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1 Stochastic dynamics of higher-order interactions in
finite populations

We consider a finite population system consisting of Z players who participate simultaneously in
M distinct games. Each game may involve pairwise (low-order) or multi-player (higher-order)
interactions. Each player adopts a strategy from a finite set S = {51, Ss,...,Sn}. Let X € N
represent the number of players choosing strategy Sy, with the constraint Zfil X, = 7. To
model these interactions, we consider the hypergraph H(V, £), where the vertex set V, with
|V| = Z, represents the Z players, and the hyperedge set £, with |£| = M corresponds to the
M games. Each hyperedge e, for g € {1,..., M}, specifies a distinct game involving two or
more participants. And the size of each hyperedge e, is ¢, = |e;| = ZiZ:1 big, Which captures
the number of participants in the game g. This hypergraph structure is encoded by a Z x M

incidence matrix B = (b;,), where b;, = 1 if the player ¢ participates in the game g, and b;, = 0
M

g=1
of games that the player joins. Accordingly, the average hyperdegree in the population is given

by (k) = %Zzzzl ki.

Specifically, in contexts characterized by frequent interactions among individuals, cumulative

otherwise. The hyperdegree of a player i is defined as k; = > _,_, b;,, representing the number

payoffs depend predominantly on the frequency distribution of strategies within the population.
For instance, considering a well-mixed population composed of j cooperators and N — j de-
fectors in social dilemmas, the cumulative payoffs for cooperators (7) and defectors (7p) are

given respectively by
tc=((—1)R+(N—j)Sandnp =T+ (N —j5—1)P,

where R, S, T, and P are the standard payoff parameters defining the underlying game dy-
namics [1, 2]. However, in scenarios with higher-order interactions, cumulative payoffs for in-
dividuals in such high-order structures must incorporate contributions from group interactions
beyond pairs, considering the frequency and size of interaction groups (hyperedges). Thus, un-
der higher-order interactions, cumulative payoffs become explicitly dependent on the proportion

and composition of hyperedges, and can be generalized as

TS, = Zpk Z s, (eg),
k

eg€Gk

where p; denotes the proportion of hyperedges of order k, G, represents the set of all hyperedges
of size k involving the focal player, and Ilg, (e,;) denotes the payoff of the focal player when
interacting within the hyperedge e,.
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1.1 Evolutionary process Modeling

At each time step, an individual is randomly selected from the population as the focal player.
Subsequently, another individual is randomly chosen from among the neighbors of the focal
player in a hypergraph, where connections are defined by hyperedges of varying sizes. During
each interaction, the focal player’s payoff depends on its own strategy as well as the strategies
of the other participants in the relevant hyperedge.

Following this interaction, the focal player updates its strategy according to the following rule.
With probability u, the focal player’s current strategy, denoted by .S;, undergoes a mutation
process, whereby it is replaced by an alternative strategy selected randomly from the set of all
available strategies. With probability 1 — p, the focal player attempts to imitate the neighbor’s
strategy .5;, adopting it with the probability given by the Fermi function:

1
P T exp [—w (s, — 75)]

Here, 7s, and 7, represent the cumulative payoffs obtained by the focal player and the selected
neighbor, respectively, while w > 0 characterizes the intensity of selection. Under strong se-
lection (w — o0), the imitation probability p converges to a deterministic outcome: it becomes
p = 1 or p = 0, depending on the sign of the payoff difference. In contrast, under weak selec-
tion (w — 0), the probability of imitation converges to 1/2, reflecting an unbiased and random
decision.

We define 77+ (X) as the probability that the number of players employing strategy S; increases
(+) or decreases (—) by one when the system is in state X = (X7, X5, ..., Xy). It should be
noted that, as previously defined, each X; denotes the number of individuals who select the
strategy ;. Specifically, the probability of an increase in the number of players adopting .5; is
given by the sum
THX) = ) T;(X).
J, J#1

where TJ(X) denotes the probability that the number of players adopting S; increases by one
while that of players adopting S; decreases by one. This probability is expressed as

1 XX X
Lvexp[—w(ms—7s)] Z Z  "N-1)Z

T (X) = (1 p)

ij
Similarly, the probability that the number of players adopting 5; decreases by one is given by

T (X) = ) T;(X),

J, 3#i
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Indeed, the probability density function, P7(X), i.e. the prevalence of each state at time 7,
evolves in time according to the master equation [3]

P™(X) — P7(X)
=3 > P(Xy X=X L X (X X = L X+ LX)

i g, j#i

+I D P(Xy X L X = X T (X, X L X - LX)
i, jFi

=202 PT;X) = > PTX)TX)
i, jFi i, jFi

(1)
Introducing the notation z; = %, t = Z and the probability density p(x,t) = ZP7(X), we have

/0<X7 t+ Zil) - p(X, t)

= T, ..o — 2+ 27 e, O T (e, — 27 e+ 27y
p J 1) J

i g, j#

+Z Z p(a:l,...,xi+Z_1,...,xj—Z_l,...,xN,t)ﬂ}r(xl,...,xi+Z_1,...,xj—Z_l,...,xN)

i g, j#
=20 D A DT() =30 Y % OT(x).
i g, j# i g, g

Here x = (x1,29,...,2x) and Zf\;l x; = 1. For Z > 1, applying Taylor expansion to the
probability densities and the transition probabilities yields

dp(dia t)_ ; aii (Ai(x)p(x, 1)) + %; 88— (Bij(x)p(x,1)). 2)

l’iax]’

The drift vector A(x), which characterizes the deterministic component of evolutionary dynam-

ics, 1s defined as
Aix) = D (T30 = T5(x) - 3)
3, J#i
Correspondingly, the diffusion matrix B(x), which captures the stochastic fluctuations inherent

in evolutionary dynamics, is expressed as
1 _
Bij(x) = (05 ) (T (x) + Ty (%)) = (T + Tii) | - (4)
k

Here, the Kronecker delta d;; denotes the identity indicator (with d;; = 1 if i = j, and 0 other-
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wise). For large but finite Z, Eq. (2) has the form of a Fokker-Planck equation, which has an
equivalent Langevin equation
X = A(x) + 5(x)¢

where B = Y7 and ¢ is Gaussian noise. In fact, this is a coupled system, and the evolution
equations can be described by the first NV — 1 equations.

