

Supplementary Information: Fostering Sustainable Cooperation through Strategic Resource Allocation and Utilization on Social Networks

Juyi Li¹ Xiaoqun Wu^{2*} Qi Su^{1†}

¹School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China

²School of Computer Science and Software Engineering, Shenzhen University, Guangdong, 518060, China

*Correspondence: xqwu@whu.edu.cn

†Correspondence: qisu@sjtu.edu.cn

1 **Contents**

2	1 Model Description	3
3	1.1 A framework of iterated multi-player games on hypergraphs	3
4	1.2 Public goods games create social dilemmas	4
5	1.3 Repeated games	5
6	2 Static equilibrium analysis	7
7	2.1 General condition for full cooperation	7
8	2.2 Linear symmetric payoff	10
9	2.3 Linear asymmetric payoff	15
10	2.4 An example of a nonlinear symmetric payoff	20
11	2.5 Maximally cooperative endowment distribution	24
12	2.6 Smallest continuation probability for homogeneous hypergraphs	25
13	3 Evolutionary Process Analysis	30
14	3.1 Strategy update process	30
15	3.2 Memory-one strategy	30

¹⁶ This supplementary information provides a more detailed and comprehensive account of our
¹⁷ analysis.

¹⁸ In Section 1, we present a novel framework of iterated multi-player games on hypergraphs to
¹⁹ study repeated interactions in structured populations.

²⁰ In Section 2, we extend the concept of the full cooperation feasible interval to hypergraphs.
²¹ Specifically, we establish the necessary conditions for this concept to hold, and then, by exam-
²² ining three representative types of payoff functions, we derive the sufficient conditions under
²³ which full cooperation is feasible. Furthermore, we theoretically determine the minimum con-
²⁴ tinuation probability threshold required to sustain full cooperation on any homogeneous hyper-
²⁵ graph.

²⁶ In Section 3, we shift our focus to the evolution of player strategies and examine the conditions
²⁷ that promote full cooperation among players.

²⁸ 1 Model Description

²⁹ 1.1 A framework of iterated multi-player games on hypergraphs

³⁰ This paper introduces a general framework to investigate repeated multi-player games on hy-
³¹ pergraph. Specifically, we consider a population of N players, denoted by $\mathcal{N} = \{1, 2, \dots, N\}$,
³² engaged in M repeated games, indexed by $\mathcal{M} = \{1, 2, \dots, M\}$. The hypergraph is represented
³³ by an incidence matrix $A = \{a_{ij}\} \in R^{N,M}$, where $a_{ij} = 1$ if i participates in games j , and
³⁴ $a_{ij} = 0$ otherwise.

³⁵ Each player i is initially assigned an endowment $e_i \geq 0$, representing their income or the time
³⁶ and effort they invest in the game. The vector of endowments is denoted as $e = (e_1, e_2, \dots, e_N)$,
³⁷ and without loss of generality, we assume that the endowment vector is normalized such that
³⁸ $\sum_{i=1}^N e_i = 1$. In the case of equal endowments among all players, the endowment vector sim-
³⁹ plifies to $e = (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$.

⁴⁰ Each player may contribute a certain fraction of their endowment to the games in which they
⁴¹ participate. We define the contribution matrix as $X = \{x_{ij}\} \in R^{N \times M}$, where x_{ij} represents
⁴² the proportion of contributions from node i to game j . The constraints are $0 \leq x_{ij} \leq 1$ and
⁴³ $0 \leq \sum_{j=1}^M x_{ij} \leq 1$ for any i . We do not require $\sum_{j=1}^M x_{ij} = 1$ because individuals may re-
⁴⁴ tain a portion of their endowment without participating in the game. We introduce a shorthand
⁴⁵ notation, $X = \{\mathbf{1}\}$, to represent the full cooperation where each player contributes their entire
⁴⁶ endowment, meaning $\sum_{j=1}^M x_{ij} = 1$ for any i . In addition, the full cooperation is not unique.

⁴⁷ The payoffs of public goods gaming are determined by endowments, contribution strategies,
⁴⁸ and individual player productivity. Specifically, given an endowment distribution e and a con-

49 tribution matrix $X = \{x_{ij}\}$, players generate a payoff vector $u(\mathbf{e}, X) \in R^N$, where u represents
50 the payoff function of the game. The element u_i in the i -th row corresponds to the benefit of
51 player i . The total payoff of all game groups in the hypergraph is the sum of the benefits of all
52 players, expressed as $U(\mathbf{e}, X) = \sum_{i=1}^N u_i(\mathbf{e}, X)$.

53 1.2 Public goods games create social dilemmas

54 In the classical public goods game, players face a dilemma when deciding their strategies. A
55 brief overview of the public goods game problem is as follows: Each player must choose whether
56 to invest a certain amount of money c into the public funds (cooperation strategy) or not (betray
57 strategy). The public fund is then multiplied by a factor of r and distributed equally among all
58 individuals. The payoff for each player can be expressed in the following form:

	1	...	k	...	$N - 1$
cooperator	$\frac{rc}{N} - c$...	$\frac{rck}{N} - c$...	$\frac{rc(N-1)}{N} - c$
betrayer	$\frac{rc}{N}$...	$\frac{rck}{N}$...	$\frac{rc(N-1)}{N}$

Table 1: The payoffs of cooperators and betrayers in all situations in the public goods game. The first row shows the number of cooperators, while the second and third rows correspond to their cooperator payoffs and betrayer payoffs, respectively.

59 In the public goods game, as illustrated in Table 1, three properties need to be satisfied for the
60 game to create a dilemma:

61 1. Positive Externality Property: A player desires their companions to cooperate, resulting in
62 higher profits for themselves. When the number of cooperators is k , the betrayer's payoff is
63 $\frac{rck}{N}$. If one betrayer becomes a cooperator, the betrayer's payoff becomes $\frac{rc(k+1)}{N}$. The positive
64 externality property is satisfied by ensuring $r > 0$.

65 2. Incentive of Free-rides Property: Players choose the betrayal strategy to obtain higher bene-
66 fits. When $k + 1$ individuals cooperate, the cooperator's payoff is $\frac{rc(k+1)}{N} - c$. If one of the coop-
67 erators chooses to betray, their payoff becomes $\frac{rck}{N}$. This property is satisfied if $\frac{rck}{N} > \frac{rc(k+1)}{N} - c$,
68 which implies $r < N$.

69 3. Optimality of Cooperation Property: From a collective perspective, players need to fully
70 cooperate to achieve higher benefits for all players. When the number of cooperators is k , the
71 collective payoff is $k(\frac{rck}{N} - c) + (N - k)\frac{rc}{N} = kc(r - 1)$. Full cooperation results in the highest
72 payoff when $r > 1$.

73 Therefore, the game creates a dilemma whenever $1 < r < N$. In such situations, players face a
74 conflict between their incentives to betray and the collective benefits of cooperation.

75 In this paper, we study a public goods game that generates a dilemma, similar to the one dis-
 76 cussed above. We consider a public goods game with the following four properties:

77 **(C) Continuity:** The payoff function $u(\mathbf{e}, X)$ is continuous with respect to the parameters \mathbf{e}
 78 and X .

79 **(PE) Positive Externality:** Given two contribution matrices X and X' , where $x_{ik} = x'_{ik}$ and
 80 $x_{jk} \geq x'_{jk}$ for all $j \neq i$ and $k = \{1, 2, \dots, M\}$, we can conclude that $u_i(\mathbf{e}, X) \geq u_i(\mathbf{e}, X')$
 81 for all endowment distributions \mathbf{e} . The strict inequality $u_i(\mathbf{e}, X) > u_i(\mathbf{e}, X')$ holds if and
 82 only if there exists at least one node j in the hyperedge k associated with node i satisfying
 83 $a_{ik}a_{jk} > 0$, $e_j > 0$ and $x_{jk} > x'_{jk}$.

84 **(IF) Incentive of Free-rides:** Given two contribution matrices X and X' , where $x_{ik} < x'_{ik}$ and
 85 $x_{jk} = x'_{jk}$ for all $j \neq i$ and $k = \{1, 2, \dots, M\}$, we can conclude that $u_i(\mathbf{e}, X) \geq u_i(\mathbf{e}, X')$
 86 for all endowment distributions \mathbf{e} . The strict inequality $u_i(\mathbf{e}, X) > u_i(\mathbf{e}, X')$ holds if and
 87 only if player i 's endowment is positive, $e_i > 0$.

88 **(OC) Optimality of Cooperation:** Given two contribution matrices X and X' , where $x_{ik} \geq x'_{ik}$
 89 and $x_{jk} \geq x'_{jk}$ for all $j \neq i$ and $k = \{1, 2, \dots, M\}$, we can conclude that $U(\mathbf{e}, X) \geq U(\mathbf{e}, X')$
 90 for all endowment distributions \mathbf{e} . The strict inequality $U(\mathbf{e}, X) > U(\mathbf{e}, X')$ holds if and
 91 only if there is a player i with $e_i > 0$ and $x_{ik} > x'_{ik}$.

92 1.3 Repeated games

93 This paper examines a scenario where different individuals interact for the same number of
 94 rounds across various games. Interactions are repeated over time with a continuation probability
 95 δ , which represents the likelihood of proceeding to the next round after each iteration. The
 96 expected number of rounds follows a geometric distribution, with the expected number of rounds
 97 being $\frac{1}{1-\delta}$. All players receive the same endowment in each round, with the initial endowment
 98 distribution denoted as \mathbf{e} . However, the contribution matrix X changes based on the outcome
 99 of each round of the game. Player i determines the contribution $x_{ik}(t+1)$ for the next round
 100 based on their previous contribution $x_{ik}(t)$ and the payoff obtained.

101 The player's strategy in the repeated game is determined by the percentage of contribution at
 102 each moment. If we define the contribution matrix at the moment t as $X(t) \in R^{N \times M}$, the payoff
 103 of the repeated game can be defined as a weighted average:

$$\pi_i = (1 - \delta) \sum_{t=0}^{\infty} \delta^t u_i(\mathbf{e}, X(t)). \quad (1)$$

104 When $\delta \rightarrow 1$, the player payoff is obtained from the limit of the average payoff in each round

₁₀₅ [1]:

$$\pi_i = \lim_{T \rightarrow +\infty} \frac{1}{T} \sum_{t=0}^{T-1} u_i(\mathbf{e}, X(t)). \quad (2)$$

106 2 Static equilibrium analysis

107 In this section, we explore the concept of subgame perfect equilibrium in repeated games. In
 108 a one-shot public goods game, the Nash equilibrium results in zero contribution; however, this
 109 outcome can be altered in a repeated setting [1, 2]. We focus on subgame perfect equilibrium,
 110 where players contribute their entire endowment in each round of the game. Given the game's
 111 history, no player has the incentive to deviate from the strategy of contributing their entire en-
 112 dowment, making this strategy profile a subgame perfect equilibrium [3]. Subgame perfect
 113 equilibrium is a more refined concept than Nash equilibrium. While every subgame perfect
 114 equilibrium is a Nash equilibrium, the reverse is not necessarily true [4].

