Supplementary Information: Fostering Sustainable
Cooperation through Strategic Resource Allocation
and Utilization on Social Networks

Juyi Li'  Xiaoqun Wu?* Qi Sul!’

1School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China
2School of Computer Science and Software Engineering, Shenzhen University, Guangdong, 518060, China

*Correspondence: xqwu@whu.edu.cn
fCorrespondence: qisu@sjtu.edu.cn



2

3

4

10

11

12

13

14

15

Contents

1 Model Description
1.1 A framework of iterated multi-player games on hypergraphs . . . . . ... ..
1.2 Public goods games create social dilemmas . . . . ... ... ... ......

1.3 Repeatedgames . . . . . . . . . . . . . ...

2 Static equilibrium analysis
2.1 General condition for full cooperation . . . . ... ... ... .........
2.2 Linear symmetric payoff . . . . . .. .. .. ... ... ... ... ...
2.3 Linear asymmetricpayoff . . . . . . . . . ... L o
2.4 Anexample of a nonlinear symmetric payoft . . . ... ... ... ... ...
2.5 Maximally cooperative endowment distribution . . . . . . ... ... ... ..

2.6 Smallest continuation probability for homogeneous hypergraphs . . . . . . . .

3 Evolutionary Process Analysis

3.1 Strategy update process . . . . . . ... . e

3.2 Memory-one strategy . . . . . . . . ..o e e e e e

B~ W W

10
15
20
24
25



16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

This supplementary information provides a more detailed and comprehensive account of our

analysis.

In Section 1, we present a novel framework of iterated multi-player games on hypergraphs to
study repeated interactions in structured populations.

In Section 2, we extend the concept of the full cooperation feasible interval to hypergraphs.
Specifically, we establish the necessary conditions for this concept to hold, and then, by exam-
ining three representative types of payoff functions, we derive the sufficient conditions under
which full cooperation is feasible. Furthermore, we theoretically determine the minimum con-
tinuation probability threshold required to sustain full cooperation on any homogeneous hyper-
graph.

In Section 3, we shift our focus to the evolution of player strategies and examine the conditions
that promote full cooperation among players.

1 Model Description

1.1 A framework of iterated multi-player games on hypergraphs

This paper introduces a general framework to investigate repeated multi-player games on hy-
pergraph. Specifically, we consider a population of N players, denoted by V' = {1,2,..., N},
engaged in M repeated games, indexed by M = {1,2, ..., M}. The hypergraph is represented
by an incidence matrix A = {a;;} € RMM, where a;; = 1 if i participates in games j, and
a;; = 0 otherwise.

Each player ¢ is initially assigned an endowment e; > 0, representing their income or the time
and effort they invest in the game. The vector of endowments is denoted as e = (ey, €9, ..., en),
and without loss of generality, we assume that the endowment vector is normalized such that
ZN e; = 1. In the case of equal endowments among all players, the endowment vector sim-

i=1
plifiestoe = (&, 1., %)

Each player may contribute a certain fraction of their endowment to the games in which they
participate. We define the contribution matrix as X = {z;;} € RV*M where z;; represents
the proportion of contributions from node 7 to game j. The constraints are 0 < z;; < 1 and
0 < Zj\il x;; < 1 for any i. We do not require Z]Ail x;; = 1 because individuals may re-
tain a portion of their endowment without participating in the game. We introduce a shorthand
notation, X = {1}, to represent the full cooperation where each player contributes their entire

endowment, meaning Z]Nil x;; = 1 for any 7. In addition, the full cooperation is not unique.

The payoffs of public goods gaming are determined by endowments, contribution strategies,

and individual player productivity. Specifically, given an endowment distribution e and a con-
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tribution matrix X = {x,;}, players generate a payoff vector u(e, X ) € R", where u represents
the payoff function of the game. The element u; in the i-th row corresponds to the benefit of
player i. The total payoff of all game groups in the hypergraph is the sum of the benefits of all
players, expressed as U(e, X) = S°~ u;(e, X).

1.2 Public goods games create social dilemmas

In the classical public goods game, players face a dilemma when deciding their strategies. A
brief overview of the public goods game problem is as follows: Each player must choose whether
to invest a certain amount of money c into the public funds (cooperation strategy) or not (betray
strategy). The public fund is then multiplied by a factor of  and distributed equally among all
individuals. The payoft for each player can be expressed in the following form:

1 e k e N -1
re rck re(N-1) _
cooperator | x —C | ... | 7y —C | ... N c
rc rck re(N—1)
betrayer & e ~ . —5

Table 1: The payoffs of cooperators and betrayers in all situations in the public goods game.
The first row shows the number of cooperators, while the second and third rows correspond to
their cooperator payoffs and betrayer payoffs, respectively.

In the public goods game, as illustrated in Table 1, three properties need to be satisfied for the

game to create a dilemma:

1. Positive Externality Property: A player desires their companions to cooperate, resulting in

higher profits for themselves. When the number of cooperators is k, the betrayer’s payoff is

%. If one betrayer becomes a cooperator, the betrayer’s payoff becomes w The positive

externality property is satisfied by ensuring r > 0.

2. Incentive of Free-rides Property: Players choose the betrayal strategy to obtain higher bene-

fits. When £+ 1 individuals cooperate, the cooperator’s payoftis relktl) _ ¢ If one of the coop-

N
re(k+1)

erators chooses to betray, their payoff becomes “%. This property is satisfied if & > "2 —¢,

which implies » < N.

3. Optimality of Cooperation Property: From a collective perspective, players need to fully
cooperate to achieve higher benefits for all players. When the number of cooperators is k, the
collective payoffis k(“E — ¢) + (N — k) "% = kc(r — 1). Full cooperation results in the highest
payoft when r > 1.

Therefore, the game creates a dilemma whenever 1 < r» < N. In such situations, players face a
conflict between their incentives to betray and the collective benefits of cooperation.
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In this paper, we study a public goods game that generates a dilemma, similar to the one dis-

cussed above. We consider a public goods game with the following four properties:

©)

(PE)

(IF)

(00)

1.3

Continuity: The payoff function u(e, X) is continuous with respect to the parameters e
and X.

Positive Externality: Given two contribution matrices X and X', where z;;, = 2}, and
zj > ay forall j # tandk = {1,2,..., M}, we can conclude that u;(e, X') > u;(e, X')
for all endowment distributions e. The strict inequality u;(e, X') > u;(e, X') holds if and
only if there exists at least one node j in the hyperedge % associated with node ¢ satisfying

!
a;xaj; > 0,e; > 0and z;, > T .-

Incentive of Free-rides: Given two contribution matrices X and X', where x;;, < z}, and
xj, = 1y forall j # iandk = {1,2,..., M}, we can conclude that u;(e, X') > u,(e, X')
for all endowment distributions e. The strict inequality u;(e, X) > u;(e, X') holds if and
only if player ¢’s endowment is positive, e; > 0.

