϵj−

∑
j={i1,...,im−1}

P
(im)
j ϵj

]
+k(σ−r)Nϵim

kr(σ−1)−Nr
[∑N

j ̸={i1,...,im} P
(im)
j ϵj−

∑
j={i1,...,im−1}

P
(im)
j ϵj

] .

(55)
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We employ a counterfactual hypothesis, assuming that if all the numerators in thesem equations432

are negative, then their sum must also be negative. Proving that the total is positive confirms433

the existence of a positive term. First, we sum all the numerators, hypothesizing that they are434

negative:435

m∑
q=1

 σ − r

r(σ − 1)
Nr

 N∑
j ̸={i1,...,im}

P
(iq)
j ϵj −

∑
j={i1,...,iq−1,iq+1,...,im}

P
(iq)
j ϵj

+ k(σ − r)Nϵiq

 < 0.

(56)
Next, we extract the coefficients for one of the terms, ϵi1:436

σ − r

r(σ − 1)
Nr

[
−P

(i2)
i1

ϵi1 − P
(i3)
i1

ϵi1 − · · · − P
(im)
i1

ϵi1

]
+ k(σ − r)Nϵi1

=

{
−N(σ − r)

σ − 1

m∑
k=1

P
(ik)
i1

+ k(σ − r)N

}
ϵi1 .

(57)

Given the hypergraph structure and the assumption that the hyperdegree is k, player i1 can be437

associated with at most k(σ − 1) nodes. Therefore:438

k(σ − r)N − N(σ − r)

σ − 1

m∑
k=1

P
(ik)
i1

≥ k(σ − r)N − N(σ − r)

σ − 1
k(σ − 1) ≥ 0 (58)

This inequality establishes that the sum of them numerators is greater than zero. Thus, at least439

one δ∗im must be greater than δ∗equal. Any perturbation will increase δ∗u, confirming that equal440

endowments represent the smallest continuation probability. □441

Theorem 2.5 offers a broad generalization, illustrating that within any homogeneous hypergraph,442

the smallest continuation probability is determined solely by the productivity and the dimensions443

of the hyperedges, rather than the average number of hyperedges. From Theorem 2.5, we derive444

the following corollary.445

Corollary 7 In any homogeneous hypergraph, the smallest continuation probability monotoni-446

cally decreases with respect to the productivity factor r andmonotonically increases with respect447

to the hyperedge dimension σ.448

Proof Define the functions f(r) = σ−r
r(σ−1)

and g(σ) = σ−r
r(σ−1)

. We calculate the derivatives of449

f(r) and g(σ) with respect to r and σ respectively:450

f ′(r) =
−σ2 + σ

(rσ − r)2
,

g′(σ) =
r(r − 1)

(rσ − r)2
.

(59)
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Given the conditions 1 < r < σ and σ ≥ 2, it follows that f ′(r) < 0 and g′(σ) > 0, indicating451

that f(r) is monotonically decreasing and g(σ) is monotonically increasing. Evaluating the452

limits of these functions, we find limr→1+ f(r) = 1, limr→σ− f(r) = 0, and limσ→∞ g(σ) = 1
r
.453

□454
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3 Evolutionary Process Analysis455

In the previous section, we concentrated on the interval range of e that remains feasible for full456

cooperation in the initial state X(0) = {1}. In this subsection, we investigate the outcomes of457

the system’s evolution before the player reaches a steady state.458

3.1 Strategy update process459

In this subsection, the strategy update refers to the update of the contribution matrix X(t). We460

employ an introspection dynamic model [5, 6] for strategy updating. Specifically, node i is461

selected with equal random probability and the last round of payoff πold
i is computed. Subse-462

quently, a strategy is chosen from the remaining strategy space with equal random probability,463

and the new payoff πnew
i is computed. Note that the dimension of the strategy space of node i464

is si. The transition probabilities of the new and old strategies are:465

P (πold
i → πnew

i ) =
1

N

1

si − 1

1

1 + e−β(πnew
i −πold

i )
. (60)

The parameter β reflects the strength of selection. In the case of β = 0, the probability P = 1
2

466

indicates that the strategy shift is randomized. In the case of strong selection β → +∞, the467

player will adopt the new strategy if the new strategy yields a higher payoff than the old one.468