115 2.1 General condition for full cooperation

116 The feasible interval of full cooperation represents the range of intervals in which all parti-
 117 cipants will contribute their entire endowment in each round, given the payoff function u and the
 118 continuation probability δ . In other words, given u and δ , it determines what endowment dis-
 119 tribution e would allow participants to maintain full cooperation at all times (subgame perfect
 120 equilibrium). Let $E_u(\delta) = \{e = (e_1, e_2, \dots, e_N)\}$ denote the set of all endowment distributions
 121 that allow for full cooperation. We consider the payoff function u for a generalized linear public
 122 goods game:

$$123 u_i(\mathbf{e}, X) = \sum_{k=1}^M \frac{a_{ik}}{|l_k|} \sum_{j=1}^N r_{jk} x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i, \quad (3)$$

123 where r_{jk} is the productivity factor of node j on the k -th hyperedge and $|l_k|$ is the number of
 124 nodes on the k -th hyperedge. We denote by $X = \{\mathbf{1}_{-i}\}$ the situation in which all players except
 125 i contribute their full endowments, while player i contributes nothing; that is, $\sum_{k=1}^M x_{ik} = 0$ and
 126 $\sum_{k=1}^M x_{jk} = 1, \forall j \neq i$. We propose two assumptions.

127 **Assumption 2.1** $\forall r_{j1} = r_{j2} = \dots = r_{jM} = r_j, \forall j \in N.$ (Asymmetric productivity)

128 **Assumption 2.2** $\forall |l_1| = |l_2| = \dots = |l_M| = \sigma.$ (Uniform hypergraph)

129 **Lemma 2.1** Consider a public goods game with a payoff function u of the form given in Eq.(3)
 130 and a continuation probability δ , under a given endowment distribution e . Assuming that
 131 Assumptions 2.1 and 2.2 hold, the following three conditions are equivalent:

132 1. $e \in E_u(\delta),$

133

134 2. The following condition holds for all players i with $e_i > 0$,

135

$$\delta(u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, O)) \geq u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, \{\mathbf{1}\}), \quad (4)$$

136 3. The strategy profile where all players apply the strategy Grim is a subgame perfect equi-
137 librium for the given endowment distribution \mathbf{e} .

138 *Proof* $1 \Rightarrow 2$ Satisfying $\mathbf{e} \in E_u(\delta)$ indicates that under a given endowment allocation scheme,
139 each player opts for the full cooperation, i.e., $X = \{\mathbf{1}\}$. First, we need to prove that a player i
140 altering their full cooperation does not impact their payoff, thus $u_i(\mathbf{e}, \{\mathbf{1}\}) = u_i(\mathbf{e}, \{\mathbf{1}'\})$. Here,
141 $\{\mathbf{1}'\}$ implies that while all x_{jk} remain constant, only x'_{ik} varies with $\sum_{k=1}^M x'_{ik} = 1$. If this
142 condition is not met, any change in player i 's strategy will either increase or decrease its pay-
143 off, failing to achieve subgame perfect equilibrium. Considering two different full cooperation
144 strategies $X = \{\mathbf{1}\}$ and $X' = \{\mathbf{1}'\}$, player i 's payoff is calculated as:

$$\begin{aligned} u_i(\mathbf{e}, \{\mathbf{1}\}) &= \sum_{k=1}^M \frac{a_{ik}}{|l_k|} \sum_{j=1}^N r_{jk} x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \\ &= \sum_{k=1}^M \frac{a_{ik}}{|l_k|} \sum_{j \neq i}^N r_{jk} x_{jk} e_j + \sum_{k=1}^M \frac{a_{ik}}{|l_k|} r_{ik} x_{ik} e_i + (1 - \sum_{k=1}^M x_{ik}) e_i \\ &= \sum_{k=1}^M \frac{a_{ik}}{|l_k|} \sum_{j \neq i}^N r_{jk} x_{jk} e_j + e_i \sum_{k=1}^M \frac{r_{ik}}{|l_k|} x_{ik}. \end{aligned} \quad (5)$$

145 When assumptions 2.1 and 2.2 are satisfied, the payoff $u_i(\mathbf{e}, \{\mathbf{1}\})$ simplifies to:

$$\begin{aligned} u_i(\mathbf{e}, \{\mathbf{1}\}) &= \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j \neq i}^N r_j x_{jk} e_j + e_i \sum_{k=1}^M \frac{r_i}{\sigma} x_{ik} \\ &= \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j \neq i}^N r_j x_{jk} e_j + \frac{e_i r_i}{\sigma} \sum_{k=1}^M x_{ik}. \end{aligned} \quad (6)$$

146 This leads us to conclude that $u_i(\mathbf{e}, \{\mathbf{1}'\}) = \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j \neq i}^N r_j x_{jk} e_j + \frac{e_i r_i}{\sigma} \sum_{k=1}^M x'_{ik}$. Given that
147 $\sum_{k=1}^M x_{ik} = \sum_{k=1}^M x'_{ik} = 1$ and x_{jk} remains constant, it follows that $u_i(\mathbf{e}, \{\mathbf{1}\}) = u_i(\mathbf{e}, \{\mathbf{1}'\})$.
148 Next, we introduce a “mutant” who deviates from the full cooperation, its payoff in the subse-
149 quent round is $u_i(\mathbf{e}, \{\mathbf{1}_{-i}\})$. By the (PE) property, the “mutant’s” minimum payoff would be
150 $u_i(\mathbf{e}, O)$, leading to the conclusion:

$$\pi_M \geq (1 - \delta)u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) + \delta u_i(\mathbf{e}, O). \quad (7)$$

¹⁵¹ As the full cooperation is a subgame perfect equilibrium, it follows that:

$$u_i(\mathbf{e}, \{\mathbf{1}\}) \geq (1 - \delta)u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) + \delta u_i(\mathbf{e}, O), \quad (8)$$

¹⁵² or equivalently,

$$\delta(u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, O)) \geq u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, \{\mathbf{1}\}). \quad (9)$$

¹⁵³ $2 \Rightarrow 3$ It is essential to note that the Grim strategy, in the context of repeated multi-player games
¹⁵⁴ on hypergraphs, implies that initially, all players adopt the full cooperation. Should any player
¹⁵⁵ choose betrayal, every player within the related hyperedge will also switch to betray. This effect
¹⁵⁶ cascades to the remaining players and so forth.

¹⁵⁷ Our objective is to demonstrate that the Grim strategy constitutes a subgame perfect equilibrium.
¹⁵⁸ Employing the one-time deviation principle [4], we observe that an individual's betrayal initially
¹⁵⁹ impacts only their immediate neighbors. As the game progresses, this effect subtly spreads, ulti-
¹⁶⁰ mately resulting in either universal betrayal or game termination, under the presumption that all
¹⁶¹ adhere to the Grim strategy. Importantly, the initial advantage gained by player i from betrayal
¹⁶² is confined to its adjacent connections, influencing their responses till the game's conclusion.
¹⁶³ Hence, the betrayal payoff for node i aligns with $u_i(\mathbf{e}, O)$. The immediate payoff following
¹⁶⁴ a "mutant" intervention is $u_i(\mathbf{e}, \{\mathbf{1}_{-i}\})$, with all subsequent rounds approximated as $u_i(\mathbf{e}, O)$.
¹⁶⁵ The continuous payoffs, therefore, are:

$$\pi_M = (1 - \delta)u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) + \delta u_i(\mathbf{e}, O). \quad (10)$$

¹⁶⁶ Adherence to the inequality condition in 2 ensures that players gain no additional benefit from
¹⁶⁷ a one-time deviation under the Grim strategy, solidifying its status as a subgame perfect equi-
¹⁶⁸ librium.

¹⁶⁹ $3 \Rightarrow 1$ With all players adhering to the Grim strategy, they each consistently choose the full
¹⁷⁰ cooperation in every round. This collective commitment to the Grim strategy inherently es-
¹⁷¹ tablishes a subgame perfect equilibrium. Consequently, full cooperation is feasible among all
¹⁷² participants. \square

¹⁷³ Under the condition that Lemma 2.1 is satisfied, the following Lemmas 2.2 and 2.3 can be
¹⁷⁴ obtained according to Ref. [5].

¹⁷⁵ **Lemma 2.2** *We consider that a public good game with payoff function u has the form of Eq.*
¹⁷⁶ *(3) and Assumption 2.1 and 2.2 are satisfied.*

¹⁷⁷ 1. Suppose δ and δ' are two continuation probabilities with $\delta < \delta'$. Then $E_u(\delta) \subset E_u(\delta')$.

178 2. There is a $\delta' < 1$ such that $E_u(\delta) \neq 0$ for all $\delta \geq \delta'$.

179 **Lemma 2.3** Consider a public good game with continuation probability $\delta < 1$ and endowment
180 distribution \mathbf{e} . For any player i , there is an $\epsilon_i > 0$ such that if player i 's endowment exceeds
181 $e_i = 1 - \epsilon_i$ then full cooperation is infeasible.

182 Lemma 2.3 shows that hypergraphs cannot sustain full cooperation if too much of the initial
183 endowment is concentrated on a single individual. A similar argument suggests that equal en-
184 dowment distribution is most conducive to cooperation. In Ref. [5], it was shown that the payoff
185 function u satisfies a linear symmetric payoff function. However, this conclusion does not hold
186 when u is nonlinear or asymmetric. In this paper, we find that even a linear symmetric payoff
187 function does not guarantee that equal endowments are the most favorable for cooperation in
188 the hypergraph.

189

2.2 Linear symmetric payoff

190 In the following, we consider the public goods game payoff function u that satisfies the condi-
191 tions of Assumptions 2.1 and 2.2 as a linear symmetric payoff function.

$$u_i(\mathbf{e}, X) = \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i, \quad (11)$$

192 where r is the productivity coefficient common to all nodes. We first determine the range of
193 parameters based on the three properties **(PE)**, **(IF)**, **(OC)**.

194 1. **(PE)** property satisfies the condition:

$$\begin{aligned} u_i(\mathbf{e}, X) &= \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \\ &= \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \frac{r}{\sigma} \sum_{k=1}^M x_{ik} e_i + (1 - \sum_{k=1}^M x_{ik}) e_i. \end{aligned} \quad (12)$$

195 The expression shows that we need to make $r > 0$ to satisfy the condition.

¹⁹⁶ 2.(IF) property satisfies the condition:

$$\begin{aligned}
u_i(\mathbf{e}, X) &= \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \\
&= \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \frac{r}{\sigma} \sum_{k=1}^M x_{ik} e_i + (1 - \sum_{k=1}^M x_{ik}) e_i \\
&= \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \sum_{k=1}^M \left(\frac{r}{\sigma} - 1 \right) x_{ik} e_i + e_i.
\end{aligned} \tag{13}$$

¹⁹⁷ The expression shows that we need to make $r < \sigma$ to satisfy the condition.