Optimality of Cooperation: Given two contribution matrices X and X', where z;; > /.
and zj, > x7) forall j # iand k = {1,2,..., M}, we can conclude that U(e, X) >
U(e, X') for all endowment distributions e. The strict inequality U(e, X) > U(e, X')
holds if and only if there is a player ¢ with e; > 0 and x;;, > ;.

Repeated games

This paper examines a scenario where different individuals interact for the same number of

rounds across various games. Interactions are repeated over time with a continuation probability

0, which represents the likelihood of proceeding to the next round after each iteration. The

expected number of rounds follows a geometric distribution, with the expected number of rounds

being . All players receive the same endowment in each round, with the initial endowment

distribution denoted as e. However, the contribution matrix X changes based on the outcome

of each round of the game. Player i determines the contribution x;; (¢ + 1) for the next round

based on their previous contribution x;(t) and the payoff obtained.

The player’s strategy in the repeated game is determined by the percentage of contribution at

each moment. If we define the contribution matrix at the moment ¢ as X (t) € RV*M | the payoff

of the repeated game can be defined as a weighted average:

mo=(1-0)) due, X(1)). (1)

When § — 1, the player payoff is obtained from the limit of the average payoff in each round
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m=_lim =Y ule X(t)). 2)
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2 Static equilibrium analysis

In this section, we explore the concept of subgame perfect equilibrium in repeated games. In
a one-shot public goods game, the Nash equilibrium results in zero contribution; however, this
outcome can be altered in a repeated setting [1, 2]. We focus on subgame perfect equilibrium,
where players contribute their entire endowment in each round of the game. Given the game’s
history, no player has the incentive to deviate from the strategy of contributing their entire en-
dowment, making this strategy profile a subgame perfect equilibrium [3]. Subgame perfect
equilibrium is a more refined concept than Nash equilibrium. While every subgame perfect

equilibrium is a Nash equilibrium, the reverse is not necessarily true [4].

2.1 General condition for full cooperation

The feasible interval of full cooperation represents the range of intervals in which all partici-
pants will contribute their entire endowment in each round, given the payoff function v and the
continuation probability ¢. In other words, given u and 9, it determines what endowment dis-

tribution e would allow participants to maintain full cooperation at all times (subgame perfect

equilibrium). Let £,(0) = {e = (e1, €2, ..., en)} denote the set of all endowment distributions
that allow for full cooperation. We consider the payoff function u for a generalized linear public
goods game:
M N
ui(e, X) = Z % erkx]ke] (1-— szk )eq, (3)
k=1 j=1

where rj;, is the productivity factor of node j on the k-th hyperedge and |l;| is the number of
nodes on the k-th hyperedge. We denote by X = {1_;} the situation in which all players except
1 contribute their full endowments, while player ¢ contributes nothing; that is, 224:1 x;, = 0and
224:1 xjr = 1,Yj # i. We propose two assumptions.

Assumption 2.1 Vr;, = rjo = -+ = rjp = 14, V] € N.(Asymmetric productivity)
Assumption 2.2 V|l;| = |l3| = -+ - = |ly| = o.(Uniform hypergraph)

Lemma 2.1 Consider a public goods game with a payoff function u of the form given in Eq.(3)
and a continuation probability 0, under a given endowment distribution e. Assuming that

Assumptions2.1 and 2.2 hold, the following three conditions are equivalent:

1. ec E,(9),
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2. The following condition holds for all players i with e; > 0,

o(ui(e; {1-}) — ui(e, 0)) > wi(e, {1}) — wi(e, {1}), )

3. The strategy profile where all players apply the strategy Grim is a subgame perfect equi-

librium for the given endowment distribution e.

Proof 1= 2Satisfying e € F,(d) indicates that under a given endowment allocation scheme,
each player opts for the full cooperation, i.e., X = {1}. First, we need to prove that a player i
altering their full cooperation does not impact their payoff, thus u;(e, {1}) = u;(e, {1'}). Here,
{1'} implies that while all z,; remain constant, only z, varies with 30" 2, = 1. If this
condition is not met, any change in player ¢’s strategy will either increase or decrease its pay-
off, failing to achieve subgame perfect equilibrium. Considering two different full cooperation
strategies X = {1} and X’ = {1'}, player 4’s payoff is calculated as:

jkx]kej 1— E wzk

tnqs

£
Il
—
B
Il
—

ui(e, {1})

AMZ

e

M N
— Z | k| erkxjkej + Z |l |r1k:171kez 1 — szk (5)
k=1 j#i
M N
a; Tik
= | k| erkxjkej + €; Z |l;|xzk
k=1 i

When assumptions 2.1 and 2.2 are satisfied, the payoff u;(e, {1}) simplifies to:

ui(e, {1}) =) a;k > riie; e ) %xzk

N Y (6)

This leads us to conclude that u,(e, {1'}) = S0, ik Ef;l T+ St SV @, Given that
M ag = S0, ), = 1 and ), remains constant, it follows that u,(e, {1}) = (e, {1'}).
Next, we introduce a “mutant” who deviates from the full cooperation, its payoff in the subse-
quent round is u;(e, {1_;}). By the (PE) property, the “mutant’s” minimum payoff would be
u;(e, 0), leading to the conclusion:

v > (1 —0)ui(e, {1-;}) + oui(e, O). (7)
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As the full cooperation is a subgame perfect equilibrium, it follows that:
ui(e,{1}) > (1 — d)u;(e, {1_;}) + du;(e, O), (8)

or equivalently,
o(ui(e, {1-:}) — ui(e, 0)) = uile, {1-:}) — ui(e, {1}). ©)

2 = 3 Itis essential to note that the Grim strategy, in the context of repeated multi-player games
on hypergraphs, implies that initially, all players adopt the full cooperation. Should any player
choose betrayal, every player within the related hyperedge will also switch to betray. This effect
cascades to the remaining players and so forth.

Our objective is to demonstrate that the Grim strategy constitutes a subgame perfect equilibrium.
Employing the one-time deviation principle [4], we observe that an individual’s betrayal initially
impacts only their immediate neighbors. As the game progresses, this effect subtly spreads, ulti-
mately resulting in either universal betrayal or game termination, under the presumption that all
adhere to the Grim strategy. Importantly, the initial advantage gained by player ¢ from betrayal
is confined to its adjacent connections, influencing their responses till the game’s conclusion.
Hence, the betrayal payoff for node ¢ aligns with u;(e, O). The immediate payoff following
a “mutant” intervention is u;(e, {1_;}), with all subsequent rounds approximated as u;(e, O).
The continuous payoffs, therefore, are:

= (1= O)uile, {1_3}) + dui(e, ). (10)

Adherence to the inequality condition in 2 ensures that players gain no additional benefit from
a one-time deviation under the Grim strategy, solidifying its status as a subgame perfect equi-

librium.

3 = [ With all players adhering to the Grim strategy, they each consistently choose the full
cooperation in every round. This collective commitment to the Grim strategy inherently es-
tablishes a subgame perfect equilibrium. Consequently, full cooperation is feasible among all
participants. U

Under the condition that Lemma 2.1 is satisfied, the following Lemmas 2.2 and 2.3 can be
obtained according to Ref. [5].