1.2 Applications in three strategies

In this subsection, we investigate evolutionary dynamics on random hypergraphs consisting of

both pairwise and three-player interactions. Specifically, we consider hypergraphs of size Z,

comprising n, two-player interactions and n three-player group interactions. The hypergraph
1

structure is characterized by the average hyperdegree (k) = 222:1 k;, indicating the average

number of hyperedges each node participates in. Consequently, a randomly chosen focal player

engages in a three-player interaction with probability § = %, and participates in a pairwise
interaction with probability 1—¢. Here, the total number of interactions satisfies Z (k) = n;+na,
withn; =5, > glag=2 b;4 representing the sum of elements of the incidence matrix restricted to

hyperedges of size two, and ny = >, > olag=3 by 1s hyperedges of size three [4].

In order to extend the traditional social dilemma game framework, we incorporate peer pun-
ishment as an additional strategic dimension. Thus, players may select among three strategies:
cooperation (C), defection (D), and peer punishment (P). A player adopting the punishment
strategy incurs a personal cost & > 0 each time they punish a defector. In contract, the punished
defective player is charged with a fine 5 > 0.

At each time step, a randomly selected focal player participates either in a 3-person (namely
3-game) or a 2-person (2-game) interaction, according to the probabilities defined above. For
the pairwise interaction scenario, the payoff matrix is explicitly given by:

c D P
cli1 S 1
DT 0 T-8
Pl S—« 1

)

In this matrix, the parameters .S and 7" represent the classic payoff structures for social dilemmas.
Specifically, the Snowdrift game corresponds to payoff rankings 7' > 1 > S > 0, the Stag-Hunt
gameto 1 > T > 0 > S, and the Prisoner’s Dilemmato7 > 1> 0> S [1].

For three-person interactions, the payoff structure expands due to multiple co-players, denoted
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as
cc CD cpP DD DP PP

c| 1 G 1 S G 1
Dl T W T-8 0 W—-5 T-25
Pl 1 G-« 1 S—2a G—a 1

(6)

We consider a finite population of size Z, partitioned into three discrete strategic types: cooper-
ators (C, X = 1), defectors (D, Xp = j) and peer punishers (P, Xp = Z —i — j). The relative
frequencies of these strategies are defined as

i ’ Z—i—j

xc:E,xD:%,anda:p: 7 =1—2c—xp.

The state of the system is represented by the vector X = (i, j, Z —i — j) where i, j € N,
with the transition X — X' = (i +d1, j+ 09, Z —i — j + 03) following a death-birth process:

components exchange unit mass via vectors
(517 62) 53) € {(ilv :':]-7 0)7 (:l:]-) 07 :F1)7 (Ou j:17 :F]-)}u

yielding six transitions per interior state. Then the cumulative payoffs for cooperators (7¢),

defectors (7p) and punishers (7p), respectively, are given respectively by

= (k) {(1 0) (xc +xpS+axp)+0 [(:L’C +xp)? +2(xc + 2p)rpG + :E%S} } . (7a)
= 6(k) [(zo + 2p)*T + 2(zc + xp)rpW — 22pf]

+ (1 =0) (k) [zcT +2p (T = P)], (7b)
= 6(k) [(xc + zp)® + 2(zc + 2p)zpG + 23,5 — 2z pal]

+(1—0) (k) [xzc +xp (S — a) 4+ zp]. (7¢)

Thus, as described in subsection 1.1, we have

1 rp
TH(X) =T X)=(1-
15(X) Poo(X) = ( u)l+exp[—w(7rc—7rp)]xcxp+MN—1’
1 D
THX) =Tpoeo(X) = (1_M)l+exp[—w(7rc—7rp)]xch+MN— T
1 Trp
Toh(X) =Tpp(X) = (1— “>1 T exp [ (mp = WP)]JIDZIZP T

In a similar manner, expressions for 17,, 175 and 7),; can be obtained. The drift vector A and
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diffusion matrix B in Eq. (2) are specifically defined as

(1 — p) [zcxptanh (7c — 7p) + zcxptanhy (e — 7p)] + 4
A= 1—-p) [.Z'D.CEptanh%(ﬂ'D — mp) — xcwptanh (1o — WD)] + 51 —=3zp) |,

(1 — p) [~zczptanh¥ (nc — mp) — xpwptanh¥ (7p — 7p)] + & (1 — 3zp)

and
( zo(l —x¢) —ToTp —ToTp l+2¢ zc+zp T+ TP
B = 7 —zcxp  ap(l—xp) —TpTp +% rc+xp l4+zp xp+ P
—ZoTp —zprp  xp(l—zp) xc+xp zpt+axp l1+uap

Taking the limit Z — oo, the diffusion term vanishes as O(Z~!), giving deterministic dynamics

o= (1—p) -xcxptanhg(wc —7p)+ xCthanhg(wc - WD)} + = (1—=3z¢), (8a)
_l’_

i
5 (

. [ w w ol

tp=(1—p) ZL’DZL’ptal'lh§<7TD —mp) — xchtanhg(Wc - WD)] 3 (1—3zp), (8b)

ip=(1—p) -—xcxptanh%(wc —Tp) — xDxptanhg(WD - 7Tp)i| + g (1 -3zp). (8c)