¹⁹⁸ 3.(OC) property satisfies the condition:

$$\begin{aligned}
U(\mathbf{e}, X) = \sum_{i=1}^N u_i(\mathbf{e}, X) &= \sum_{i=1}^N \left[\sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \right] \\
&= \sum_{i=1}^N \left[\frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \frac{r}{\sigma} \sum_{k=1}^M x_{ik} e_i + (1 - \sum_{k=1}^M x_{ik}) e_i \right] \\
&= \sum_{i=1}^N \left[\frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \sum_{k=1}^M \left(\frac{r}{\sigma} - 1 \right) x_{ik} e_i + e_i \right] \\
&= \frac{r}{\sigma} \sum_{k=1}^M a_{1k} \sum_{j \neq 1}^N x_{jk} e_j + \frac{r}{\sigma} \sum_{k=1}^M x_{1k} e_1 - \sum_{k=1}^M x_{1k} e_1 + e_1 \\
&\quad + \frac{r}{\sigma} \sum_{k=1}^M a_{2k} \sum_{j \neq 1, j \neq 2}^N x_{jk} e_j + \frac{r}{\sigma} \sum_{k=1}^M a_{2k} x_{1k} e_1 + \frac{r}{\sigma} \sum_{k=1}^M x_{2k} e_2 - \sum_{k=1}^M x_{2k} e_2 + e_2 \\
&\quad + \dots \\
&\quad + \frac{r}{\sigma} \sum_{k=1}^M a_{Nk} \sum_{j \neq 1, j \neq N}^N x_{jk} e_j + \frac{r}{\sigma} \sum_{k=1}^M a_{Nk} x_{1k} e_1 + \frac{r}{\sigma} \sum_{k=1}^M x_{Nk} e_N - \sum_{k=1}^M x_{Nk} e_N + e_N \\
&= e_1 \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{2k} x_{1k} + a_{3k} x_{1k} + \dots + a_{Nk} x_{1k} + x_{1k} - \frac{\sigma}{r} x_{1k}) + 1 \right] \\
&\quad + e_2 \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{1k} x_{2k} + a_{3k} x_{2k} + \dots + a_{Nk} x_{2k} + x_{2k} - \frac{\sigma}{r} x_{2k}) + 1 \right] \\
&\quad + \dots \\
&\quad + e_N \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{1k} x_{Nk} + a_{2k} x_{Nk} + \dots + a_{(N-1)k} x_{Nk} + x_{Nk} - \frac{\sigma}{r} x_{Nk}) + 1 \right].
\end{aligned} \tag{14}$$

199 The expression shows that we need to make $\sum_{j=1}^N a_{jk} > \frac{\sigma}{r}$ with $\forall k$ to satisfy the condition.
200 Where $\sum_{j=1}^N a_{jk} = \sigma$, the property **(OC)** is satisfied as long as there is $r > 1$.

201 In summary, the three properties are satisfied, and the parameter r needs to satisfy $1 < r < \sigma$.
202 Next, we start to discuss the feasible interval of full cooperation in the public goods game under
203 the linear symmetric payoff function.

204 **Theorem 2.1** *The payoff function of a public goods game is given by Eq. (11). For a contri-
205 bution matrix X and a productivity coefficient $1 < r < \sigma$, $e \in E_u(\delta)$ holds if the continuation
206 probability $\delta \geq \frac{\max\{e_i\}(\sigma-r)}{r \min\{e_i\} \sum_{k=1}^M \sum_{j \neq i}^N a_{ik} x_{jk}}$ with $\forall i$, and the equal endowments $e = (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$
207 also belong to $e \in E_u(\delta)$.*

208 *Proof* According to Lemma 2.1, we first calculate the three payoff functions.

$$\begin{aligned} u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) &= \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + e_i, \\ u_i(\mathbf{e}, O) &= e_i, \\ u_i(\mathbf{e}, \{\mathbf{1}\}) &= \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \frac{r}{\sigma} e_i. \end{aligned} \tag{15}$$

209 Applying Lemma 2.1, we obtain sufficient conditions under which the endowment vector e
210 belongs to the full cooperation feasible set $E_u(\delta)$, as follows:

$$\begin{aligned} \delta(u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, O)) &\geq u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, \{\mathbf{1}\}) \\ \Rightarrow \delta\left(\frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + e_i - e_i\right) &\geq \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + e_i - \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j - \frac{r}{\sigma} e_i \\ \Rightarrow \delta \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j &\geq (1 - \frac{r}{\sigma}) e_i \\ \Rightarrow \delta &\geq \frac{(\sigma - r) e_i}{r \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j}, \end{aligned} \tag{16}$$

211 where it is required that inequality (16) holds for all players i with $e_i > 0$. Enlarging the right-
212 hand side of inequality (16) can satisfy all i holds:

$$\delta \geq \frac{\max\{e_i\}(\sigma - r)}{r \min\{e_i\} \sum_{k=1}^M \sum_{j \neq i}^N a_{ik} x_{jk}} \geq \frac{(\sigma - r) e_i}{r \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j} = \frac{(\sigma - r)}{r \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} \frac{e_j}{e_i}}. \tag{17}$$

213 Thus e is feasible for full cooperation as long as inequality (17) is satisfied. Equal endowments

²¹⁴ $\mathbf{e} = (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$ must also be feasible for full cooperation.

$$\delta \geq \frac{\max\{e_i\}(\sigma - r)}{r \min\{e_i\} \sum_{k=1}^M \sum_{j \neq i}^N a_{ik} x_{jk}} \geq \frac{(\sigma - r) \frac{1}{N}}{r \frac{1}{N} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk}}, \quad (18)$$

²¹⁵ where the inequality holds for $\max\{e_i\} \geq \frac{1}{N}$ and $\min\{e_i\} \leq \frac{1}{N}$. \square

²¹⁶ Inequality (18) in Theorem 2.1 indicates that node i is most likely to deviate from full cooperation when the other nodes in all the hyperedges that node i participates in contribute the lowest sum to these hyperedges. In other words, under the equal endowment condition, if the hyperdegree of node i is 1 and the number of participating contributing nodes is $\sigma - 1$, it will have a higher probability of deviating from full cooperation easily. In a hypergraph, nodes with lower hyperdegree (players involved in fewer public goods games) will have a slightly higher probability of deviating from full cooperation. Turning to inequality (17), for an arbitrary endowment distribution, node i is more likely to deviate from full cooperation when its endowment is low and hyperdegree is small.

²²⁵ Theorem 2.1 is only a sufficient condition, it does not mean that other δ that do not satisfy the condition are not feasible for full cooperation. Moreover, Theorem 2.1 shows that equal endowments are not feasible for full cooperation as long as the condition is satisfied. In the following, we present an example in which equal endowments are not feasible for full cooperation, yet a non-empty feasible interval for full cooperation still exists.

²³⁰ Consider a set of linear symmetric payoff functions:

$$\begin{aligned} u_1(\mathbf{e}, X) &= \frac{r}{3}(x_{11}e_1 + x_{21}e_2 + x_{31}e_3) + (1 - x_{11})e_1, \\ u_2(\mathbf{e}, X) &= \frac{r}{3}(x_{11}e_1 + x_{21}e_2 + x_{31}e_3 + x_{22}e_2 + x_{32}e_3 + x_{42}e_4) + (1 - x_{21} - x_{22})e_2, \\ u_3(\mathbf{e}, X) &= \frac{r}{3}(x_{11}e_1 + x_{21}e_2 + x_{31}e_3 + x_{22}e_2 + x_{32}e_3 + x_{42}e_4) + (1 - x_{31} - x_{32})e_3, \\ u_4(\mathbf{e}, X) &= \frac{r}{3}(x_{22}e_2 + x_{32}e_3 + x_{42}e_4) + (1 - x_{42})e_4. \end{aligned} \quad (19)$$

²³¹ Let $x_{11} = 1, x_{21} = \frac{1}{3}, x_{22} = \frac{2}{3}, x_{31} = \frac{2}{3}, x_{32} = \frac{1}{3}, x_{42} = 1$. Then for equal endowments ²³² $\mathbf{e} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, δ need to satisfy the following condition:

$$\begin{aligned} \delta_1 &\geq \frac{3 - r}{r}, \\ \delta_2 &\geq \frac{3 - r}{3r}, \\ \delta_3 &\geq \frac{3 - r}{3r}, \\ \delta_4 &\geq \frac{3 - r}{r}. \end{aligned} \quad (20)$$

233 Thus it is only necessary to make $\delta \geq \frac{3-r}{r}$ so that equal distribution is feasible for full coop-
 234 eration. In the following, we apply a perturbation to the equal endowments and the perturbed
 235 endowments $e' = (\frac{1}{4} - \epsilon, \frac{1}{4} + 2\epsilon, \frac{1}{4}, \frac{1}{4} - \epsilon)$. Below we calculate the δ conditions it has to satisfy:

$$\begin{aligned}\delta_1 &\geq \frac{3-r}{r \frac{1+\frac{8\epsilon}{3}}{1-4\epsilon}}, \\ \delta_2 &\geq \frac{3-r}{r \frac{3-8\epsilon}{1+8\epsilon}}, \\ \delta_3 &\geq \frac{3-r}{3r}, \\ \delta_4 &\geq \frac{3-r}{r \frac{1+4\epsilon}{1-4\epsilon}}\end{aligned}\tag{21}$$

236 The perturbed endowments only need to satisfy $\delta \geq \frac{3-r}{r \frac{1+\frac{8\epsilon}{3}}{1-4\epsilon}}$ to make it feasible for full coopera-
 237 tion. Comparing the two values, we find that whenever we take $\delta \in [\frac{3-r}{r \frac{1+\frac{8\epsilon}{3}}{1-4\epsilon}}, \frac{3-r}{r}]$, we make the
 238 equal endowments not feasible for full cooperation and will still have feasible intervals of full
 239 cooperation. We obtain the following corollary:

240 **Corollary 1** *There exists a linear symmetric public goods game function u such that $E_u(\delta) \neq \emptyset$,*
 241 *but $e = (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}) \neq E_u(\delta)$.*

242 In addition, we find that the total payoff is the same for any feasible interval of full cooperation
 243 under the linear symmetric payoff function.