Lemma 2.2 We consider that a public good game with payoff function u has the form of Eq.
(3) and Assumption 2.1 and 2.2 are satisfied.

1. Suppose § and § are two continuation probabilities with § < & . Then E,,(8) C E,(¢).
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2. Thereisad < 1such that E,(5) # 0 forall § > 0.

Lemma 2.3 Consider a public good game with continuation probability § < 1 and endowment
distribution e. For any player i, there is an €¢; > 0 such that if player i's endowment exceeds

e; = 1 — ¢; then full cooperation is infeasible.

Lemma 2.3 shows that hypergraphs cannot sustain full cooperation if too much of the initial
endowment is concentrated on a single individual. A similar argument suggests that equal en-
dowment distribution is most conducive to cooperation. In Ref. [5], it was shown that the payoff
function w satisfies a linear symmetric payoff function. However, this conclusion does not hold
when v is nonlinear or asymmetric. In this paper, we find that even a linear symmetric payoff
function does not guarantee that equal endowments are the most favorable for cooperation in
the hypergraph.

2.2 Linear symmetric payoff

In the following, we consider the public goods game payoff function w that satisfies the condi-
tions of Assumptions 2.1 and 2.2 as a linear symmetric payoff function.

M N M
Q;
ui(e,X) = Z?kZTl'jk6j+(1—Zl‘ik)6i, (11)
k=1 j=1 k=1

where r is the productivity coefficient common to all nodes. We first determine the range of
parameters based on the three properties (PE), (IF), (OC).

1.(PE) property satisfies the condition:
MoN M
ui(e, X) = Z %’C erjkej +(1- ink)ei
k=1 =~ j=1 k=1

M N M M
r r
= — E ik E xjkej + — E Tik€i + (1 — E .’I?Zk)@
g g
k=1 k=1

k=1 j#i

(12)

The expression shows that we need to make r > 0 to satisfy the condition.

10



ws 2.(IF) property satisfies the condition:

u;(e, X)

_ gz ai Y wie; + g S wiei+ (1= zues (13)

k=1 j#i k=1 k=1

M N
= E ik g Tjre; + g - — 1 mmez + e;.
o

k=1 JFi

17 The expression shows that we need to make r» < o to satisfy the condition.

108 3.(OC) property satisfies the condition:

Ule,X) = i (e, X)

N
azk
E rTiRe; + (1-— E Tik)€s)

o

M
r

Tikej+ = E zipe; + (1 — E Tik)eq]

k=1

k=1

[ij
Mz

<.
Il

—
?r

=1

t’jz
M:

ik

.
Il

—

—

M T
Tjnej + ) (= = Dziei + e
k=1

M:

ik

I
=
ars ol

T

1
—_
B

=1

:
%

= — alkE azjkej—l— E T1p€1 — E Tixer + €1

k 1 j;él

+ — E a2k E Tjpe; + — E Ao T1k€1 + — E TopCoy — E Torp€o + €2

7= J#Lj#2

+ ..
, M N
+ p Z ANk Z Tjk€; + — Z aNkT1ker + — Z TNKEN — Z$Nk€N +en
k=1 J#Lg#N
r M o
=e1|— Z Aok + Azt + -+ ankTig + 1 — —218) + 1]
o = r
r & o
+ 62[; (@1x@ok + aspTok + - - - + ankTok + To — ;x%) + 1]
k=1
4+ ...
r & o
+ GN[; Z(alkxNk + ok TNk + -+ QN-1)ETNE T TNE — ;xNk) +1].

B
Il
—

(14)

11
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The expression shows that we need to make Zj\le ajr > 7 with Vk to satisfy the condition.
Where Zjvzl a;i, = o, the property (OC) is satisfied as long as there is 7 > 1.

In summary, the three properties are satisfied, and the parameter r needs to satisfy 1 < r < o.
Next, we start to discuss the feasible interval of full cooperation in the public goods game under

the linear symmetric payoff function.

Theorem 2.1 The payoff function of a public goods game is given by Eq. (11). For a contri-
bution matrix X and a productivity coefficient 1 < r < o, e € E,(0) holds if the continuation

L7 > max{e; }(c—r) . . _ (1 1 o 1
probability § > PSS L ST with Vi, and the equal endowments € = (, -+ %)
also belong to e € E,(9).

Proof  According to Lemma 2.1, we first calculate the three payoff functions.
.M N
ui(e, {1_;}) = p Z @i, Z Tjke; + e,
k=1 JF#i
u;(e, 0) = e, (15)
e{1}) = Z x> e +
k 1 JFi

Applying Lemma 2.1, we obtain sufficient conditions under which the endowment vector e
belongs to the full cooperation feasible set £,(d), as follows:

o(uq(e, {1—1’}) —ui(e, 0)) = uie, {1_;}) — ui(e, {1})
gzaz Zx]kej +e; — z) 2 gzaikzx]‘kej +e; — gzazk ijkej — gei

k=1 i k=1 i k=1 i

M N
r r
= 0— Zaik Z:z:jkej Z (1 — —>€i
7= j#i g
(0 —1)e;

= 0>
= M N y
Y pei ik Zj;éi Ljk€j

(16)

where it is required that inequality (16) holds for all players ¢ with e; > 0. Enlarging the right-
hand side of inequality (16) can satisfy all ¢ holds:
max{e;}(o —r) (0 —1)e; (0 —1)

= ; M N = M N o (17)
rmin{e;} Y, Zj;ﬁi WikTjk T D pey Qik Zj;éi xjke] r Zk 1 @ik Z i Jk_

Thus e is feasible for full cooperation as long as inequality (17) is satisfied. Equal endowments

12
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ey %) must also be feasible for full cooperation.

max{e; }o — 1) (c—1)%
= M N Z oW N ; (18)
rmin{e;} Y oy D i, QikTik TN Dop— Qik X jzi Tik
where the inequality holds for maz{e;} > + and min{e;} < +. O

Inequality (18) in Theorem 2.1 indicates that node 7 is most likely to deviate from full coopera-
tion when the other nodes in all the hyperedges that node ¢ participates in contribute the lowest
sum to these hyperedges. In other words, under the equal endowment condition, if the hyper-
degree of node : is 1 and the number of participating contributing nodes is o — 1, it will have a
higher probability of deviating from full cooperation easily. In a hypergraph, nodes with lower
hyperdegree (players involved in fewer public goods games) will have a slightly higher proba-
bility of deviating from full cooperation. Turning to inequality (17), for an arbitrary endowment
distribution, node ¢ is more likely to deviate from full cooperation when its endowment is low

and hyperdegree is small.

Theorem 2.1 is only a sufficient condition, it does not mean that other ¢ that do not satisfy the
condition are not feasible for full cooperation. Moreover, Theorem 2.1 shows that equal endow-
ments are not feasible for full cooperation as long as the condition is satisfied. In the following,
we present an example in which equal endowments are not feasible for full cooperation, yet a

non-empty feasible interval for full cooperation still exists.