1.3 Stationary Distribution Analysis

We still consider Z players who simultaneously engage in M games, with each player selecting a
strategy from a set comprising N distinct strategies. The stationary distribution P can be derived
by setting the left-hand side of Eq. (1) to zero, thus the equation reduces to an eigenvector
problem. Specifically, this involves solving the eigenvalue equation 7' P = P, where T is
the stochastic matrix that encodes the permissible state transitions. The state space S consists

of configurations X = (X, X, ... Xy), Zf\il X; = Z. Consequently, the cardinality of this
Z+N—1)
N-1 )

state space is |S| = (
Each off-diagonal element 7x_,x: corresponds to transitions between adjacent states X' = X+,
where the vector § = (d1, ..., dx) contains exactly two nonzero entries, specifically §; =
+1 and 0; = —1, representing a shift of one individual from strategy S; to strategy S;. The

corresponding transition probability from state X to X' is determined by the given rule

1 X; X; X;

J

1+exp [~w (ms, — s,)] Z Z +M(N— )7

Txx = T5(X) = (1 - p)

It is evident that diagonal elements of the matrix 7, denoted by Tx_.x, satisfy the condition
Txox =1 — Zx' X Tx_x/. For example, in the case of Z = 2 and N = 3, the system exhibits
six distinct states, each represented by an ordered triplet (i, j, k) satisfyingi + j + k = 2.
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Here, the non-negative integers ¢, j, and k correspond to the number of individuals adopting
cooperation (C), defection (D), and punishment (P) strategies, respectively. The corresponding
state transition matrix is given by

(0,0,2) (0,1,1) (0,2,0) (1,1,0) (1,0,1) (2, 0,0)
(07 17 1) f<7TD_7TP> 0 .;C(ﬂ'p—ﬂ'D> % % 0
0,2, 0) 0 5 1—p u 0 0 ,
<1’ 1’ 0) 0 % F<WC - WD) 0 % .F(WD — 7Tc)
(1,0, 1) | F(me — mp) 1 0 i 0 F(rnp — )

where F(x) is given by
1
Fla)=(1-p)——— + £

1 +exp(wx) 4
The payoffs 7, mp, and 7p for cooperation, defection, and punishment strategies, respectively,
are analytically determined through Eq. (7) under the condition § = 0, where § represents the
probability of interaction with three players.

2 Replicator dynamics in higher-order interactions with
punishment mechanisms

2.1 Governing equation derivation

We consider evolutionary dynamics in an infinite population limit (7 — oo). Under the condi-
tion of weak selection (w < 1) and in the absence of mutation (1 = 0), the evolutionary process
(8) can be accurately captured by the replicator equation. Given the payoffs 7, 7p, and 7p pre-
viously defined in equations (7), the temporal evolution of the frequency of each strategy in a
well-mixed population is described by

CL”;" =2 (m— (n)), i=C, D, P 9)

where (1) = xcme + xpmp + xpmp represents the average payoff of the entire population. By
explicitly substituting the average payoff (7) into Eq. (9), we obtain the detailed expressions



1o governing the temporal evolution of each frequency of the strategy as follows:

dx
€ e (1~ w0) (mo — 7p) + 0w (75 — 7). (100)
dz
P20 — 2 (1~ 2) (o — 70) + Zpar (0 — 77) (10b)
dx
d_tP =xp(l —xp)(mp — 7¢) + xprp (TC — 7D). (10c)

s Leta:=2(G—W),b:=T — S —1and c:= a+ b. In the case of the Prisoner’s Dilemma, it
151 is given that for this game S < 0, a > 0Oand b+ S =T — 1 > 0. Therefore, we conclude that
12 ¢ > (. Substituting Eq. (7) into Eq. (10), we obtain the following expressions:

dj_tc = (k) {—dzca}c+ dxcap [xpe+ zp (a+ B)] + zca], (b+ 25 —a — )
—i—xca:D(—b—S—i-oz—i-ﬁ)—xéxp(a—i—ﬁ)}, (11a)
dj_tD = (k) {62}, (1 —xp)c+ dxp (1 — ap) [~zp (¢ — @) — 2pf] — dxcaho — xhaco
+p (1= 2p) (=b =25 + o+ B) +2cwp (1 —2p) B+ p (1 —2p) (b + S = B)},
(11b)
dj;_tp = (k) {—dz}hxpc+ dxpxp [xpc+ xp (o + B) — a] + zpaT, (b + 25)
+xDx?3(a+ﬁ)+$D$P(—b—5—0é)}. (110)

153 2.2 Stability criteria and phase transitions

15« We denote the state of the system @ = (x¢, zp, xp). Solving % =0,:=C, D, P,we obtain

155 equilibrium points which can be divided into three categories:

s (1) zp =0, zc + xp = 1, i.e., a point on the C' P-edge, 2(¢7) = (x(ccp), 0, a:ﬁfp))

157 (i) zp =0, x¢ + xp = 1, i.e., a point on the C'D-edge, z(€D) = (:E(CCD), x([?D), O).

s (i) ¢ =0, 2p + xp = 1, i.e., a point on the D P-edge, z("") = (0, xEJDP), $§3DP)).

150 Proposition 1. Let § € (0, 1| denote the probability of a three-player interaction and let o« > 0
w0 represent the cost incurred for peer punishment. Then, the dynamical system described by Eq.

w61 (11) does not admit interior equilibria within the strategy simplex xc + rp + xrp = 1.

162 Proof. Assuming x¢, xp, xp # 0, for % = 0, the right-hand sides of Eq. (11), and Eq. (11).

10
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can be reduced to

— x5 c+d[rpct+ap(a+p)] +ap(b+2S—a—-B)—b—S+a+p—2c(a+p) =0,
(12a)

—6rhe+ b0 [rpetapla+B)—al+azp(b+2S)+zp(a+B)—b—S—a=0. (12b)

To admit a solution where all variables are strictly positive under the constraint xc+zp+xp = 1,
the system must satisfy
(1+d)a=0,

which is in contradiction with the definition of «. ]

Case (i): The stability of 2(C7) = (xgcpx 0, x(cp)) When 2 = 0, it follows that &¢ = 422

implying that strategies C' and P are indistinguishable. Under this condition, it is appropriate to

consider the combined proportion x + xp as a single state variable. Thus, the system can be

d(zc+zp)

n .Sincexc+axp=1—2ap,

effectively analyzed by examining the dynamics of de and
substituting this identity directly yields
& = (k) {&UD (1—zp)c+dzp(l —ap)[—xp (¢ — a) — xpf] — dxcrho — xhHToQ
+ah (1 —2p) (=b—2S+a+ ) + zcep (1 —xp) B+ ap (1 —2p) (b+ S —F)}.