244 **Corollary 2** *The payoff function u of the public goods game under any linear symmetric payoff
 245 function satisfies $\forall e_1, e_2 \in E_u(\delta)$ and $X(0) = \{\mathbf{1}\}$, we can get $\sum_{i=1}^N \pi_i(e_1, \{\mathbf{1}\}) = \sum_{i=1}^N \pi_i(e_2, \{\mathbf{1}\}) =$
 246 r .*

247 *Proof* Since the initial moment $X(0) = \{\mathbf{1}\}$ and $e \in E_u(\delta)$, the initial contribution matrix
 248 $X(t) = X(0)$ is maintained for all subsequent moments. It is straightforward to calculate the

249 total payoff:

$$\begin{aligned}
\sum_{i=1}^N \pi_i(\mathbf{e}, \{\mathbf{1}\}) &= \sum_{i=1}^N (1 - \delta) \sum_{t=0}^{\infty} \delta^t u_i(\mathbf{e}, \{\mathbf{1}\}) = \sum_{i=1}^N u_i(\mathbf{e}, \{\mathbf{1}\}) = U(\mathbf{e}, \{\mathbf{1}\}). \\
U(\mathbf{e}, \{\mathbf{1}\}) &= e_1 \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{2k}x_{1k} + a_{3k}x_{1k} + \dots + a_{Nk}x_{1k} + x_{1k} - \frac{\sigma}{r}x_{1k}) + 1 \right] \\
&\quad + e_2 \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{1k}x_{2k} + a_{3k}x_{2k} + \dots + a_{Nk}x_{2k} + x_{2k} - \frac{\sigma}{r}x_{2k}) + 1 \right] \\
&\quad + \dots \\
&\quad + e_N \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{1k}x_{Nk} + a_{2k}x_{Nk} + \dots + a_{(N-1)k}x_{Nk} + x_{Nk} - \frac{\sigma}{r}x_{Nk}) + 1 \right] \tag{22} \\
&= e_1 \left[\frac{r}{\sigma} \sum_{k=1}^M \left(\sum_{j=1}^N a_{jk} - \frac{\sigma}{r} \right) x_{1k} + 1 \right] + \dots + e_N \left[\frac{r}{\sigma} \sum_{k=1}^M \left(\sum_{j=1}^N a_{jk} - \frac{\sigma}{r} \right) x_{Nk} + 1 \right] \\
&= e_1 \left[\frac{r}{\sigma} \left(\sigma - \frac{\sigma}{r} \right) \sum_{k=1}^M x_{1k} + 1 \right] + \dots + e_N \left[\frac{r}{\sigma} \left(\sigma - \frac{\sigma}{r} \right) \sum_{k=1}^M x_{Nk} + 1 \right] \\
&= r \left(\sum_{i=1}^N e_i \right) = r
\end{aligned}$$

250

□

251 In Ref. [5] it was shown that the equal endowments are the most favorable for cooperation in
252 a public goods game with a linear symmetric payoff function. However, Corollary 1 reveals
253 that, in multi-player public goods games on hypergraphs, even equal endowments under linear
254 symmetric payoff functions are not the most favorable for promoting cooperation. In addition,
255 Corollary 2 finds that as long as the distribution of endowments falls within the feasible interval
256 of full cooperation and the initial state is fully cooperative, the total payoff of the game is the
257 same as the highest.

258 2.3 Linear asymmetric payoff

259 We extend the symmetric payoff function so that the productivity coefficients need only satisfy
260 Assumption 2.1. Consider the public goods game payoff function u :

$$u_i(\mathbf{e}, X) = \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r_j x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i. \tag{23}$$

261 We still first discuss the range of values of the parameter r_j .

²⁶² 1.(PE) property satisfies the condition:

$$\begin{aligned}
u_i(\mathbf{e}, X) &= \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r_j x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \\
&= \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + \frac{1}{\sigma} \sum_{k=1}^M r_i x_{ik} e_i + e_i - \sum_{k=1}^M x_{ik} e_i.
\end{aligned} \tag{24}$$

²⁶³ The expression shows that we need to make $r_j > 0$ with $\forall j$ to satisfy the condition.

²⁶⁴ 2.(IF) property satisfies the condition:

$$\begin{aligned}
u_i(\mathbf{e}, X) &= \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r_j x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \\
&= \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + \frac{1}{\sigma} \sum_{k=1}^M r_i x_{ik} e_i + e_i - \sum_{k=1}^M x_{ik} e_i \\
&= \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + \sum_{k=1}^M \left(\frac{r_i}{\sigma} - 1 \right) x_{ik} e_i + e_i.
\end{aligned} \tag{25}$$

²⁶⁵ The expression shows that we need to make $r_j < \sigma$ with $\forall j$ to satisfy the condition.

²⁶⁶ 3.(OC) property satisfies the condition:

$$\begin{aligned}
U(\mathbf{e}, X) &= \sum_{i=1}^N u_i(\mathbf{e}, X) = \sum_{i=1}^N \left[\sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r_j x_{jk} e_j + (1 - \sum_{k=1}^M x_{ik}) e_i \right] \\
&= e_1 \left[\frac{r_1}{\sigma} \sum_{k=1}^M (a_{2k} x_{1k} + a_{3k} x_{1k} + \dots + a_{Nk} x_{1k} + x_{1k} - \frac{\sigma}{r_1} x_{1k}) + 1 \right] \\
&\quad + e_2 \left[\frac{r_2}{\sigma} \sum_{k=1}^M (a_{1k} x_{2k} + a_{3k} x_{2k} + \dots + a_{Nk} x_{2k} + x_{2k} - \frac{\sigma}{r_2} x_{2k}) + 1 \right] \\
&\quad + \dots \\
&\quad + e_N \left[\frac{r_N}{\sigma} \sum_{k=1}^M (a_{1k} x_{Nk} + a_{2k} x_{Nk} + \dots + a_{(N-1)k} x_{Nk} + x_{Nk} - \frac{\sigma}{r_N} x_{Nk}) + 1 \right].
\end{aligned} \tag{26}$$

²⁶⁷ The expression shows that we need to make $\sum_{j=1}^N a_{jk} > \frac{\sigma}{r_i}$ with $\forall k, i$ to satisfy the condition.

²⁶⁸ Where $\sum_{j=1}^N a_{jk} = \sigma$, the property (OC) is satisfied as long as there is $r_i > 1$ with $\forall i$.

²⁶⁹ In summary, the three properties hold provided that the parameter r_i satisfies $1 < r_i < \sigma$ with $\forall i$.

²⁷⁰ In the following, we discuss the feasible interval of full cooperation under the linear asymmetric payoff function.

272 **Theorem 2.2** *The payoff function of a public goods game is given by Eq. (23). For a con-
 273 tribution matrix X and productivity coefficient $1 < r_i < \sigma$ with $\forall i, e \in E_u(\delta)$ holds if the
 274 continuation probability $\delta \geq \frac{\max\{e_i(\sigma - r_i)\}}{\min\{e_i r_i\} \sum_{k=1}^M \sum_{j \neq i}^N a_{ik} x_{jk}}$ with $\forall i$.*

275 *Proof* Similar to the proof of Theorem 2.1. According to Lemma 2.1, we calculate the 3 payoff
 276 functions.

$$\begin{aligned}
 u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) &= \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + e_i, \\
 u_i(\mathbf{e}, O) &= e_i, \\
 u_i(\mathbf{e}, \{\mathbf{1}\}) &= \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + \frac{r_i}{\sigma} e_i.
 \end{aligned} \tag{27}$$

277 Applying Lemma 2.1, we derive sufficient conditions under which the endowment vector \mathbf{e} lies
 278 within the full cooperation feasible set $E_u(\delta)$, as follows:

$$\begin{aligned}
 \delta(u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, O)) &\geq u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, \{\mathbf{1}\}) \\
 \Rightarrow \delta\left(\frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + e_i - e_i\right) &\geq \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j + e_i - \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j - \frac{r_i}{\sigma} e_i \\
 \Rightarrow \delta \frac{1}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j &\geq (1 - \frac{r_i}{\sigma}) e_i \\
 \Rightarrow \delta &\geq \frac{(\sigma - r_i) e_i}{\sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j},
 \end{aligned} \tag{28}$$

279 where it is required that inequality (28) holds for all players i with $e_i > 0$. Enlarging the right-
 280 hand side of inequality (28) can satisfy all i holds:

$$\delta \geq \frac{\max\{(\sigma - r_i) e_i\}}{\min\{e_i r_i\} \sum_{k=1}^M \sum_{j \neq i}^N a_{ik} x_{jk}} \geq \frac{(\sigma - r_i) e_i}{\sum_{k=1}^M a_{ik} \sum_{j \neq i}^N r_j x_{jk} e_j}. \tag{29}$$

281 Thus \mathbf{e} is fully cooperative as long as inequality (29) is satisfied. \square

282 **Remark 1** *The sufficient conditions in Theorem 2.2 do not guarantee that equal endowments
 283 are also feasible for full cooperation.*

284 Theorem 2.2 gives a sufficient condition for the continuation probability δ of full cooperation
 285 under the asymmetric payoff function. The key factor for node i to deviate from full cooperation
 286 that can be obtained from inequality 29 is the combined $\sum_{j \neq i} r_j x_{jk} e_j$ value of the associated

287 hyperedge of node i . When node i is less associated and has a lower production coefficient r_i ,
288 it will be more likely to deviate from cooperation.

289 Similar to Corollary 1 and Corollary 2, we can obtain similar conclusions under the asymmetric
290 payoff function.

291 **Corollary 3** *There exists a linear asymmetric public goods game payoff function u such that*
292 $E_u(\delta) \neq \emptyset$, but $\mathbf{e} = (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}) \neq E_u(\delta)$.

293 We still consider the example in Corollary 1 by simply varying the productivity coefficient r .
294 Consider a set of asymmetric payoff functions:

$$\begin{aligned} u_1(\mathbf{e}, X) &= \frac{1}{3}(r_1x_{11}e_1 + r_2x_{21}e_2 + r_3x_{31}e_3) + (1 - x_{11})e_1, \\ u_2(\mathbf{e}, X) &= \frac{1}{3}(r_1x_{11}e_1 + r_2x_{21}e_2 + r_3x_{31}e_3 + r_2x_{22}e_2 + r_3x_{32}e_3 + r_4x_{42}e_4) + (1 - x_{21} - x_{22})e_2, \\ u_3(\mathbf{e}, X) &= \frac{1}{3}(r_1x_{11}e_1 + r_2x_{21}e_2 + r_3x_{31}e_3 + r_2x_{22}e_2 + r_3x_{32}e_3 + r_4x_{42}e_4) + (1 - x_{31} - x_{32})e_3, \\ u_4(\mathbf{e}, X) &= \frac{1}{3}(r_2x_{22}e_2 + r_3x_{32}e_3 + r_4x_{42}e_4) + (1 - x_{42})e_4. \end{aligned} \tag{30}$$

295 Let $x_{11} = 1, x_{21} = \frac{1}{3}, x_{22} = \frac{2}{3}, x_{31} = \frac{2}{3}, x_{32} = \frac{1}{3}, x_{42} = 1, r_1 = 2 + \epsilon, r_2 = 2, r_3 = 2, r_4 = 2 + \epsilon$.
296 Then for equal endowments $\mathbf{e} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, δ need to satisfy the following condition:

$$\begin{aligned} \delta_1 &\geq \frac{3 - 2 - \epsilon}{2\frac{1}{3} + 2\frac{2}{3}} = \frac{1 - \epsilon}{2}, \\ \delta_2 &\geq \frac{3 - 2}{2 + \epsilon + 2 + 2 + \epsilon} = \frac{1}{6 + 2\epsilon}, \\ \delta_3 &\geq \frac{3 - 2}{2 + \epsilon + 2 + 2 + \epsilon} = \frac{1}{6 + 2\epsilon}, \\ \delta_4 &\geq \frac{3 - 2 - \epsilon}{2\frac{2}{3} + 2\frac{1}{3}} = \frac{1 - \epsilon}{2}. \end{aligned} \tag{31}$$