We choose this update strategy over the traditional pairwise comparison or DB update for two469

reasons. First, the number of hyperedges each node is involved in is not necessarily the same.470

After comparing the payoffs, it is not possible to exactly replicate the elements in the contribution471

matrixX(t)when performing the strategy update. Second, if it enters an absorbing state at some472

point, it is impossible to evolve out of it. However, these two drawbacks can be overcome with473

the introspection dynamic model. Additionally, we consider the update process as a Moran [7]474

process, meaning that only one node performs the strategy update at each step.475

3.2 Memory-one strategy476

In the analysis of the memory-one strategy, we make two assumptions. First, we assume that the477

strategy space is limited in each round. Specifically, each contributionmatrix elementXij(t) can478

only choose from a limited number of strategies. The simplest of these is to consider that each479

row has at most one Xij(t) = 1, and the rest are all 0. This implies that nodes can only choose480

to contribute all their endowments to a particular hyperedge or retain all of their endowments.481

Second, each player decides the next round strategy based solely on the previous round’s result,482

independent of all previous results.483
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We consider the simplest hypergraph model we discussed earlier, where nodes 1, 2, and 3 to-484

gether form a hyperedge j1 and nodes 2, 3, and 4 together form a hyperedge j2. The contribution485

matrix is such that at most one element is 1 and the rest are 0. At this point, the state space totals486

2 ∗ 3 ∗ 3 ∗ 2 = 36. However, not every state has a transition probability, and it needs to be en-487

sured that there is only one strategy change from one state to another. With the above definitions488

and strategy update rules, we can obtain the transition probability matrix P = {pij} ∈ R36∗36.489

Given an initial strategy distribution v0, we can calculate:490

v = (1− δ)v0(I − δP )−1, (61)

where I is the identity matrix. When δ → 1, the vector v is close to the left eigenvector corre-491

sponding to the 1 eigenvalue of the transition probability matrix P . Through the payoff vector u,492

the obtained state vector v, and the given endowment distribution e, the total payoffΠ (Extended493

Data Fig.5) can be obtained as494

Π =
36∑
i=1

vi ∗ ui(e, X). (62)

Furthermore, we assume that players’ decisions are noisy. For any round, there is a small proba-495

bility ϵ > 0 that each player will have a memory error. For example, a player chose cooperation496

in the previous round but remembered choosing defection. We note that the dimension of the497

state space is b. For the elements of the transition probability matrix, we would have the follow-498

ing re-representation:499

perrorij = (1− ϵ)pij +
b∑

k ̸=i

ϵ

b− 1
pkj. (63)

We stipulate that memory errors are chosen with equal probability in the strategy space. This500

setup ensures that the row sum of the transition probability matrix remains equal to 1.501

b∑
j=1

perrorij = (1− ϵ)
b∑

j=1

pij +
ϵ

b− 1

b∑
j=1

b∑
k ̸=i

pkj

= (1− ϵ) +
ϵ

b− 1

b∑
k ̸=i

b∑
j=1

pkj

= (1− ϵ) +
ϵ

b− 1

b∑
k ̸=i

1

= (1− ϵ) + ϵ

= 1.

(64)
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ID in Fig. 7 Context Reference
DBLP co-authorship on DBLP papers [8]
TMS tags on math.stackexchange.com [8]
NDC substances making up drugs [8]
DAWN drugs used by ER patients [8]
CB congresspersons cosponsoring bills [8–10]
EEu email addresses on emails (full) [8, 11, 12]
EEn email addresses on emails (subset) [8]
CHS high school contact groups [8, 13]
CPS primary school contact groups [8, 14]
TAU tags on askubuntu.com [8]

Supplementary Table 1: Summary of the real-world hypergraphs used in Fig. 7.
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Supplementary Fig. 1: Effect of corresponding author contribution. In the main text (Fig.
7d), we examined the case where the corresponding author’s contribution was set to 50%. In
panels a and b, we varied the corresponding author’s contribution to 100% and 150%, respec-
tively. The results show that the level of corresponding author contribution does not affect the
general pattern that higher hyperdegree researchers tend to contribute more to lower hyperde-
gree collaborators.

34