The element of the single-order Jacobian matrix is

;LE—D = (k) {30z}, (1 — zp) c — dahe — 26xp (1 — xp) (¢ — ) + 6zF (¢ — &) + dzpzpf3
XD
—6(1—azp)apB —2(1+6)zcapa+ [2zp (1 —xp) — 2h] (=b— 25+ a+ )

+rc (1 —2p)B—zcxpf+(1—2p)(b+S—pF)—2p(b+S5—p)}.

(13)
By substituting the expression for z(¢*) into Eq. (13), we have
di’D B (CP)
Ex<cp>_<k> [—(1+6)xp 6+b+5]. (14)

(cp) (©

CP) is stable if and only if re < Zg, P) (or equivalently,

Therefore, the equilibrium state z

(CP) > x}cf ), where

(CP) 1 b+ S

and correspondingly,
cp) b+ S
Tp, = ——=>-
7 (1+96)p
Although every point on the C' P-edge is an equilibrium, only those points satisfying x(ccp) <

11



178 x(cc,f) exhibit stability. Through direct calculation, we derive the following explicit conditions:

(cp)

179 * If inequality b + .5 < 0 holds, it necessarily follows that ., * > 1. Consequently, all
180 points on the C'P-edge are stable.

181 * If condition b + S > (1 + 9)/ is satisfied, it implies x(gf) < 0. Thus, all points on the
182 C P-edge are unstable.

183 * Ifinequality 0 < b+ S < (14 )5 holds, we have 0 < xg*P) < 1. In this case, the points
184 on the C'P-edge that satisfy a:(ccp) < :L*(Ccf ) are stable.

s Case (i7): The stability of z(°P) = (ZB(CCD), a:(gD), O) . We cancel zp = 1 —z¢ — xp and study

dx

s the dynamics depicted by =32 and

dxp
dt °

W0 — (k) {~dwewbe + dwean froe+ (1 — 0 — o) (a + )
tzcr}, (b+2S —a—B) +xcrp (—b—S+a+pB) —agap(a+B)},  (16a)
B0 — (k) {5y (1 — wp) e+ 92 (1~ p) [0 (e — ) — (1 — ¢~ 2p)
—drorha — xhzoa + 25, (1 —xp) (=b—2S +a + B)
+zcxp(1—axp)B+ap(1—ap)(b+S—B)}. (16b)
(0D)

17 For 0 <z < 1, it satisfies

—6cxt, +xp (e +b+28) —b— S =0. (17)

s Then the Jacobian matrix of the system (16) at 2(“?) is

m (k) n(k) ) |

J|pepy = (—m(k) _ I(DCD) (146) (a —nlk) — xng) (1+96) (k) (18)

189 where
_ (CD) (CD)
m=(1+0)(a+8) (e = 1) 2§
2
n= (ngD)) b+25+(1+8)(atB)]—aSD20b+8)+(1+6)(atpf)+b+s.
10 The matrix has two eigenvalues, denoted as
M=~ (146) (k)2 a,

Do = (m—n) (k) = {— @55’”)2 S~ (b+5) (x5 - 1)21 ().

12
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Besides, 0 < x(CCD) < 1 satisfies

—bcx + w0 (e —b—2S5) + S5 =0. (19)
Then we deduce that
©D)\? (CD)
Yo = = (27) (k) (b +28) + 227 () S — (k)

2
= —xng)(k;} {—05 (x(CCD)> + céxéCD) + S} + 2x(CCD)<k>S — S(k)

<1 — xéCD)> (k) {—05 (x(CCD)>2 - S} ,

2
which implies that )\, is negative when (a:gCD)) > —C—b;. Then we will determine the value of

x(CCD). By solving equation (19), we have the non-trivial stationary solutions:

5 —b-25+/(c5 b +4S(b+5)

It follows that when A = (c§ —b)> + 45 (b+S) > 0, then x¢ 4 1s real valued for every
b, ¢, ,0, S. Since ¢ > 0, A > 0 requires the following conditions:

5> 4. b+ /—4S (b + S) @212)
5§5_::b_v_45(b+5). (21b)

It can also be verified that if 6 — b — 25 < 0, then zg, , < 0. Conversely, if cd — b — 25 > 0,

or equivalently, if
b+2S
5> 0= 2 (22)

Cc

then 27, > 0. Since 25 < \/—4S(b+ 9), it follows directly that §_ < d. < d,. Therefore,
for 6 > 4, there exist positive real-valued stationary solutions 0 < z7, . < 1, while for
0 < d_ < O, the solutions are real but negative. We also observe that for the appearance of
the non-trivial stationary solution z7, , at § = 4, is always abrupt. Meanwhile, we have the
following claim.

Proposition 2. Suppose 0 < xz¢,, < 1 and x5, # xy_. Then, the stationary solution

CD):(

2(€P) = (:c*CHr, 1 —ag 0) is stable, while the stationary solution al o, 1 —ag 0)

is unstable.

Proof. Note that \; is always negative. Moreover, we recall that )\, is negative in the case of
2
(x(CCD)> > —%. Letcd — b —2S = M > 0. Then, we have M? + 4¢6S = A > 0. Next, we

13
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218

investigate the condition (x’é +) > _C_Sa' This is equivalent to

(25,)" > —C—i = <M+ \/Z>2 > —4¢68

= M? 4+ 4¢6S + MVA >0
— A+ MVA > 0.

The last inequality always holds, since A > 0 and M+/A > 0. Thus, we conclude that the
stationary solution 2(“?) = (zf. .1 — a7, ,0) is stable. Similarly, we have

. S 2
(z5_)" > - = <M— \/Z> > —4c6S

= M2+ 4¢6S — MVA >0
<:>\/Z<\/Z—M> > 0.