297 Thus it is only necessary to make $\delta \geq \frac{1 - \epsilon}{2}$ so that equal distribution is feasible for full coop-
298 eration. In the following, we apply a perturbation to the equal endowments and the perturbed

299 endowments $e' = (\frac{1}{4} - \epsilon, \frac{1}{4} + 2\epsilon, \frac{1}{4}, \frac{1}{4} - \epsilon)$. Below we calculate the δ conditions it has to satisfy:

$$\begin{aligned}
 \delta_1 &\geq \frac{(3-2-\epsilon)(\frac{1}{4}-\epsilon)}{2(\frac{1}{4}+2\epsilon)\frac{1}{3}+2\frac{1}{4}\frac{2}{3}} = \frac{(1-\epsilon)(1-4\epsilon)}{2+\frac{16}{3}\epsilon}, \\
 \delta_2 &\geq \frac{(3-2)(\frac{1}{4}+2\epsilon)}{(2+\epsilon)(\frac{1}{4}-\epsilon)+2\frac{1}{4}+(2+\epsilon)(\frac{1}{4}-\epsilon)} = \frac{1+8\epsilon}{6+2\epsilon-(2+\epsilon)(4\epsilon)}, \\
 \delta_3 &\geq \frac{(3-2)\frac{1}{4}}{(2+\epsilon)(\frac{1}{4}-\epsilon)+2(\frac{1}{4}+2\epsilon)+(2+\epsilon)(\frac{1}{4}-\epsilon)} = \frac{1}{6+2\epsilon+16\epsilon-(2+\epsilon)(4\epsilon)}, \\
 \delta_4 &\geq \frac{(3-2-\epsilon)(\frac{1}{4}-\epsilon)}{2(\frac{1}{4}+2\epsilon)\frac{2}{3}+2\frac{1}{4}\frac{1}{3}} = \frac{(1-\epsilon)(1-4\epsilon)}{2+\frac{32}{3}\epsilon}
 \end{aligned} \tag{32}$$

300 The perturbed endowments only need to satisfy $\delta \geq \frac{(1-\epsilon)(1-4\epsilon)}{2+\frac{16}{3}\epsilon}$ to make it feasible for full
 301 cooperation. Comparing the two values, we find that whenever we take $\delta \in [\frac{(1-\epsilon)(1-4\epsilon)}{2+\frac{16}{3}\epsilon}, \frac{1-\epsilon}{2}]$,
 302 we make the equal endowments not feasible for full cooperation and will still have feasible
 303 intervals of full cooperation.

304 **Corollary 4** *The payoff function u of the public goods game under any linear asymmetric payoff
 305 function satisfies $\forall e \in E_u(\delta)$ and $X(0) = \{\mathbf{1}\}$, we can get $\sum_{i=1}^N \pi_i(e_1, \{\mathbf{1}\}) = \sum_{i=1}^N r_i e_i$.*

306 *Proof* Since the initial moment $X(0) = \{\mathbf{1}\}$ and $e \in E_u(\delta)$, the initial contribution matrix
 307 $X(t) = X(0)$ is maintained for all subsequent moments. It is straightforward to calculate the
 308 total payoff:

$$\begin{aligned}
 U(e, \{\mathbf{1}\}) &= e_1 \left[\frac{r_1}{\sigma} \sum_{k=1}^M (a_{2k}x_{1k} + a_{3k}x_{1k} + \dots + a_{Nk}x_{1k} + x_{1k} - \frac{\sigma}{r_1}x_{1k}) + 1 \right] \\
 &\quad + e_2 \left[\frac{r_2}{\sigma} \sum_{k=1}^M (a_{1k}x_{2k} + a_{3k}x_{2k} + \dots + a_{Nk}x_{2k} + x_{2k} - \frac{\sigma}{r_2}x_{2k}) + 1 \right] \\
 &\quad + \dots \\
 &\quad + e_N \left[\frac{r_N}{\sigma} \sum_{k=1}^M (a_{1k}x_{Nk} + a_{2k}x_{Nk} + \dots + a_{(N-1)k}x_{Nk} + x_{Nk} - \frac{\sigma}{r_N}x_{Nk}) + 1 \right] \\
 &= e_1 \left[\frac{r_1}{\sigma} \sum_{k=1}^M \left(\sum_{j=1}^N a_{jk} - \frac{\sigma}{r_1} \right) x_{1k} + 1 \right] + \dots + e_N \left[\frac{r_N}{\sigma} \sum_{k=1}^M \left(\sum_{j=1}^N a_{jk} - \frac{\sigma}{r_N} \right) x_{Nk} + 1 \right] \\
 &= e_1 \left[\frac{r_1}{\sigma} \left(\sigma - \frac{\sigma}{r_1} \right) \sum_{k=1}^M x_{1k} + 1 \right] + \dots + e_N \left[\frac{r_N}{\sigma} \left(\sigma - \frac{\sigma}{r_N} \right) \sum_{k=1}^M x_{Nk} + 1 \right] \\
 &= \sum_{i=1}^N r_i e_i
 \end{aligned} \tag{33}$$

310 Corollary 4 shows that different initial endowments within the full cooperation interval $E_u(\delta)$
 311 also have different total payoffs.

312 2.4 An example of a nonlinear symmetric payoff

313 We consider the example of a nonlinear symmetric public goods game with a payoff function u_i
 314 of the following form:

$$u_i(\mathbf{e}, X) = c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j=1}^N x_{jk}e_j - (1 - \sum_{k=1}^M x_{ik})e_i, \quad (34)$$

315 where $N(i)$ denotes the set of neighboring nodes of node i associated with hyperedges and
 316 $c > 0$. The nonlinear part means that the two highest actual values of endowments around node
 317 i will have an additional effect on it. Lemma 2.1 is satisfied by the condition that the payoff
 318 function u_i form is linear. We are considering a nonlinear payoff function and need to verify
 319 that $u_i(\mathbf{e}, \mathbf{1}) = u_i(\mathbf{e}, \mathbf{1}')$.

$$\begin{aligned} u_i(\mathbf{e}, \{\mathbf{1}\}) &= c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j=1}^N x_{jk}e_j - (1 - \sum_{k=1}^M x_{ik})e_i \\ &= c \max_{p,q \in N(i)} \{e_p + e_q\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i} x_{jk}e_j + \frac{e_i r_i}{\sigma} \sum_{k=1}^M x_{ik} = u_i(\mathbf{e}, \{\mathbf{1}'\}). \end{aligned} \quad (35)$$

320 Here it can also be extended to consider a nonlinear asymmetric payoff function, whose non-
 321 linear part is denoted as $\max_{p,q \in N(i)} \{\sum_{k=1}^M (r_p x_{pk}e_p + r_q x_{qk}e_q)\}$. It still satisfies the condition that
 322 $u_i(\mathbf{e}, \{\mathbf{1}\}) = u_i(\mathbf{e}, \{\mathbf{1}'\})$. We verify the parameter conditions the three properties satisfy for a
 323 nonlinear payoff function of the form Eq.(34).

324 1.(PE) property satisfies the condition:

$$\begin{aligned} u_i(\mathbf{e}, X) &= c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N r x_{jk}e_j + (1 - \sum_{k=1}^M x_{ik})e_i \\ &= c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i} x_{jk}e_j + \frac{r}{\sigma} \sum_{k=1}^M x_{ik}e_i + (1 - \sum_{k=1}^M x_{ik})e_i. \end{aligned} \quad (36)$$

325 The expression shows that we need to make $r > 0$ to satisfy the condition.

326 2.(IF) property satisfies the condition:

$$\begin{aligned}
u_i(\mathbf{e}, X) &= c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N rx_{jk}e_j + (1 - \sum_{k=1}^M x_{ik})e_i \\
&= c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk}e_j + \frac{r}{\sigma} \sum_{k=1}^M x_{ik}e_i + (1 - \sum_{k=1}^M x_{ik})e_i \\
&= c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk}e_j + \sum_{k=1}^M \left(\frac{r}{\sigma} - 1 \right) x_{ik}e_i + e_i.
\end{aligned} \tag{37}$$

327 The expression shows that we need to make $r < \sigma$ to satisfy the condition.

328 3.(OC) property satisfies the condition:

$$\begin{aligned}
U(\mathbf{e}, X) &= \sum_{i=1}^N u_i(\mathbf{e}, X) = \sum_{i=1}^N \left[c \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} + \sum_{k=1}^M \frac{a_{ik}}{\sigma} \sum_{j=1}^N rx_{jk}e_j + (1 - \sum_{k=1}^M x_{ik})e_i \right] \\
&= e_1 \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{2k}x_{1k} + a_{3k}x_{1k} + \dots + a_{Nk}x_{1k} + x_{1k} - \frac{\sigma}{r}x_{1k}) + 1 \right] \\
&\quad + e_2 \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{1k}x_{2k} + a_{3k}x_{2k} + \dots + a_{Nk}x_{2k} + x_{2k} - \frac{\sigma}{r}x_{2k}) + 1 \right] \\
&\quad + \dots \\
&\quad + e_N \left[\frac{r}{\sigma} \sum_{k=1}^M (a_{1k}x_{Nk} + a_{2k}x_{Nk} + \dots + a_{(N-1)k}x_{Nk} + x_{Nk} - \frac{\sigma}{r}x_{Nk}) + 1 \right] \\
&\quad + c \sum_{i=1}^N \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\}.
\end{aligned} \tag{38}$$

329 The expression shows that we need to make $\sum_{j=1}^N a_{jk} > \frac{\sigma}{r}$ with $\forall k$ to satisfy the condition.

330 Where $\sum_{j=1}^N a_{jk} = \sigma$, the property (OC) is satisfied as long as there is $r > 1$.

331 In summary, the nonlinear part is multiplied by a productivity factor $c > 0$, which leads to the
332 satisfaction of the three property principle parameters r and linear symmetric payoff function
333 consistent with $1 < r < \sigma$. Next, we discuss the conditions satisfied by the fully cooperative
334 feasible interval of the nonlinear symmetric payoff function.

335 **Theorem 2.3** *The payoff function of a public goods game is given by Eq. (34). For a contri-
336 bution matrix X and productivity coefficient $1 < r < \sigma$, $e \in E_u(\delta)$ holds if the continuation
337 probability $\delta \geq \frac{(\sigma-r)e_i}{\sigma c \max_{p,q \in N(i)} \{e_p + e_q\} + r \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk}e_j}$ with $\forall i$.*

338 *Proof* According to Lemma 2.1, we calculate the 3 payoff functions.

$$\begin{aligned}
u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) &= c \max_{p,q \in N(i)} \{e_p + e_q\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + e_i, \\
u_i(\mathbf{e}, O) &= e_i, \\
u_i(\mathbf{e}, \{\mathbf{1}\}) &= c \max_{p,q \in N(i)} \{e_p + e_q\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j + \frac{r}{\sigma} e_i.
\end{aligned} \tag{39}$$

339 Applying Lemma 2.1, we derive sufficient conditions under which the endowment vector \mathbf{e} lies
340 within the full cooperation feasible set $E_u(\delta)$, as follows:

$$\begin{aligned}
&\delta(u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, O)) \geq u_i(\mathbf{e}, \{\mathbf{1}_{-i}\}) - u_i(\mathbf{e}, \{\mathbf{1}\}) \\
&\Rightarrow \delta(c \max_{p,q \in N(i)} \{e_p + e_q\} + \frac{r}{\sigma} \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j) \geq (1 - \frac{r}{\sigma}) e_i \\
&\Rightarrow \delta \geq \frac{(\sigma - r) e_i}{\sigma c \max_{p,q \in N(i)} \{e_p + e_q\} + r \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j},
\end{aligned} \tag{40}$$

341 where it is required that inequality (40) holds for all players i with $e_i > 0$. \square

342 Theorem 2.3 shows that the nonlinear part of the payoff function affects the feasible interval of
343 full cooperation mainly in the distribution of endowment inequality. When two of the remaining
344 nodes in the hyperedge associated with a node have relatively high endowments, it gives the
345 node a higher probability of full cooperation. This is because the value of the nonlinear part
346 $\max_{p,q \in N(i)} \{e_p + e_q\}$ will be relatively larger, making the conditions for the continuation probability
347 δ to be satisfied relatively weaker.