Consider a set of linear symmetric payoff functions:

r
u(e, X) = 5(351161 + xo1€9 + w31€3) + (1 — 2171 )€y,
T
usz(e, X) = §($11€1 + To1€9 + T31€3 + Toges + Tgoes + Tazey) + (1 — 291 — xa9)es,
3 (19)
us(e, X) = §($11€1 + xa1€9 + T3163 + Toges + Tgoes + Tyoey) + (1 — 31 — T32)es,
r
u4(e, X) = §<132262 =+ T32€3 + 174264) + (1 — ZE42>€4.
Let z11 = 1,291 = %, Tog = §7ZL’31 = %,x32 = %, x40 = 1. Then for equal endowments
e = (3,1, 1, 1), 0 need to satisfy the following condition:
3—r
0y > ,
,
5y > 3 — r’
P 3—r
3 37" )
@>3_r
,

13



213 Thus it is only necessary to make § > 3%7“ so that equal distribution is feasible for full coop-
24 eration. In the following, we apply a perturbation to the equal endowments and the perturbed

2 endowments € = (1 —¢, 1 42¢, 1,1 —¢). Below we calculate the § conditions it has to satisfy:

3—r
01 > T
1—4e
3—r
02 2 —3—5¢,
”
14+8e€ (21)

3—r
O3 >
3 = 37“’
54>3—7“

— 1+4e
r 1—4e

3—r
8e
148
L s

2w tion. Comparing the two values, we find that whenever we take 6 € |

26 The perturbed endowments only need to satisfy 6 > to make it feasible for full coopera-

3—r
8€
14+

3-1], we make the

" T4e
28 equal endowments not feasible for full cooperation and will still have feasible intervals of full
230 cooperation. We obtain the following corollary:

a0 Corollary 1 There exists a linear symmetric public goods game function u such that E, (6) # ),
241 bute:(l L ,%) #Eu(d)

N' N>

22 In addition, we find that the total payoff is the same for any feasible interval of full cooperation
213 under the linear symmetric payoff function.

2a Corollary 2 The payoff function u of the public goods game under any linear symmetric payoff
s function satisfies ey, e5 € E,(6) and X (0) = {1}, wecanget S~ | mi(eq, {1}) = SN mi(ey, {1}) =

246 T

27 Proof  Since the initial moment X (0) = {1} and e € E,(0), the initial contribution matrix
28 X (t) = X(0) is maintained for all subsequent moments. It is straightforward to calculate the

14
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261

total payoft:

N N

Y omle 1) =) (1-0)) dule{1}) = Zui(e, {1}) = Ule, {1}).

i=1 =1

M
r o
Ule, {1}) = 61[; Z<a2k$1k + agpTip + -+ angTig + T — ?x1k> + 1]
k=1
T M o
+ e[~ Z(alk%k + azpTok + -+ angTok + Top — —Tay) + 1]
7= r
+..
r A o (22)
Tenls > (awrne + agng + -+ + agv_npEnk + Tk — —2yg) + 1
k=1
r M N , M N
=e[=> O ap— Dz 1+ ten[= > O ajp— —)ank + 1]
7%= =1 7= =
[ ( ")i + 1]+ en( ")i +1]
=e[—(0c — = x o denl—(c— = x
1 o ” 1k N o o , Nk
k=1 k=1
N
= r(z e)=r
i1
O

In Ref. [5] it was shown that the equal endowments are the most favorable for cooperation in
a public goods game with a linear symmetric payoff function. However, Corollary 1 reveals
that, in multi-player public goods games on hypergraphs, even equal endowments under linear
symmetric payoff functions are not the most favorable for promoting cooperation. In addition,
Corollary 2 finds that as long as the distribution of endowments falls within the feasible interval
of full cooperation and the initial state is fully cooperative, the total payoff of the game is the

same as the highest.

2.3 Linear asymmetric payoff

We extend the symmetric payoff function so that the productivity coefficients need only satisty

Assumption 2.1. Consider the public goods game payoft function w:

N M
a;
k=1 j=1 k=1

We still first discuss the range of values of the parameter r;.
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]

263

264

265

266

267

268

269

270

271

1.(PE) property satisfies the condition:

M:

N M
u;i(e, X) = ik Zr zpe; + (1 — ink)e
o
k=1 j=1 =
| N (24)
= ; Z ik Z ririke; + — Z T, TikCi + €; — Z Tik€;.
k=1 jF#
The expression shows that we need to make r; > 0 with Vj to satisfy the condition.
2.(IF) property satisfies the condition:
Mo N M
ui(e, X) = Z —k Z rizipe; + (1 — Z Tip)e
= 7 j:l =
LM
; Z ik Z riTjge; + — Z TiTik€; + € — Z T;kCi (25)
k=1 JF#i
M N
= ; Z Z TiTk€; + Z xzkel + e;.
k=1 JF#i

The expression shows that we need to make r; < o with V; to satisfy the condition.

3.(0C) property satisfies the condition:

Ule,X) = Zui(e,X) = Z Z%Zr zre; + (1 —ink)ei]

i=1 j=1
r M o
1
=el— > (s + asrip + - - + anpi, + T1 — o) +1]
1
k=1
Ty o
2
+ 62[; Z(alkxzk + a3plog + -+ + ANgT2k + Togp — T—Hfzk) +1]
2
k=1
+ ...
N — o
N
+ €N[? Z(alkINk + Aok TNk + -+ QN-1)KTNE + TNE — T—xNk) +1].
N
k=1
(26)

The expression shows that we need to make Z;V ajr > = with Vk, i to satisfy the condition.
Where Z;VZI a;, = o, the property (OC) is satisfied as long as there is r; > 1 with V.

In summary, the three properties hold provided that the parameter r; satisfies 1 < r; < o with V.
In the following, we discuss the feasible interval of full cooperation under the linear asymmetric
payoff function.

16
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273

274

276

277

278

279

280

281

282

284

285

286

Theorem 2.2 The payoff function of a public goods game is given by Eq. (23). For a con-
tribution matrix X and productivity coefficient 1 < r; < o with Vi, e € E,(9) holds if the

continuation probability § > — {erm}a’;z,:(‘:gi} - with Vi.

Proof  Similar to the proof of Theorem 2.1. According to Lemma 2.1, we calculate the 3 payoff
functions.

1 M N
ui(e, {172}) = E Z ik Z T’jﬂﬁjk€j + €;,

k=1 j#i
ui(e, 0) = e, 27)
1 & T
1) = = ; Xpei + —e;.
e, {1}) U;ak;rjxjkej—i-ge

Applying Lemma 2.1, we derive sufficient conditions under which the endowment vector e lies

within the full cooperation feasible set £, (d), as follows:

o(ui(e, {1-:}) — ui(e, 0)) = wi(e, {1-:}) — wi(e, {1})

N

M M N M N
1 1 1 r
= 5(; E @i, g rixige; +e; —e;) > - E @ik E TiTike; + € — S g Ak E riTige; — —e

k=1 j#i k=1 j#i k=1 j#i
= 5liaikirjxjkej > (1 — E)4.'2z
9= A g
N 5> (0 —1i)e;

- M N )
> k1 @ik Zj;éi TjTjkEj
(28)

where it is required that inequality (28) holds for all players ¢ with e; > 0. Enlarging the right-
hand side of inequality (28) can satisfy all ¢ holds:

max{(c —r;)e; } (0 —1;)e;
Z — M =N Z o N : (29)
min{e;ri} Dy D0 GikTik D opmy Qik Dy TiTIKE;
Thus e is fully cooperative as long as inequality (29) is satisfied. 0

Remark 1 The sufficient conditions in Theorem 2.2 do not guarantee that equal endowments

are also feasible for full cooperation.