This leads to a contradiction, as S < 0 and VA < M. Therefore, the stationary solution
2Py = (zf,_,1—af,_,0) is unstable. O

For xp = 0, it has 2(°") = (1,0,0). Then the Jacobian matrix of the system (16) at z(¢P) is

(0 ( S)(k)
Tleten = <0 (b+5)<k>> ()

with eigenvalues \; = 0 and Ay = (b + S)(k). Since b + S > 0, z(“P) is unstable.

Case (iii): The stability of z(PF) = <0 :1753 P xEDDP)> . We cancel z¢ = 1 —2p — 2 p and study

the dynamics depicted by %2 and %2,

di_tD = (k) {02} (1 —xp)c+dzp (1 —xp) [~2p (c — @) — xpf]
—a25(1—2p)(b+2S —a—B)— 1+ (1 —2p —2p) 250
+xp(l—zp)[(1 —ap —xzp) B+ (b+S = P)]}, (24a)
d:;—tp = (k) {—dz}xpc+ dxprp [xpc+ zp (o + B) — o] + zpz}, (b + 2S)
+zprp (a+ B) +zprp(—b— S —a)}. (24b)

For 0 < xSD P) <1, it satisfies

Scxh +apld(a+B—c)+(a+B—-b—29)]+b+S—(1+6)8=0. (25)
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221

222

223

224

225

226

227

228

229

Then the Jacobian matrix of the system (24) at z(P*) is

B m(k) n(k)
J‘x(DP) = <—m</€> + I(DDP) (1 + 5) <k3>Oé —n(k‘) + xng) (1 + 5) <k>(1/> ’ (26)

where

m = (xgm)z[z(ua)(am)—(b+25)]+x§§7p> 2(b+S) —3(1+6) 0]
—b—=S+(1+9)p,

2
n=(a7) (1+8)(a+ ) — 2" (1+6)8.
The matrix has two eigenvalues, denoted as

M =2l (146) (K)o,
Ay = (mg’f’>)2 (k) [(1+6) (@ + B) — (b+28)] +20PP (k) [(b+ S) — (1 + 6) 4]
_b(k) — S(k) + (14 6) (k)B.

(DP)

Since )\, is always positive, is unstable. Note that, when considering only the points on

the D P-edge, we return to the case where only the two strategies D and P are present. In this

case,
PP — (1~ 2p) (7 — )
=ap(l—ap) (k) {—cdap +2plcd —b—25+(1+6) (a+B)]+S—(1+6) a},
(27)
where

T = (1=08) (k) [zp (S — a) + zp] + §(k) [z} + z}, (S — 2a) + 2zpzp (G — a)],
7 = (1= 0) (k)xp (T — B) + 6(k) [27 (T — 2B) + 2zpxp (W — B)] .

In the following, we need to consider the solution of equation 7 — 7, = 0. In other words, we

consider the quadratic equation
—cdrp+apled —b—25+(1+0)(a+8)]+S—(1+68)a=0 (28)

and obtain the following result.

Proposition 3. If (1 +§) 3 > b+ S, then the equation (28) admits two real solutions

) cd—b—2S+(1+6)(a+B)£VA
TPt T 2¢o ’

15



a0 where A = [c6 —b— 28 + (14 0) (a + B)]* + 4cd [S — (1 + ) ). Moreover, these solutions

2 satisfy the inequalities 0 < xp_ < 1 and xp . > 1. In addition, x}, _ is unstable.
22 Proof. Since (14 §) 3 > b+ S, it follows that

A=[c6—b—25+(1+06)(a+B)*+4c5[S — (1+6)al
>[e6— S+ (1+06)al*>+4c6[S — (1+0)a]
=[ecd+ 85— (140)al?
> 0.

233 Therefore, the equation has real solutions. Moreover, it is straightforward to verify that both

24 solutions, =}, , are positive.

2 Next, we find that 2, < 1 is equivalent to
—cd —b—2S+ (1+0)(a+ B) < VA. (29)

226  Now we consider two cases:

ar (1) fed +b+25 > (14 6) (a + B), the inequality (29) always holds.

a8 (i) Ifcd + b+ 25 < (14 6) (a+ ), the inequality (29) is equivalent to
(6 —b—25+(1+08) (a+ B <A < 4e6[b+S—(1+8)5] <0
230 And the last line always holds under the condition (1 +§) 3 > b+ S.
20 Furthermore, we find that 27, , > 1 is equivalent to
VA > +b+25—(1+68)(a+p). (30)

2a Similar to 27, _, we consider two cases as follows:

a2 (1) Ifecd+b4+25 < (14 6) (a+ p), the inequality (30) always holds.

a3 (i) Ifed + b+ 25 > (14 9) (o + ), the inequality (30) is also equivalent to
ded b+ S —(1+6)p] <0,
244 which, once again, holds in the case of (1 + )5 > b+ S.
»s In conclusion, we have 0 < 2}, < 1and %, , > 1. We then prove that z}, _ is unstable. Let
fxp) =zp(1—zp) {—coap+ap[cd —b—25+(140) (a+B)]+S5—(1+0)a}.
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255
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258

259

260

261

262

Then, we compute the derivative of f(zp) at 27 _:
flap_)=ap_(1—ap_) [-2c62)_+c6—b—25+ (1+6) (a+ B)] >0,
where —2c¢dxp _ +¢d —b—25+ (1+9) (a+ ) = VA > 0. Hence, Tp_ is unstable. O

We now analyze the stable stationary solutions on the D P-edge under the condition b + .S >
(14 9)5. Specifically, we examine the real-valued roots within the interval (0, 1) of equation
(28). Suppose that this equation has two distinct solutions 1, =5 € (0, 1). This implies that the

discriminant A must satisfy
A=[c6—b—25+(1+0)(a+B)" +4e5[S—(1+8)a] >0

Under this condition, the two distinct solutions are explicitly given by

cé—b—25+(1+5)(a+/@)i\/§

2¢o (3D

T12 =
Based on direct calculations, we will identify three scenarios in the following.