348 **Corollary 5** *There exists a nonlinear symmetric public goods game function u such that $E_u(\delta) \neq$
349 \emptyset , but $\mathbf{e} = (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}) \neq E_u(\delta)$.*

350 We consider the example in Corollary 1. Consider a set of nonlinear symmetric payoff functions:

$$\begin{aligned}
u_1(\mathbf{e}, X) &= \frac{r}{3}(x_{11}e_1 + x_{21}e_2 + x_{31}e_3) + (1 - x_{11})e_1 + c((x_{21} + x_{22})e_2 + (x_{31} + x_{32})e_3), \\
u_2(\mathbf{e}, X) &= \frac{r}{3}(x_{11}e_1 + x_{21}e_2 + x_{31}e_3 + x_{22}e_2 + x_{32}e_3 + x_{42}e_4) + (1 - x_{21} - x_{22})e_2 + c \max_{p,q \in N(2)} \{e_p + e_q\}, \\
u_3(\mathbf{e}, X) &= \frac{r}{3}(x_{11}e_1 + x_{21}e_2 + x_{31}e_3 + x_{22}e_2 + x_{32}e_3 + x_{42}e_4) + (1 - x_{31} - x_{32})e_3 + c \max_{p,q \in N(3)} \{e_p + e_q\}, \\
u_4(\mathbf{e}, X) &= \frac{r}{3}(x_{22}e_2 + x_{32}e_3 + x_{42}e_4) + (1 - x_{42})e_4 + c((x_{21} + x_{22})e_2 + (x_{31} + x_{32})e_3).
\end{aligned} \tag{41}$$

351 Let $x_{11} = 1, x_{21} = \frac{1}{3}, x_{22} = \frac{2}{3}, x_{31} = \frac{2}{3}, x_{32} = \frac{1}{3}, x_{42} = 1$. Then for equal endowments

352 $\mathbf{e} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, δ needs to satisfy the following condition:

$$\begin{aligned}
 \delta_1 &\geq \frac{(3-r)\frac{1}{4}}{3c\frac{1}{2} + r(\frac{1}{3}\frac{1}{4} + \frac{2}{3}\frac{1}{4})} = \frac{3-r}{6c+r}, \\
 \delta_2 &\geq \frac{(3-r)\frac{1}{4}}{3c\frac{1}{2} + r(1\frac{1}{4} + 1\frac{1}{4} + 1\frac{1}{4})} = \frac{3-r}{6c+3r} \\
 \delta_3 &\geq \frac{(3-r)\frac{1}{4}}{3c\frac{1}{2} + r(1\frac{1}{4} + 1\frac{1}{4} + 1\frac{1}{4})} = \frac{3-r}{6c+3r}, \\
 \delta_4 &\geq \frac{(3-r)\frac{1}{4}}{3c\frac{1}{2} + r(\frac{2}{3}\frac{1}{4} + \frac{1}{3}\frac{1}{4})} = \frac{3-r}{6c+r}.
 \end{aligned} \tag{42}$$

353 Thus it is only necessary to make $\delta \geq \frac{3-r}{6c+r}$ so that equal distribution is feasible for full cooperation.
 354 In the following, we apply a perturbation to the equal endowments and the perturbed
 355 endowments $\mathbf{e}' = (\frac{1}{4} - \epsilon, \frac{1}{4} + 2\epsilon, \frac{1}{4} - \epsilon, \frac{1}{4})$. Below we calculate the δ conditions it has to satisfy:

$$\begin{aligned}
 \delta_1 &\geq \frac{(3-r)(\frac{1}{4} - \epsilon)}{3c(\frac{1}{2} + \epsilon) + r(\frac{1}{3}(\frac{1}{4} + 2\epsilon) + \frac{2}{3}(\frac{1}{4} - \epsilon))} = \frac{(3-r)(1-4\epsilon)}{6c+8c\epsilon+r}, \\
 \delta_2 &\geq \frac{(3-r)(\frac{1}{4} + 2\epsilon)}{3c(\frac{1}{2} - \epsilon) + r(\frac{1}{4} - \epsilon + \frac{1}{4} - \epsilon + \frac{1}{4})}, \\
 \delta_3 &\geq \frac{(3-r)(\frac{1}{4} - \epsilon)}{2c(\frac{1}{2} + 2\epsilon) + r(\frac{1}{4} - \epsilon + \frac{1}{4} + 2\epsilon + \frac{1}{4})}, \\
 \delta_4 &\geq \frac{(3-r)\frac{1}{4}}{3c(\frac{1}{2} + \epsilon) + r(\frac{2}{3}(\frac{1}{4} + 2\epsilon) + \frac{1}{3}(\frac{1}{4} - \epsilon))} = \frac{(3-r)}{6c+8c\epsilon+r+4r\epsilon}.
 \end{aligned} \tag{43}$$

356 The perturbed endowments only need to satisfy $\delta \geq \max\{\frac{(3-r)(1-4\epsilon)}{6c+8c\epsilon+r}, \frac{(3-r)}{6c+8c\epsilon+r+4r\epsilon}\}$ to make
 357 it feasible for full cooperation. Comparing the two values, we find that whenever we take
 358 $\delta \in [\max\{\frac{(3-r)(1-4\epsilon)}{6c+8c\epsilon+r}, \frac{(3-r)}{6c+8c\epsilon+r+4r\epsilon}\}, \frac{3-r}{6c+r}]$, we make the equal endowments not feasible for full
 359 cooperation and will still have feasible intervals of full cooperation.

360 **Corollary 6** *The payoff function u of the public goods game under any nonlinear symmetric
 361 payoff function satisfies $\forall e \in E_u(\delta)$ and $X(0) = \{\mathbf{1}\}$, we can get $\sum_{i=1}^N \pi_i(\mathbf{e}_1, \{\mathbf{1}\}) = r +$
 362 $c \sum_{i=1}^N \max_{p,q \in N(i)} \{e_p + e_q\}$.*

363 *Proof* Since the initial moment $X(0) = \{\mathbf{1}\}$ and $e \in E_u(\delta)$, the initial contribution matrix
 364 $X(t) = X(0)$ is maintained for all subsequent moments. It is straightforward to calculate the

365 total payoff:

$$\begin{aligned}
U(\mathbf{e}, \{\mathbf{1}\}) &= e_1 \left[\frac{r_1}{\sigma} \sum_{k=1}^M (a_{2k}x_{1k} + a_{3k}x_{1k} + \dots + a_{Nk}x_{1k} + x_{1k} - \frac{\sigma}{r_1}x_{1k}) + 1 \right] \\
&+ e_2 \left[\frac{r_2}{\sigma} \sum_{k=1}^M (a_{1k}x_{2k} + a_{3k}x_{2k} + \dots + a_{Nk}x_{2k} + x_{2k} - \frac{\sigma}{r_2}x_{2k}) + 1 \right] \\
&+ \dots \\
&+ e_N \left[\frac{r_N}{\sigma} \sum_{k=1}^M (a_{1k}x_{Nk} + a_{2k}x_{Nk} + \dots + a_{(N-1)k}x_{Nk} + x_{Nk} - \frac{\sigma}{r_N}x_{Nk}) + 1 \right] \\
&+ c \sum_{i=1}^N \max_{p,q \in N(i)} \left\{ \sum_{k=1}^M (x_{pk}e_p + x_{qk}e_q) \right\} \\
&= r + c \sum_{i=1}^N \max_{p,q \in N(i)} \{e_p + e_q\}.
\end{aligned} \tag{44}$$

366

□

367 Corollary 6 suggests that different endowment distributions in the fully cooperative interval
368 $E_u(\delta)$ will have different total payoffs.

369 2.5 Maximally cooperative endowment distribution

370 This subsection will present a distribution of endowments for the most favorable cooperation.
371 First, the smallest continuation probability of full cooperation is defined. When the continuation
372 probability is large enough, there is always a feasible interval for full cooperation. By Lemma
373 2.2, the feasible interval of full cooperation will gradually become smaller as δ becomes smaller.
374 There will be a critical smallest continuation probability, which we define as

$$\delta_u^* = \inf \{ \delta \in [0, 1] | E_u(\delta) \neq \emptyset \}. \tag{45}$$

375 The maximal cooperative endowment distribution concept can be defined with the above defi-
376 nition of minimal continuation probability.

377 **Definition 1** Given a public goods game with payoff function u , a endowment distribution $\mathbf{e}^* =$
378 $\{e_1^*, \dots, e_N^*\}$ is the maximal cooperative endowment distribution satisfying $\mathbf{e}^* \in E_u(\delta_u^*)$.

379 The above definition combined with Lemma 2.2 shows that the maximal cooperative endow-
380 ment distribution \mathbf{e}^* must be in the fully cooperative feasible interval whenever the continuation
381 probability $\delta \geq \delta^*$, due to $E_u(\delta^*) \subset E_u(\delta)$. But we want to find this smallest continuation prob-

ability as an optimization problem, and we consider a simple problem in our research model, the two-player multiple public goods game problem.