Theorem 2.2 gives a sufficient condition for the continuation probability § of full cooperation
under the asymmetric payoft function. The key factor for node ¢ to deviate from full cooperation

that can be obtained from inequality 29 is the combined | i Tj% ke; value of the associated

17
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7 hyperedge of node <. When node i is less associated and has a lower production coefficient r;,
2ss it will be more likely to deviate from cooperation.

250 Similar to Corollary 1 and Corollary 2, we can obtain similar conclusions under the asymmetric
200 payoff function.

21 Corollary 3 There exists a linear asymmetric public goods game payoff function u such that
202 Eu((5) #+ (), but e = (%, ]%[, ce %) #* Eu(5)

203 We still consider the example in Corollary 1 by simply varying the productivity coefficient 7.
2« Consider a set of asymmetric payoff functions:

1
ul(e, X) = 5(7“11]1161 —+ T9X921€2 + 7’31‘3163) + (1 — 1311)61,
us(e, X) = 5(7”11’1161 + roX91€9 + r3xsies + Takages + ryTsses + raZases) + (1 — xog — Xag)e,
us(e, X) = g(rﬂnel + roTa1€9 + T3T31€3 + roXages + T3T3ses + TaTasey) + (1 — w31 — w30)es,

U4\ €, = 5 \I2Z22€2 1T T'3T32€3 T T'4T42€4 — T42)€4.
(e,X) = S(rawmes + +razpes) + (1 — 240)

(30)

1 2 2 1
w5 Letayy = 1,@01 = 5,000 = 5,031 = 5,320 = 5, Ta2 = L, =24 €,r0 = 2,13 = 2,174 = 2+€.

25 Then for equal endowments e = (7, %, 1, 1), 0 need to satisfy the following condition:

01 > =

PEoalgoz g

5 3—2 1

2= 901124124 642 1)
3—2 1

03 >

2+ et2+2+e 642
3—2—¢ 1—e¢€
2o T3

31243

l—e
2

208 eration. In the following, we apply a perturbation to the equal endowments and the perturbed

207 Thus it is only necessary to make § >

so that equal distribution is feasible for full coop-

18



—€, %L + 2e, i, }l —¢). Below we calculate the ¢ conditions it has to satisfy:

(B-2-9(-9 _(1-1—49)

P ol 21 4212 2+ ’
(3—2)(3 +2¢) 1+ 8¢
0y > =
2+e)(F—e)+21+2+e)(3—€ 6+2—(2+€)(4e)’ 2)
5, > (3-2)1 _ 1
2+e)(F—e)+2(3+2)+2+€)(3—€) 642+ 16— (2+¢€)(4e)’
55 372-9G=9  (1-9(1—49

2(1 +2e)2 4211 2432

(1—€)(1—4e¢)
2+?6

s cooperation. Comparing the two values, we find that whenever we take § € |

to make it feasible for full
(1-9(-de) Ie]

2+ 02 b
sz we make the equal endowments not feasible for full cooperation and will still have feasible

s0 The perturbed endowments only need to satisfy o >

s intervals of full cooperation.

se  Corollary 4 The payoff function u of the public goods game under any linear asymmetric payoff
w5 function satisfies Ve € E,(6) and X (0) = {1}, we can get "1 mi(e1, {1}) = 2, e,

ws Proof  Since the initial moment X (0) = {1} and e € E,(0), the initial contribution matrix
w7 X(t) = X(0) is maintained for all subsequent moments. It is straightforward to calculate the

s0s  total payoff:

o
(@orx1k + aspT1g + -+ - + ankTig + T — T_xlk) + 1]
1

Ule. 1)) = er[

T2 o
+ 62[; (@1k@ok + aspTok + - - - + ankTok + Tok — r_x%) + 1]
2
k=1
+ ..
oM
N
+en[— Z(awifzvk + agrTnk + 0+ av-)RTNE + TNE — —TNg) + 1]
7 = N
r M N , M N
N
=[O a — w1+ e[ > e — —)awe + 1]
R 1 7= = N
r M r M
1 N
N S 1 . N 2 1
el (o Tl);xlk%— [+ +en[—(o TN)’;;ENH ]

(33)
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310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

U

Corollary 4 shows that different initial endowments within the full cooperation interval E, ()
also have different total payofts.

2.4 An example of a nonlinear symmetric payoff

We consider the example of a nonlinear symmetric public goods game with a payoff function u;
of the following form:

M
u;(e, X) = ¢ max {Z Tpr€p + Tgr€q) } + — Z @i ijkej (1-— Zmik)ei, (34)
k=1

p,qEN (i)

where N (i) denotes the set of neighboring nodes of node i associated with hyperedges and
¢ > 0. The nonlinear part means that the two highest actual values of endowments around node
¢ will have an additional effect on it. Lemma 2.1 is satisfied by the condition that the payoff
function u; form is linear. We are considering a nonlinear payoff function and need to verify
that u; (e, 1) = u;(e, 1).

ui(e,{1}) = ¢ max {Z Tpk€p + Tqneq)} + — Z ik Z%‘k@j -(1- ink>€

P,qEN (4)

(35)

€iT;
= ¢ max {ep+eq}+ Zalkz%ke] Z$k_u’ {1})

P,gEN (4) o o

Here it can also be extended to consider a nonlinear asymmetric payoft function, whose non-

linear part is denoted as max( ){Z o1 (TpZprep + TTqreq) }. It still satisfies the condition that
pgeEN

u;(e, {1}) = u;(e, {1'}). We verify the parameter conditions the three properties satisfy for a
nonlinear payoff function of the form Eq.(34).

1.(PE) property satisfies the condition:

Mo N M
zk
ui(e, X) = c¢ max { E (Tprep + Tareq) } + E E rege; + (1 — E Ti)e
p,qEN () g —
M
=c néz]lvx { E (Tprep + Tgreq) } + — g @ik E Tike; + — E Tige; + (1 — g Tik)e
P 9% A k=1

(36)

The expression shows that we need to make r > 0 to satisfy the condition.