(A1) When
cd—b—2S+(1+0)(a+p) >0,
cd+b+2S—(1+06)(a+p) >0,

both solutions x1, x5 lie within (0,1). Among them, the solution z; is unstable, while the

solution x5 is stable.

(A2) When
0 —b—25+ (1+)(a+p) >0,
d+b+25—(1+4+0)(a+p) <0,

both solutions =1, o are greater than 1.

(A3) Whencd —b— 25+ (1 +9)(a+ ) < 0, both solutions x; and x4 are negative.

We proceed by analyzing case (A1). Combining condition b+ .S > (1+ 0)/ with the case (A1),

we define three critical parameters as

b+ S b+25 —a— 3 a+f8—b-28
H=———1, 0, = 03 = .
! I6; » o2 c+a+p and 03 c—a—p3

If condition ¢ — o — 3 > 0 holds, the signs of d» and 03 are strictly opposite. Specifically, if
09 > 0, then it necessarily follows that 63 < 0. In contrast, under the condition ¢ — a — 3 < 0,
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287

combined with the assumptions outlined in (A1), we must simultaneously have § < 3 and
0 > 9. This scenario warrants further consideration in two distinct cases:

e Ifa+ 8 > b+ 25, it implies that both /3 < 0 and d, < 0, thereby making it impossible

to satisfy the simultaneous inequalities, resulting in a contradiction.

e Ifa+ 5 < b+ 2S5, noting that c = a + b < a + (3, together with the imposed constraints
S <0, a>0,b>0,itis acontradiction to v + 8 < b + 25.

Hence, under the condition ¢ — o — 8 < 0, both cases inevitably lead to logical contradictions,
thus demonstrating that the initial assumptions are invalid in this scenario. Next, we analyze the
condition A > 0. Let f(J) denote

fO)=A=8[(c—a—pB)"+4cB] +20{c(B—a—b)+ (a+B)[(a+B) — (b+29)]}
+(b+2S—a—p)°.

(32)
Notice that f(J) is a quadratic function in ¢ with a positive leading coefficient and satisfies
f(0) > 0. Therefore, if the quadratic does not admit real roots, then f(J) > 0 holds for all
0 € (0,1). If, on the other hand, f(0) = 0 has two distinct real solutions (that is, its discriminant
A’ > 0), denoted by z5_ and x5+ with x5_ < x5 . If both roots lie within the interval (0, 1),
then by the upward-opening nature of f(0), it follows that f(d) > 0 precisely for

0<d<zs5_ or w54 <0<l

Define

T5— if x5 _ exists T54 if x5 4 exists
04 = and 05 = ,
1 otherwise 0 otherwise

and it is obvious that d4 < J5. Specifically, if the corresponding root lies in the interval (0, 1), §
takes that value; otherwise (or if no such root exists), we set 6, = 1 and o5 = 0. Based on the

preceding discussion, we now state the following proposition.

Proposition 4. Let o, 3, c,band S be parameters that satisfy ¢ — o — > 0. If
max {52, (53} < § < min {(51, 54, 1} or max {(52, 53, (55} < § < min {(51, 1},

then the D P-edge admits two fixed points, x1 and xs, with x1, x5 € (0,1) as defined in Egq.
(31). Moreover, 1 is unstable, while x- is stable.

Letdg = 0, = (’J“—V“is(‘”“g)

points by comparing the magnitudes of critical thresholds 41, d4, d5, dg and d7. Given the multi-

and 0; = max {J,, d3}. We analyze the order of stable equilibrium

parametric nature of the system, accurate determination of these critical thresholds inherently
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296

297

298
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300

301

depends on parameter selection. Based on the preceding analysis, we choose the appropriate

parameter values to provide a clear illustration.

With the parameters «, 5, b, ¢, and S fixed appropriately, we explore the relationship between
the sequential emergence of stable equilibrium points and the probability of third-order interac-
tions d. The relationships can be broadly classified into several distinct categories when 05 > 41,
as shown in Fig. 1. Here, d; characterizes the emergence of a stable equilibrium on the CP-edge,
while the relationship between 9, and d; governs the formation of a stable equilibrium on the
DP-edge. Similarly, ¢ determines the stability condition for the equilibria along the CD-edge.
The schematic representation is conceptual rather than quantitative; data points illustrate the
relative ordering (non-strict inequality) of the parameters 61, d4, d5, dg, 07, without implying

specific numerical values.

a b
[ | l [ | [ l J
0 57 56 54 51 1 0 66 67 54 é‘1 1
c d
[ | 1 J | | I l |
0 57 54 56 61 1 O 67 64 61 66 -
e f
[ l J [ l l J
0 s 5, 1 0§ 5 1
D-only stable equilibrium DP-edge: emergent stable equilibrium
CD-edge: emergent stable equilibrium CP-edge: emergent stable equilibrium

Figure 1: Hierarchical emergence of stable equilibria as governed by the third-order interaction
probability ¢ with all other parameters suitably fixed. Panels a-d show the bifurcation sequences
and resulting equilibrium types when stable points arise at the D P-edge. In contrast, e-f illus-
trate scenarios in which no stable equilibria persist at the D P-edge.

For xp = 0, it has (PP) = (0,0, 1). The Jacobian matrix of the system (24) at z(P") is

b+ S—=(1+0)p](k) O
eon = <[<1 +8) 8= (b4 )] () o) ’ .

with eigenvalues A\; = 0 and Ay = [b+ S — (14 0) 5] (k). The stability condition for the
equilibrium point z(P*) = (0,0, 1) is determined by the sign of the expression b+ S — (1+6)2.
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For xp = 0, it has (P") = (0,1, 0). The Jacobian matrix of the system (24) at z("") is

_(SR) (149) (k)
Tlacor = ( 0 —(1+6) (ka+ S<k>) ’ (4)

with eigenvalues \; = S(k) and Ay = — (1 +6) (k) + S(k). Since @ > 0 and S < 0, z(PP)
is stable.