Theorem 2.4 Consider a linear asymmetric payoff function u for a two-player dual public goods game as

$$\begin{aligned} u_1 &= \frac{1}{2}(r_1x_{11}e_1 + r_1x_{12}e_1 + r_2x_{21}e_2 + r_2x_{22}e_2) + (1 - x_{11} - x_{12})e_1, \\ u_2 &= \frac{1}{2}(r_1x_{11}e_1 + r_1x_{12}e_1 + r_2x_{21}e_2 + r_2x_{22}e_2) + (1 - x_{21} - x_{22})e_2. \end{aligned} \quad (46)$$

The smallest continuation probability δ_u^* and the maximal cooperative endowment distribution $\mathbf{e}^* = (e_1^*, e_2^*)$ are given by

$$\delta_u^* = \sqrt{\frac{(2 - r_1)(2 - r_2)}{r_1r_2}} \quad \text{and} \quad \frac{e_1^*}{e_2^*} = \sqrt{\frac{(2 - r_2)r_2}{(2 - r_1)r_1}}. \quad (47)$$

388

Proof For any continuation probability δ and endowment distribution $\mathbf{e} = (e_1, e_2)$, $\mathbf{e} \in E_u(\delta)$ if and only if

$$\begin{aligned} \delta &\geq \frac{(2 - r_1)e_1}{r_2e_2}, \\ \delta &\geq \frac{(2 - r_2)e_2}{r_1e_1}. \end{aligned} \quad (48)$$

391 The interval range of $\frac{e_1}{e_2}$ is obtained by transforming the inequality

$$\frac{2 - r_2}{\delta r_1} \leq \frac{e_1}{e_2} \leq \frac{\delta r_2}{2 - r_1}. \quad (49)$$

392 The sufficient condition for $\mathbf{e} \in E_u(\delta)$ to exist is $\frac{2 - r_2}{\delta r_1} \leq \frac{\delta r_2}{2 - r_1}$. When this condition is satisfied, 393 $\delta \geq \delta_u^*$. A critical condition for the lower bound is simply to let both sides of the inequality be 394 taken equally. We can get $\delta_u^* = \sqrt{\frac{(2 - r_1)(2 - r_2)}{r_1r_2}}$, and also $\frac{e_1^*}{e_2^*} = \sqrt{\frac{(2 - r_2)r_2}{(2 - r_1)r_1}}$. \square

395 The result in Theorem 2.4 eventually degenerates into a linear asymmetric model result for the 396 two-person public goods game [5].

397 2.6 Smallest continuation probability for homogeneous hypergraphs

398 In the following discussion, we address the issue of smallest continuation probability within the 399 framework of homogeneous hypergraph. The term “homogeneous” refers to a broad general- 400 ization encompassing three distinct aspects: the structure of the hypergraph, the productivity

401 of the individuals, and the configuration of the contribution matrix. Our demonstration of the
 402 smallest continuation probability establishes that all three sub-properties must uniformly satisfy
 403 this homogeneity criterion.

404 We postulate that the average hyperdegree of the network is k (i.e., each individual is connected
 405 to k hyperedges). The productivity expectations for all individuals are symmetrical. In the
 406 contribution matrix X , any non-zero element is valued at $\frac{1}{k}$. Provided these three homogeneity
 407 conditions are met, the following theorem can be derived.

408 **Theorem 2.5** *Consider a linear symmetric payoff function u in a public goods game involving
 409 σ players, where each player participates in k public goods games. All players contribute a
 410 proportion $\frac{1}{k}$ to each of the k public goods games in which they are involved. The smallest
 411 continuation probability δ_u^* and the continuation probability for equal endowments δ_{equal}^* are
 412 identical, given by:*

$$\delta_u^* = \delta_{\text{equal}}^* = \frac{\sigma - r}{r(\sigma - 1)}. \quad (50)$$

413

414 *Proof* First, we compute the continuation probability δ_{equal}^* under equal endowment, based on
 415 the linear symmetric case. The calculation is as follows:

$$\delta_{\text{equal}}^* = \frac{(\sigma - r)e_i}{r \sum_{k=1}^M a_{ik} \sum_{j \neq i}^N x_{jk} e_j} = \frac{(\sigma - r)\frac{1}{N}}{r k \frac{1}{k} (\sigma - 1) \frac{1}{N}} = \frac{\sigma - r}{r(\sigma - 1)}. \quad (51)$$

416 In the following, we aim to demonstrate that for any perturbation from the equal endowments
 417 scenario, there exists at least one node i where δ_i^* exceeds δ_{equal}^* . Consequently, no perturbation
 418 can reduce δ_u^* below δ_{equal}^* , establishing it as the smallest continuation probability. We consider a

419 perturbed endowment vector \mathbf{e} defined as $\left\{ \underbrace{\frac{1}{N} + \epsilon_{i_1}, \frac{1}{N} + \epsilon_{i_2}, \dots, \frac{1}{N} + \epsilon_{i_m}}_m, \underbrace{\frac{1}{N} - \epsilon_{i_{m+1}}, \dots, \frac{1}{N} - \epsilon_{i_N}}_{N-m} \right\}$,
 420 consisting of m positive and $N-m$ negative perturbations. These perturbations satisfy $\sum_{k=1}^m \epsilon_{i_k} =$
 421 $\sum_{k=m+1}^N \epsilon_{i_k}$, where $\epsilon_{i_k} \in [0, \frac{1}{N}]$ for all $k \in [m+1, N]$ and $\epsilon_{i_k} \in [0, \frac{N-m}{N}]$ for all $k \in [1, m]$.
 422 The sequence i_1 to i_N represents any permutation of 1 through N . Next, we calculate $\delta_{i_m}^*$ for

423 the initial m positive perturbations:

$$\begin{aligned}
\delta_{i_1}^* &= \frac{k(\sigma - r) \left[\frac{1}{N} + \epsilon_{i_1} \right]}{r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \left(\frac{1}{N} - \epsilon_j \right) + \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \left(\frac{1}{N} + \epsilon_j \right) \right]} \\
&= \frac{k(\sigma - r) \left[\frac{1}{N} + \epsilon_{i_1} \right]}{r \left[k(\sigma - 1) \frac{1}{N} - \sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j + \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \epsilon_j \right]} \\
&= \frac{(\sigma - r)}{r(\sigma - 1)} + \frac{\frac{\sigma - r}{r(\sigma - 1)} N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j - \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \epsilon_j \right] + k(\sigma - r) N \epsilon_{i_1}}{k r(\sigma - 1) - N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j - \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \epsilon_j \right]}.
\end{aligned} \tag{52}$$

424 Here, $P_j^{(i_1)}$ denotes the number of nodes j associated with node i_1 through hyperedges, which is
425 an unspecified quantity. Nevertheless, it is known that the sum of these associations for nodes
426 not included in the set $\{i_1, \dots, i_m\}$ and those within the set $\{i_2, \dots, i_m\}$ totals $k(\sigma - 1)$. We
427 can then express this relationship as follows:

$$\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j \leq \frac{1}{N} \sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \leq \frac{1}{N} k(\sigma - 1). \tag{53}$$

428 Thus, it must hold that

$$\begin{aligned}
&kr(\sigma - 1) - N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j - \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \epsilon_j \right] \\
&\geq kr(\sigma - 1) - N r \sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j \\
&\geq kr(\sigma - 1) - N r \frac{1}{N} k(\sigma - 1) \\
&\geq 0.
\end{aligned} \tag{54}$$

429 We have proven that the denominator in Eq. (52) is non-negative. Now, it remains to demon-
430 strate that the numerator is also positive. We enumerate the continuation probabilities for the
431 remaining $m - 1$ perturbations, $\delta_{i_m}^*$, as follows:

$$\left\{ \begin{array}{l} \delta_{i_1}^* = \frac{(\sigma - r)}{r(\sigma - 1)} + \frac{\frac{\sigma - r}{r(\sigma - 1)} N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j - \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \epsilon_j \right] + k(\sigma - r) N \epsilon_{i_1}}{k r(\sigma - 1) - N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_1)} \epsilon_j - \sum_{j=\{i_2, \dots, i_m\}} P_j^{(i_1)} \epsilon_j \right]}, \\ \vdots \\ \delta_{i_m}^* = \frac{(\sigma - r)}{r(\sigma - 1)} + \frac{\frac{\sigma - r}{r(\sigma - 1)} N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_m)} \epsilon_j - \sum_{j=\{i_1, \dots, i_{m-1}\}} P_j^{(i_m)} \epsilon_j \right] + k(\sigma - r) N \epsilon_{i_m}}{k r(\sigma - 1) - N r \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_m)} \epsilon_j - \sum_{j=\{i_1, \dots, i_{m-1}\}} P_j^{(i_m)} \epsilon_j \right]}. \end{array} \right. \tag{55}$$

432 We employ a counterfactual hypothesis, assuming that if all the numerators in these m equations
 433 are negative, then their sum must also be negative. Proving that the total is positive confirms
 434 the existence of a positive term. First, we sum all the numerators, hypothesizing that they are
 435 negative:

$$\sum_{q=1}^m \left\{ \frac{\sigma - r}{r(\sigma - 1)} Nr \left[\sum_{j \neq \{i_1, \dots, i_m\}}^N P_j^{(i_q)} \epsilon_j - \sum_{j=\{i_1, \dots, i_{q-1}, i_{q+1}, \dots, i_m\}} P_j^{(i_q)} \epsilon_j \right] + k(\sigma - r)N\epsilon_{i_q} \right\} < 0. \quad (56)$$

436 Next, we extract the coefficients for one of the terms, ϵ_{i_1} :

$$\begin{aligned} & \frac{\sigma - r}{r(\sigma - 1)} Nr \left[-P_{i_1}^{(i_2)} \epsilon_{i_1} - P_{i_1}^{(i_3)} \epsilon_{i_1} - \dots - P_{i_1}^{(i_m)} \epsilon_{i_1} \right] + k(\sigma - r)N\epsilon_{i_1} \\ &= \left\{ -\frac{N(\sigma - r)}{\sigma - 1} \sum_{k=1}^m P_{i_1}^{(i_k)} + k(\sigma - r)N \right\} \epsilon_{i_1}. \end{aligned} \quad (57)$$

437 Given the hypergraph structure and the assumption that the hyperdegree is k , player i_1 can be
 438 associated with at most $k(\sigma - 1)$ nodes. Therefore:

$$k(\sigma - r)N - \frac{N(\sigma - r)}{\sigma - 1} \sum_{k=1}^m P_{i_1}^{(i_k)} \geq k(\sigma - r)N - \frac{N(\sigma - r)}{\sigma - 1} k(\sigma - 1) \geq 0 \quad (58)$$

439 This inequality establishes that the sum of the m numerators is greater than zero. Thus, at least
 440 one $\delta_{i_m}^*$ must be greater than δ_{equal}^* . Any perturbation will increase δ_u^* , confirming that equal
 441 endowments represent the smallest continuation probability. \square

442 Theorem 2.5 offers a broad generalization, illustrating that within any homogeneous hypergraph,
 443 the smallest continuation probability is determined solely by the productivity and the dimensions
 444 of the hyperedges, rather than the average number of hyperedges. From Theorem 2.5, we derive
 445 the following corollary.

446 **Corollary 7** *In any homogeneous hypergraph, the smallest continuation probability monotonically decreases with respect to the productivity factor r and monotonically increases with respect to the hyperedge dimension σ .*

449 *Proof* Define the functions $f(r) = \frac{\sigma - r}{r(\sigma - 1)}$ and $g(\sigma) = \frac{\sigma - r}{r(\sigma - 1)}$. We calculate the derivatives of
 450 $f(r)$ and $g(\sigma)$ with respect to r and σ respectively:

$$\begin{aligned} f'(r) &= \frac{-\sigma^2 + \sigma}{(r\sigma - r)^2}, \\ g'(\sigma) &= \frac{r(r - 1)}{(r\sigma - r)^2}. \end{aligned} \quad (59)$$

451 Given the conditions $1 < r < \sigma$ and $\sigma \geq 2$, it follows that $f'(r) < 0$ and $g'(\sigma) > 0$, indicating
452 that $f(r)$ is monotonically decreasing and $g(\sigma)$ is monotonically increasing. Evaluating the
453 limits of these functions, we find $\lim_{r \rightarrow 1^+} f(r) = 1$, $\lim_{r \rightarrow \sigma^-} f(r) = 0$, and $\lim_{\sigma \rightarrow \infty} g(\sigma) = \frac{1}{r}$.