20



26 2.(IF) property satisfies the condition:

M N M
0273
ui(e,X) =c glg?vx {Z Tpk€p + Tareq) } + Z > ijkej (1-— Z:xik)e
M
—c rrelejlvx {Z Tpk€p + Tareq) } + — Z ik Z Tke; + — Z rike; + (1 — Z Tk )e
P k 1 ];é'L =
M
= ¢ max {Z(xpkep + Tgkeg) } + — Z i Z ze; + Z — — Dage; + e
PaEN (i) =1 k 1 j#i
(37)
527 The expression shows that we need to make r < o to satisfy the condition.
28 3.(0OC) property satisfies the condition:
N N Moo N M
ik
Ule,X) = Z u(e, X) = Z ¢ Hel?\f)i ){Z Tpkep + Tareq) } + Z o Z rejpe; + (1 — Z Tik)eq]
i=1 =1 1 k=1
M

r o
= 61[; Z(a%l’lk + a3pTip + - + ANET1E + T1k — ;xlk) + 1]
k=

[y

M
T o
— E ce — — 1
+ 62[0_ (alkxgk + A3kToLk + + ANKkT2 + Tok , .Z‘Qk) + }

k=1
+ ...

M
r o
— ce. _ _Z 1
+ €N[U E (a1rT Nk + QopTNg + -+ A(N—1)RTNE + TNk rfENk) + 1]

k=1
N M

+c max TpkCp + TgrC
;p,qGN(i){;( pkCp qk q)}

(38)

320 The expression shows that we need to make Zjvzl ajr > Z with Vk to satisfy the condition.
30 Where Zjvzl a;i, = o, the property (OC) 1s satisfied as long as there is > 1.

;31 In summary, the nonlinear part is multiplied by a productivity factor ¢ > 0, which leads to the
s satisfaction of the three property principle parameters r and linear symmetric payoff function
;3 consistent with 1 < r < 0. Next, we discuss the conditions satisfied by the fully cooperative
s feasible interval of the nonlinear symmetric payoff function.

;35 Theorem 2.3 The payoff function of a public goods game is given by Eq. (34). For a contri-
16 bution matrix X and productivity coefficient 1 < r < o, e € E,(5) holds if the continuation

7. > (g’ r)el . .
ss7 - probability 6 > e ma (ot} tr ST S with V1.
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342

343

344

345

346

347

348

349

350

351

Proof  According to Lemma 2.1, we calculate the 3 payoff functions.

ui(e, {1_;}) = ¢ max {ep +e.t+— Z ik Z Tke; + €,

EN(i
P k 1 Jj#

ui(e, 0) = e, (39)

M N
r r

i(e,{1}) =c ma — i i1€j

ui(e, {1}) cp’qux(i){ep%—eq}~l— . E s E Tike; +

k=1 j#i

Applying Lemma 2.1, we derive sufficient conditions under which the endowment vector e lies

within the full cooperation feasible set F,(d), as follows:
5(ui(67 {1—2}) - ui(ea 0)) > Ui(E, {1—1}) - ui(ev {1})
M N .
= (¢ max {ep +e,t+— Z ik ijkej) >(1——)e;

PaEN() e G g (40)
Y (0 —1)e; |
acpgré?vx {ep+et +7 0 an E#i Tjke;
where it is required that inequality (40) holds for all players ¢ with e; > 0. U

Theorem 2.3 shows that the nonlinear part of the payoff function affects the feasible interval of
full cooperation mainly in the distribution of endowment inequality. When two of the remaining
nodes in the hyperedge associated with a node have relatively high endowments, it gives the
node a higher probability of full cooperation. This is because the value of the nonlinear part

ma>i {e, + e, } will be relatively larger, making the conditions for the continuation probability
PgEN(9)

0 to be satisfied relatively weaker.

Corollary 5 There exists a nonlinear symmetric public goods game function u such that E,,(0) #
0, bute=(%,~,....~) # Eu(d).

We consider the example in Corollary 1. Consider a set of nonlinear symmetric payoff functions:

r
u (e, X) = §($11€1 + zo1e0 + w31€3) + (1 — z11)er + c((z21 + x22)ea + (31 + 32)e3),

r
u2(e, X) = §($11€1 + Zo1€9 + T31€3 + To2€o + T3a€3 + IE4264) + (1 — Xo1 — 1’22)62 +c n’el%)é {Gp + eq}

r
U3(€, X) = 5(1‘1161 + T21€9 + I31€3 + T99€9 + T32€3 + ZE42€4) + (1 — T31 — l‘32)€3 +c l’Ila)g3 {Gp + Bq}

r
us(e, X) = 5(1’2262 + T39e3 + Ta2eq) + (1 — z42)eq + c((z21 + xa2)ea + (31 + T32)e3).
(41)

Let z1; = 1,!1721 = %,ZL’QQ = %,l‘gl = %,ﬂfgg = %,ZL’42 = 1. Then for equal endowments



352

353

3

o1

4

355

356

357

358

359

360

361

362

363

364

e= (}1, %, }1, %), 0 needs to satisfy the following condition:

5 (3—7)3 3—r
P36 40 T+29) be+r
5 (3-7)3 3—r
2= 3el 4 (1l 411+ 11) T 6o+ 3r
1 (42)

5 (3—7)3 3—r
= 3l 4 (1l 411+ 11) ~ 6e+3r

(3—7")}1 3—r

Thus i
eration. In the following, we apply a perturbatlon to the equal endowments and the perturbed

endowments e = (1 —¢,1+42¢, 1 —¢, 1). Below we calculate the § conditions it has to satisfy:

4

5 > B-rG-9 _ (3-r)(1-4e)
VG +rGG+20+3G-9)  GetBectr
(3 — >(71 + 2¢)

0 ;
2_30(%—6)—1—7“(1— +I-€+13)

(43)
. B-nG-o
T 2e(3+20)+r(3—e+ 1424+ 1)
5> (3—1r)3 B (3—r)
1= 3c(3+e)+r(2(3+20)+1(k—¢€)  Gc+8ce+r+dre
The perturbed endowments only need to satisfy 6 > max{ o +8C1€ J:ff), - +8(i +7; .} to make

it feasible for full cooperation. Comparing the two values, we find that whenever we take

)(1—4e) (3—r) } 3—r
ce+r 7 6¢c+8ce+r+4reld? 6¢e+r

cooperation and will still have feasible intervals of full cooperation.

], we make the equal endowments not feasible for full

o€ [max{ 6C+8

Corollary 6 The payoff function u of the public goods game under any nonlinear symmetric
payoff function satisfies Ve € E,(0) and X(0) = {1}, we can get Zfil mi(e, {1}) = r +
CZN 1 max {ep + g}

"= pgeN(i)

Proof  Since the initial moment X (0) = {1} and e € E, (), the initial contribution matrix
X(t) = X(0) is maintained for all subsequent moments. It is straightforward to calculate the
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366

367

368

369

370
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372
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374
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377

378

379

380

381

total payoft:

M
r o

Ule, {1}) = el - Z(a%xlk + azpTip + - + aNET1E + T1k — T—xm) + 1]
1

M
r o
+ e Z(a1k$2k + azpTok + -+ + angTok + Top — —Tox) + 1]

k=1 2
+..
M
r o (44)
+ GN[—N Z(alkxNk + agkTnk + -+ - )RTNE T TNE — —Tnk) + 1]
7 = N
N M
+c max TpkCp + TorC
> man (3 (o + ey
N
=7r—+c max e, +¢€,¢.
>, max {ey el
0

Corollary 6 suggests that different endowment distributions in the fully cooperative interval
E,(9) will have different total payoffs.