3 Replicator Dynamics in Two-Population Games un-
der Higher-Order Interactions and Punishment Mech-
anisms

In this section, we consider a theoretical model involving two distinct roles, each associated
with two strategies, in a population where individuals participate concurrently in both pairwise
and three-player interactions. Our primary objective is to determine how the proportion of these

two roles affects the prevalence of cooperation in the population.

We denote the two roles by M; and M,, with 7 representing the proportion of individuals in
role M, and 1 — 7 the proportion in role M,. The set of strategies for M, is Sy, = {C, D},
while the set of strategies for M, is Sy, = {P, D2}. Let x¢ € [0,n] and xp, € [0, 7] denote
the proportions of the population adopting strategies C' and D, respectively, constrained by
o + xp, = 1. Similarly, define xp € [0,1 — 5] and xp, € [0,1 — 7] as the proportions for
strategies P and Ds, satisfying xp + xp, = 1 — 1. Moreover, by direct computation, z; = %C
is the proportion of M individuals using strategy C', which implies that the proportion of M,
individuals using strategy D, is 1 — z;. Similarly, 2z, = % is the proportion of M, individuals
using strategy P, while 1 — x5 is the proportion of M, individuals using strategy Ds. For the
pairwise interaction scenario, the payoff matrix is explicitly given by

Ml\ P D, C D MQ\O D, P D,
C 1 S 1 S and Pl1l S—a«a 1 S —a .
D\|\T—-B 0 T 0 D, |T 0 T-B8 0

For three-person interactions, the payoff structure expands due to multiple co-players, denoted

as

M| CC CD, CDy, CP DDy, DDy DyD; D:P Dy;P PP
cl1 ¢ & 1 S S S G G 1,
DT W W T-5 0 0 0 W-8 W—-8 T-28

20



324 and

M, ‘ CC CD; CD, cp DDy, DD, DyDy DP DyP PP
P 1 G—a G-« 1 S—2a S—2a0 S—-2a G—-—a G-« 1 )
Dy | T %74 w  T-p 0 0 0 W—-6 W-p T-205

125 The expected payoffs for each strategy are given by

tc=(1=0)(k)[(1—2c—2p)S+xc+zp|+ k) [(1—:1:0—:1:'p)25

+2(xc +xp)(1 —xc —2p)G + (¢ + xp)ﬂ : (35a)
Tp, =7p, = (1= 8) (k) [(zc + xp)T — xpB] + 6(k) [(zc + 2p)°T — 22p8
+2(zc +2p)(1 —xc —xp)W], (35b)
mp=(1—08) (k) [(1 —2zc —2p)(S — @) + xp + zc] + §(k) [(1 — 2c — zp)*S
+2(zc + zp)(1 — 2c — 2p)G — 2(1 — xc — zp)a + (zc + zp)?] . (35¢)

»s The mean payoff of the population M is then calculated by (m) = x17¢ + (1 — x1)7p,, while
w2 the mean payoff of the population M, is (ms) = xemp + (1 — z3)mp,. Then the evolution in
»s time of the proportion of z; and x5 is given by the replicator equation

iy = x1(7o — (m1))

, (36)
Ty = a(mp — (72))
2o Substituting the expression for () and () into Eq. (10), we have
1 =211 —21)(mc — mp, ),
1 = 21(1 = z1) (¢ — 7p,) 37)

5EQ = .CEQ(l — .Q?g)(’/Tp — 7TD2),
330 Where

o —mp, = 0(k)(we +2p)*(1 = T +2W —2G + S) + (2¢ + zp){k)(1 — S — T) + S{k)
+ap(k)B+ 0(k) [(xc +xp)(T — 142G —2W — S) + zpf]

31 and

Tp —Tp, =Tc —Tp, — (L +0){k)(1 —zc — zp)a.

2 Wealsodenote a = 2(G — W), b=T —1— S and ¢ = a + b. We define the payoff difference

s functions f(x¢,xrp) = m¢ — wp, and g(xc, xp) = Tp — Wp, as

flzc,xp) = [(zc +xp)(cd —b—25) — cd(zc +xp)> + (1 + 8)xpB + S| (k)
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and

g(ﬂfc,xp) =

respectively. Assuming that ; = 0 and 5 = 0, the equilibrium points in Eq. (37) classified

into three distinct categories:

(1) Vertex equilibrium points. Four vertex equilibrium points are given by V; =

(0,1), V3 = (1,0), and V3 = (1, 1).

flxe,zp) — (1 +0)(k)(1 —xc — xp)a,

(070)7 ‘/2 -

(ii) Interior equilibrium point. There exists one interior equilibrium point V5 = (7, x3),

where

*

:L‘l:

(1+0)p—(T-1)

T-1

Arom ==

(I =m)(1+d)5

This equilibrium is meaningful if and only if the condition 7 — 1 = b+ S < (14 ) is

satisfied.

(ii1) Boundary equilibrium points. There are four boundary equilibrium points defined as

follows:
« Vs = (1,2)), with 2
« V7 =(0,2}), with z},
« V3 = (2,0), with z}
o Vo = (2,1), with z}

We turn to studying the stability of these equilibrium points. The Jacobian matrix of the system

(37) is

J = (“ = 2z0) (1, (1= n)az) + 21 (1 = 1) 25

Case (i): The stability of vertex equilibrium points. Substituting the value of 1} =

)

We know that V] is stable if and only if S < 0. Similarly, substituting V5 =

Eq. (38), we have

1’2(1 — ﬂfg)am

J|V1 =

dg

Sk 0
0 S(k)— (1+6)(k)

and V; = (1,1) into Eq. (38), we obtain

J‘VQ = (

f(0,1
0

—n)

0 _
—9(0,1 - n)) e (

22

€ (0,1) satisfying g(n, (1 — n)zy) = 0;
€ (0, 1) satisfying g(0, (1 — n)z}) = 0,
€ (0, 1) satisfying f(nx7,0) = 0;

€ (0, 1) satisfying f(nx},1 —n) = 0.