454 \square

455 3 Evolutionary Process Analysis

456 In the previous section, we concentrated on the interval range of e that remains feasible for full
457 cooperation in the initial state $X(0) = \{\mathbf{1}\}$. In this subsection, we investigate the outcomes of
458 the system's evolution before the player reaches a steady state.

459 3.1 Strategy update process

460 In this subsection, the strategy update refers to the update of the contribution matrix $X(t)$. We
461 employ an introspection dynamic model [5, 6] for strategy updating. Specifically, node i is
462 selected with equal random probability and the last round of payoff π_i^{old} is computed. Subse-
463 quently, a strategy is chosen from the remaining strategy space with equal random probability,
464 and the new payoff π_i^{new} is computed. Note that the dimension of the strategy space of node i
465 is s_i . The transition probabilities of the new and old strategies are:

$$P(\pi_i^{old} \rightarrow \pi_i^{new}) = \frac{1}{N} \frac{1}{s_i - 1} \frac{1}{1 + e^{-\beta(\pi_i^{new} - \pi_i^{old})}}. \quad (60)$$

466 The parameter β reflects the strength of selection. In the case of $\beta = 0$, the probability $P = \frac{1}{2}$
467 indicates that the strategy shift is randomized. In the case of strong selection $\beta \rightarrow +\infty$, the
468 player will adopt the new strategy if the new strategy yields a higher payoff than the old one.
469 We choose this update strategy over the traditional pairwise comparison or DB update for two
470 reasons. First, the number of hyperedges each node is involved in is not necessarily the same.
471 After comparing the payoffs, it is not possible to exactly replicate the elements in the contribution
472 matrix $X(t)$ when performing the strategy update. Second, if it enters an absorbing state at some
473 point, it is impossible to evolve out of it. However, these two drawbacks can be overcome with
474 the introspection dynamic model. Additionally, we consider the update process as a Moran [7]
475 process, meaning that only one node performs the strategy update at each step.

476 3.2 Memory-one strategy

477 In the analysis of the memory-one strategy, we make two assumptions. First, we assume that the
478 strategy space is limited in each round. Specifically, each contribution matrix element $X_{ij}(t)$ can
479 only choose from a limited number of strategies. The simplest of these is to consider that each
480 row has at most one $X_{ij}(t) = 1$, and the rest are all 0. This implies that nodes can only choose
481 to contribute all their endowments to a particular hyperedge or retain all of their endowments.
482 Second, each player decides the next round strategy based solely on the previous round's result,
483 independent of all previous results.

484 We consider the simplest hypergraph model we discussed earlier, where nodes 1, 2, and 3 together form a hyperedge j_1 and nodes 2, 3, and 4 together form a hyperedge j_2 . The contribution
485 matrix is such that at most one element is 1 and the rest are 0. At this point, the state space totals
486 $2 * 3 * 3 * 2 = 36$. However, not every state has a transition probability, and it needs to be en-
487 sured that there is only one strategy change from one state to another. With the above definitions
488 and strategy update rules, we can obtain the transition probability matrix $P = \{p_{ij}\} \in R^{36*36}$.
489
490 Given an initial strategy distribution \mathbf{v}^0 , we can calculate:

$$\mathbf{v} = (1 - \delta)\mathbf{v}^0(I - \delta P)^{-1}, \quad (61)$$

491 where I is the identity matrix. When $\delta \rightarrow 1$, the vector \mathbf{v} is close to the left eigenvector corre-
492 sponding to the 1 eigenvalue of the transition probability matrix P . Through the payoff vector \mathbf{u} ,
493 the obtained state vector \mathbf{v} , and the given endowment distribution \mathbf{e} , the total payoff Π (Extended
494 Data Fig.5) can be obtained as

$$\Pi = \sum_{i=1}^{36} v_i * u_i(\mathbf{e}, X). \quad (62)$$

495 Furthermore, we assume that players' decisions are noisy. For any round, there is a small proba-
496 bility $\epsilon > 0$ that each player will have a memory error. For example, a player chose cooperation
497 in the previous round but remembered choosing defection. We note that the dimension of the
498 state space is b . For the elements of the transition probability matrix, we would have the follow-
499 ing re-representation:

$$p_{ij}^{error} = (1 - \epsilon)p_{ij} + \sum_{k \neq i}^b \frac{\epsilon}{b-1} p_{kj}. \quad (63)$$

500 We stipulate that memory errors are chosen with equal probability in the strategy space. This
501 setup ensures that the row sum of the transition probability matrix remains equal to 1.

$$\begin{aligned} \sum_{j=1}^b p_{ij}^{error} &= (1 - \epsilon) \sum_{j=1}^b p_{ij} + \frac{\epsilon}{b-1} \sum_{j=1}^b \sum_{k \neq i}^b p_{kj} \\ &= (1 - \epsilon) + \frac{\epsilon}{b-1} \sum_{k \neq i}^b \sum_{j=1}^b p_{kj} \\ &= (1 - \epsilon) + \frac{\epsilon}{b-1} \sum_{k \neq i}^b 1 \\ &= (1 - \epsilon) + \epsilon \\ &= 1. \end{aligned} \quad (64)$$

502 **References**

503 [1] K. Sigmund. *The Calculus of Selfishness*. Princeton University Press, 2010.

504 [2] G. J. Mailath and L. Samuelson. *Repeated games and reputations*. Oxford University
505 Press, 2006.

506 [3] R. Selten. Reexamination of the perfectness concept for equilibrium points in extensive
507 games. *Int. J. Game Theory*, 4: 25–55, 1975.

508 [4] D. Fudenberg and J. Tirole. *Game Theory*. The MIT Press, 1998.

509 [5] O. P. Hauser, C. Hilbe, K. Chatterjee, and M. A. Nowak. Social dilemmas among un-
510 equals. *Nature*, 572: 524–527, 2019.

511 [6] H. Zhang. Errors can increase cooperation in finite populations. *Games Econ. Behav.*,
512 107: 203–219, 2018.

513 [7] M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg. Emergence of cooperation and
514 evolutionary stability in finite populations. *Nature*, 428: 646–650, 2004.

515 [8] A. R. Benson, R. Abebe, et al. Simplicial closure and higher-order link prediction. *Pro-
516 ceedings of the National Academy of Sciences*, 2018.

517 [9] J. H. Fowler. Connecting the Congress: A Study of Cosponsorship Networks. *Political
518 Analysis*, 14(04): 456–487, 2006.

519 [10] J. H. Fowler. Legislative cosponsorship networks in the US House and Senate. *Social
520 Networks*, 28(4): 454–465, 2006.

521 [11] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. “Local Higher-Order Graph Clus-
522 tering”. *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
523 Discovery and Data Mining*. ACM Press, 2017.

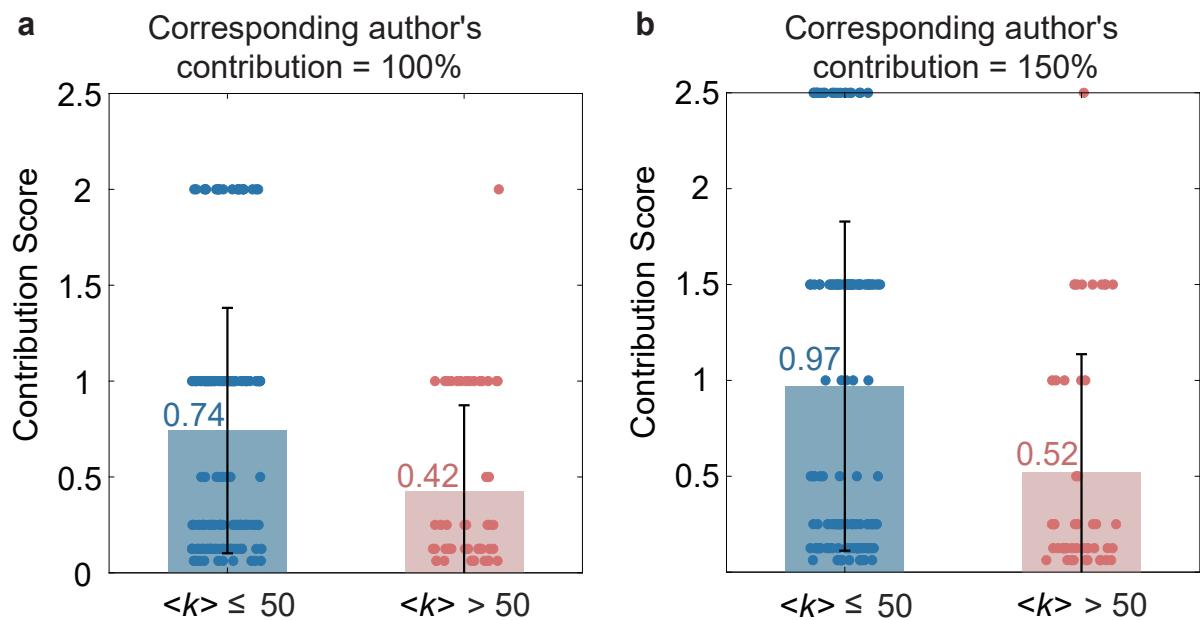
524 [12] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
525 diameters. *ACM Transactions on Knowledge Discovery from Data*, 1(1), 2007.

526 [13] R. Mastrandrea, J. Fournet, and A. Barrat. Contact Patterns in a High School: A Com-
527 parison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship
528 Surveys. *PLOS ONE*, 10(9): e0136497, 2015.

529 [14] J. Stehlé, N. Voirin, et al. High-Resolution Measurements of Face-to-Face Contact Pat-
530 terns in a Primary School. *PLoS ONE*, 6(8): e23176, 2011.

ID in Fig. 7	Context	Reference
DBLP	co-authorship on DBLP papers	[8]
TMS	tags on math.stackexchange.com	[8]
NDC	substances making up drugs	[8]
DAWN	drugs used by ER patients	[8]
CB	congresspersons cosponsoring bills	[8–10]
EEu	email addresses on emails (full)	[8, 11, 12]
EEn	email addresses on emails (subset)	[8]
CHS	high school contact groups	[8, 13]
CPS	primary school contact groups	[8, 14]
TAU	tags on askubuntu.com	[8]

Supplementary Table 1: Summary of the real-world hypergraphs used in Fig. 7.



Supplementary Fig. 1: Effect of corresponding author contribution. In the main text (Fig. 7d), we examined the case where the corresponding author's contribution was set to 50%. In panels **a** and **b**, we varied the corresponding author's contribution to 100% and 150%, respectively. The results show that the level of corresponding author contribution does not affect the general pattern that higher hyperdegree researchers tend to contribute more to lower hyperdegree collaborators.