2.5 Maximally cooperative endowment distribution

This subsection will present a distribution of endowments for the most favorable cooperation.
First, the smallest continuation probability of full cooperation is defined. When the continuation
probability is large enough, there is always a feasible interval for full cooperation. By Lemma
2.2, the feasible interval of full cooperation will gradually become smaller as § becomes smaller.

There will be a critical smallest continuation probability, which we define as
&, = inf{d € [0,1]| E.(5) # 0} (45)

The maximal cooperative endowment distribution concept can be defined with the above defi-

nition of minimal continuation probability.

Definition 1 Given a public goods game with payoff function u, a endowment distribution e* =

{ei,...,ex} is the maximal cooperative endowment distribution satisfying e* € E, (J7).
The above definition combined with Lemma 2.2 shows that the maximal cooperative endow-

ment distribution e* must be in the fully cooperative feasible interval whenever the continuation
probability § > 6*, due to £, (0*) C F,(J). But we want to find this smallest continuation prob-
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383
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387
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389

390

391

392

393

394

395

396

397

398

399

400

ability as an optimization problem, and we consider a simple problem in our research model,

the two-player multiple public goods game problem.

Theorem 2.4 Consider a linear asymmetric payoff function u for a two-player dual public

goods game as

1
Uy = 5(7’1351161 + r1T12e1 + raTaiey + raTes) + (1 — z11 — z12)en,
(46)

1
Ug = 5(7‘11‘1161 + r1T12€1 + T9X921€2 -+ 7“21]2262) + (1 — T91 — ZEQQ)@Q.

The smallest continuation probability &, and the maximal cooperative endowment distuibution

*

e* = (e}, e3) are given by

5 = \/(2 LIk . WY ot )ii (47)

1T el (2 —1r1)r

Proof  For any continuation probability 6 and endowment distribution e = (eq,e3), e € E,(0)
if and only if

2 — 7"1)61

5><

T2€2
(2 — 7‘2)62
€1 )

(48)
o>

The interval range of £ is obtained by transforming the inequality

2—7r e or
2 o€ 2

57"1 _62_2—7"1'

(49)

The sufficient condition for e € E,(0) to exist is 25_77”12 < 2{%. When this condition is satisfied,

0 > o7. A critical condition for the lower bound is simply to let both sides of the inequality be

taken equally. We can get 6% = W, and also Z—l = g::?;:i O
2

The result in Theorem 2.4 eventually degenerates into a linear asymmetric model result for the
two-person public goods game [5].

2.6 Smallest continuation probability for homogeneous hypergraphs

In the following discussion, we address the issue of smallest continuation probability within the
framework of homogeneous hypergraph. The term “homogeneous” refers to a broad general-

ization encompassing three distinct aspects: the structure of the hypergraph, the productivity
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of the individuals, and the configuration of the contribution matrix. Our demonstration of the
smallest continuation probability establishes that all three sub-properties must uniformly satisfy
this homogeneity criterion.

We postulate that the average hyperdegree of the network is % (i.e., each individual is connected
to k hyperedges). The productivity expectations for all individuals are symmetrical. In the
contribution matrix X, any non-zero element is valued at % Provided these three homogeneity

conditions are met, the following theorem can be derived.

Theorem 2.5 Consider a linear symmetric payoff function v in a public goods game involving
o players, where each player participates in k public goods games. All players contribute a
proportion % to each of the k public goods games in which they are involved. The smallest
continuation probability o, and the continuation probability for equal endowments o;,,, are

identical, given by:
5 = o* o-r (50)

u equal:r(o__l)'

Proof  First, we compute the continuation probability d;,, under equal endowment, based on

the linear symmetric case. The calculation is as follows:

. (o —r)e; (o= 1)% o-—7 51)
ey aa Y waey  thilo =1y (e —1)

In the following, we aim to demonstrate that for any perturbation from the equal endowments

*

scenario, there exists at least one node i where 47 exceeds 4, -

Consequently, no perturbation

*

*
can reduce o, below dgya1,

establishing it as the smallest continuation probability. We consider a

1 1 1 1 1
perturbed endowment vector e defined as N + €y, N + €igy ey N +e€,,

N N

NGy

Vo v
m N—m

consisting of m positive and N —m negative perturbations. These perturbations satisfy Y, | ¢;, =

fo:mﬂ €., where ¢;, € [0, %] forall k € [m + 1, N] and ¢;, € [0, 252] for all k € [1,m].
The sequence 4, to iy represents any permutation of 1 through N. Next, we calculate J; for
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23 the initial m positive perturbations:

k(o —r) [l + eil}
[Ziwumﬂwn%")+ZamumﬁM“%+@ﬂ
k(o —r) [ + e“}

r [k’(a - 1)%\/ - Zj;ﬁ{il,...,im} P]( €+ Zj:{ig,...,im} Pj(“)Ej]
N (41) (i1)
_(U—T)+“UDNTbL#mAMPUfW_Zjmw%J%1Q]+HU_mN%

r(oc—1) kr(c —1)— Nr [Z#{ZL i) P(“)ej - Zj:{z‘z,...,im} Pj(“)ej}

* —_—
5, =

(52)

22 Here, P ) denotes the number of nodes J associated with node 7, through hyperedges, which is
25 an unspemﬁed quantity. Nevertheless, it is known that the sum of these associations for nodes
26 not included in the set {i1,...,4,} and those within the set {is, ..., i, } totals k(o — 1). We
27 can then express this relationship as follows:

Z Pj(zl)Ej < i Z Pj(“) < Nk(a —1). (53)
JA{i1,eim } JA{it,im}

xs Thus, it must hold that

N
kr(c — 1) — Nr Z j(il)ej - Z Pj(il)ej

JA i1, sim} g={i2,..im}

N
> ko 1)~ Nr Y P (54)
G i)

1
>kr(c—1)— Nrﬁk(a - 1)

v

0.

29  We have proven that the denominator in Eq. (52) is non-negative. Now, it remains to demon-
0 strate that the numerator is also positive. We enumerate the continuation probabilities for the

@1 remaining m — 1 perturbations, d; , as follows:

(i1) )
5* (0'—7“) ‘I— r(o—1) {qué{zl ,,,,, im } P' ! 5]‘*23:{@'2 ,,,,, im } P " E]:|+k(o T)Nezl
_ )
U 1) kT‘(O’ 1) NT[EJ¢{11 aaaaa 2WL} 6] Z] {ig,..., zm}P( 1)61}
(55)
{z plime. s plim)e ]—Hc(a r)Ne
5* (o—1) r(o—1) J#{i1,im} J J={i1, - im—1} tm
im T‘(O’—l) k?"(o’ 1) Nr [ZN ) P( m)E _Z ) P(lm) ]
J#A{i1,im} j={i1,-im—_1}
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445
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447

448
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We employ a counterfactual hypothesis, assuming that if all the numerators in these m equations
are negative, then their sum must also be negative. Proving that the total is positive confirms
the existence of a positive term. First, we sum all the numerators, hypothesizing that they are

negative:
- o—r N . ,
Z EEEETR > P ) Pfe;| + k(o —r)Ne, 3 <0.
=1 5Lt eeesim } G={i1yoeeyiqe1,iga1semim}
(56)
Next, we extract the coefficients for one of the terms, €;,:
o—r i ; -
—7’(0 — 1)Nr [_pi(lz)el.l _ pi(ls)ei1 e pi(1 )Q’l] + k(o — r)Nes,
(57)

o N(U_T) - ix)
_{ ﬁkzpil + k(o r)N}eZl.