131(]_ — ZEl)

of

Oxo

(38)
(0,0) into

<07 1)7 V3= (170)7

)

(1 — 2:172)9(77$1, (1 — 77)1’2) + .772(1 _ 332)8379



355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

and

! 0 —9(7%1 _77)

For the equilibrium point V5:

« If f(0,1—n) < 0, it follows that g(0, 1 —n) = f(0,1 —n) — (1+J)(k)na < 0, implying
that V5 is a saddle point.

« If £(0,1—n) > 0, then V5 is a saddle when g(0, 1—7) > 0 and unstable when ¢(0, 1—n) <
0.

For the equilibrium point V3:

« If f(n,0) <0, then g(n,0) = f(n,0) — (14 §)(k)(1 — n)a < 0, indicating that V5 is a
saddle point.

« If f(n,0) > 0, then V5 is a saddle when g(n,0) > 0 and stable when g(n,0) < 0.
For the equilibrium point V:

* Since f(n,1 —n) = gn,1 —n) = (L +6)(k)(1L —n)f — b — 5, Vj is stable when
f(n,1—mn) > 0 and unstable when f(n,1 —n) < 0.

Case (ii): The stability of the interior equilibrium point. Substituting V5 = (z7, z3) into Eq.
(38), since nzj + (1 — n)z3 = Land f(nai, (1 — n)z3) = g(nai, (1 — n)z3) = 0, we have

o ~QM (k) —Q(k) [M — (1 +6)f]
P \-RGE) M — (14 8)a] —R(K)[M — (1+6)(a+8)])

where M = ¢§ + b+ 2S5, Q = nzi(1 — z7) and R = (1 — n)z5(1 — x3). Then we obtain

det(A — J]y.) = A+ MQ(k) Q(k) [M — (1 +9)8]
ARG M — (14 6)a] A+ R{k) [M — (1+6)(a+ B)]
=N+ [(Q+R)M — R(1+6)(a+ B)] (kYA — QR(1 + 6)*(k)*ap.
Given that

A=[(Q+RM—R(1L+6)(a+ B)" (k) +4QR(1 + 6)*(k)’ap > 0,

the characteristic equation det(\ — J|y;) = 0 has two distinct real roots, denoted \; and X,.
Furthermore, since
Mg = —QR(1+6)*(k)*aB < 0,
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it follows that \; and )\, have opposite signs. This indicates that V; is a saddle point.

Case (iii): The stability of boundary equilibrium points. Substituting V5 = (1, x}) into Eq.
(38), and noting that

g(n, (L =n)ay) = f(n, (1 —n)ah) — (1 +0)(1 —n)(1 — 2%)a =0,

yields
_ (=S (L= mn)ay) 0
‘]‘VG - /

!
z5(1 — 4 Bxl‘VG z5(1 — af am’VG

Here, the term 99 | gatisfies that

axg‘Vg
89 S|y, = (=) (=28 g+ (1 =) + 0 = (b+25) + (1+8)(a+ )}

Moreover, x, satisfies the quadratic equation

— cd(1 = m)*(2h)* + 25 [(1 = n)ed + (L + 0)(1 = n)(a + B) — 2con(1 — 1)
—(1=n)(b+2S)] —cdn®* + cdn —n(b+2S) — (1 —n)(1 +d)a+ S = 0.
Since f(n, (1 —n)zy) = (1 + §)(k)(1 —n)(1 — 25)a > 0, if one selects appropriate values

for a, 3, ¢, S, mand 6 so that the roots x5, . with 7, < x5 |, lie within the interval (0,1), it

follows that a%‘ (e ) < 0 and 2y ) > 0. Consequently, the equilibrium point (1, z5 . )
+ p— b

is stable and (1, 25 _ ) is a saddle pomt

By substituting V7 = (0, x%) into Eq. (38), and noting that

9(0, (@ = n)ay) = f(0,(1 —n)zh) — (1 +6)(k) [1 — (1 = n)z5] a =0,

T = ( F0,(1 = ) 0 )

(1 —ah) g2, ap(l—ap) g2,

we obtain

Here, the term ;—9‘ satisfies that
o | V7

dg

a—@!w = (1 = n)(k) {—2cdzp(1 —=n) +cd — (b+25) + (L +5)(a+ B)}.

Since f(0, (1 —n)xh) = (1 4+ 0)(k) [1 — (1 — n)zb] o > 0, V7 is unstable when 89 |v > (0 and
becomes a saddle point when ;—m’; |V7 < 0.

24



389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

Similarly, substituting V5 = (2, 0) into Eq. (38), and noting that f(nz,0) = 0, we have

0 0
Il = :v’l(l—a:i)%\vs xi(l—x’l)a—x’;\vg _
; 0 g(nz1,0)

Since g(nx},0) = —(140)(k)(1—2n)a < 0, the equilibrium point V5 is stable when <0

> 0.

ol
and becomes a saddle point when ﬁ’ o

dz1 Vg
Finally, we analyze the stability of the equilibrium point Vy. Since f(z}7n,1) = 0, the Jacobian
evaluated at Vj is given by

0 0
J|V _ xll(l_x/l)a_;i‘vg xll(l_xll)a_gi;‘vg
’ 0 —9(77~’Ul1a 1)

Since g(nz),1) = —(1 + 0)(k)n(l — z})a < 0, it follows that the equilibrium V4 is unstable

when > (), and becomes a saddle point when < 0.

o ol
In fact, the behavior of V7, V5 and V4 is analogous to that of V. The unknowns =} and z, are
determined by a quadratic function with a negative leading coefficient. Setting this function
equal to zero, the existence of roots within the interval (0,1) confirms the presence of the cor-
responding equilibria V7, Vg and Vy. Furthermore, analyzing the sign of the derivative at these

roots determines the stability of each equilibrium.
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