1

Given the hypergraph structure and the assumption that the hyperdegree is &, player i; can be
associated with at most k(o — 1) nodes. Therefore:

N(o—r) N(o —r)

k(c —r)N P ) > k(o —r)N — k(c —1)>0 (58)

c—1

This inequality establishes that the sum of the m numerators is greater than zero. Thus, at least

one o; must be greater than ¢;

equal- Any perturbation will increase d;;, confirming that equal

endowments represent the smallest continuation probability. UJ

Theorem 2.5 offers a broad generalization, illustrating that within any homogeneous hypergraph,
the smallest continuation probability is determined solely by the productivity and the dimensions
of the hyperedges, rather than the average number of hyperedges. From Theorem 2.5, we derive
the following corollary.

Corollary 7 In any homogeneous hypergraph, the smallest continuation probability monotoni-
cally decreases with respect to the productivity factor r and monotonically increases with respect

to the hyperedge dimension o.

and g(0) = 7 —75. We calculate the derivatives of

Proof  Define the functions f(r) = ;7= Y
f(r) and g(o) with respect to r and o respectlvely.

2
Fi(r) = _‘7—”,

(ro—r)?

r(r—1) (59

9'(0) = m-
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1 Given the conditions 1 < r < ¢ and o > 2, it follows that f’(r) < 0 and ¢’(c) > 0, indicating

»s2 that f(r) is monotonically decreasing and g(o) is monotonically increasing. Evaluating the

o1

4

o1

s limits of these functions, we find lim,_,;+ f(r) = 1, lim,_,,- f(r) = 0, and lim,_, g(0) = L.
asa [
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3 Evolutionary Process Analysis

In the previous section, we concentrated on the interval range of e that remains feasible for full
cooperation in the initial state X' (0) = {1}. In this subsection, we investigate the outcomes of

the system’s evolution before the player reaches a steady state.

3.1 Strategy update process

In this subsection, the strategy update refers to the update of the contribution matrix X (). We

employ an introspection dynamic model [5, 6] for strategy updating. Specifically, node i is
old

selected with equal random probability and the last round of payoff 7' is computed. Subse-
quently, a strategy is chosen from the remaining strategy space with equal random probability,
and the new payoff 7'*“ is computed. Note that the dimension of the strategy space of node ¢

is s;. The transition probabilities of the new and old strategies are:

old 11 1

new) _

— T, = — .
! Ns;—11+ e_B(W?ew_ﬂ'?ld)

P(r (60)

i
The parameter (3 reflects the strength of selection. In the case of 3 = 0, the probability P = %
indicates that the strategy shift is randomized. In the case of strong selection 5 — +oo, the
player will adopt the new strategy if the new strategy yields a higher payoff than the old one.
We choose this update strategy over the traditional pairwise comparison or DB update for two
reasons. First, the number of hyperedges each node is involved in is not necessarily the same.
After comparing the payoffs, it is not possible to exactly replicate the elements in the contribution
matrix X (¢) when performing the strategy update. Second, if it enters an absorbing state at some
point, it is impossible to evolve out of it. However, these two drawbacks can be overcome with
the introspection dynamic model. Additionally, we consider the update process as a Moran [7]
process, meaning that only one node performs the strategy update at each step.

3.2 Memory-one strategy

In the analysis of the memory-one strategy, we make two assumptions. First, we assume that the
strategy space is limited in each round. Specifically, each contribution matrix element X;;(¢) can
only choose from a limited number of strategies. The simplest of these is to consider that each
row has at most one X;;(¢) = 1, and the rest are all 0. This implies that nodes can only choose
to contribute all their endowments to a particular hyperedge or retain all of their endowments.
Second, each player decides the next round strategy based solely on the previous round’s result,

independent of all previous results.
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We consider the simplest hypergraph model we discussed earlier, where nodes 1, 2, and 3 to-
gether form a hyperedge j; and nodes 2, 3, and 4 together form a hyperedge j,. The contribution
matrix is such that at most one element is 1 and the rest are 0. At this point, the state space totals
2% 3% 3 x 2 = 36. However, not every state has a transition probability, and it needs to be en-
sured that there is only one strategy change from one state to another. With the above definitions
and strategy update rules, we can obtain the transition probability matrix P = {p;;} € R3%*%.
Given an initial strategy distribution v°, we can calculate:

=1 -0V -oP) 1, (61)

where [ is the identity matrix. When 6 — 1, the vector v is close to the left eigenvector corre-
sponding to the 1 eigenvalue of the transition probability matrix P. Through the payoff vector u,
the obtained state vector v, and the given endowment distribution e, the total payoff II (Extended
Data Fig.5) can be obtained as
36
I=> v *ufe X). (62)
i=1
Furthermore, we assume that players’ decisions are noisy. For any round, there is a small proba-
bility € > 0 that each player will have a memory error. For example, a player chose cooperation
in the previous round but remembered choosing defection. We note that the dimension of the
state space is b. For the elements of the transition probability matrix, we would have the follow-

ing re-representation:
b
error €
P = (1—e)piy+ Y PEELCE (63)
ki
We stipulate that memory errors are chosen with equal probability in the strategy space. This

setup ensures that the row sum of the transition probability matrix remains equal to 1.

Zperror— 1—¢€ pr b—lzzpk]

j=1 k#i
(1_6 +b_1zzpkj
kfzgl (64)
1-— e 1
= ( €)+b_1;
=(l—¢€)+e¢
=1
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ID in Fig. 7 Context Reference
DBLP co-authorship on DBLP papers [8]
T™MS tags on math.stackexchange.com [8]
NDC substances making up drugs [8]
DAWN drugs used by ER patients [8]
CB congresspersons cosponsoring bills [8-10]
EEu email addresses on emails (full) [8, 11, 12]
EEn email addresses on emails (subset) [8]
CHS high school contact groups [8, 13]
CPS primary school contact groups [8, 14]
TAU tags on askubuntu.com [8]

Supplementary Table 1: Summary of the real-world hypergraphs used in Fig. 7.




a Corresponding author's b Corresponding author's
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Supplementary Fig. 1: Effect of corresponding author contribution. In the main text (Fig.
7d), we examined the case where the corresponding author’s contribution was set to 50%. In
panels a and b, we varied the corresponding author’s contribution to 100% and 150%, respec-
tively. The results show that the level of corresponding author contribution does not affect the
general pattern that higher hyperdegree researchers tend to contribute more to lower hyperde-

gree collaborators.

34



