

Supplementary Information: Punishment Induces Secondary Cooperation within Structured Populations Facing Social Dilemmas

Huo Wei^{1,3} Juyi Li^{2,3} * Qi Su² †

¹School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

² Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China

³These authors contributed equally to this work.

*Correspondence: 2020202010069@whu.edu.cn

†Correspondence: qisu@sjtu.edu.cn

1 Contents

2	1 Stochastic dynamics of higher-order interactions in finite populations	3
3	1.1 Evolutionary process Modeling	4
4	1.2 Applications in three strategies	6
5	1.3 Stationary Distribution Analysis	8
6	2 Replicator dynamics in higher-order interactions with punishment mechanisms	9
7	2.1 Governing equation derivation	9
8	2.2 Stability criteria and phase transitions	10
9	3 Replicator Dynamics in Two-Population Games under Higher-Order Interactions and Punishment Mechanisms	20
10		

11 1 Stochastic dynamics of higher-order interactions in 12 finite populations

13 We consider a finite population system consisting of Z players who participate simultaneously in
14 M distinct games. Each game may involve pairwise (low-order) or multi-player (higher-order)
15 interactions. Each player adopts a strategy from a finite set $S = \{S_1, S_2, \dots, S_N\}$. Let $X_k \in \mathbb{N}$
16 represent the number of players choosing strategy S_k , with the constraint $\sum_{i=1}^N X_i = Z$. To
17 model these interactions, we consider the hypergraph $\mathcal{H}(\mathcal{V}, \mathcal{E})$, where the vertex set \mathcal{V} , with
18 $|\mathcal{V}| = Z$, represents the Z players, and the hyperedge set \mathcal{E} , with $|\mathcal{E}| = M$ corresponds to the
19 M games. Each hyperedge e_g , for $g \in \{1, \dots, M\}$, specifies a distinct game involving two or
20 more participants. And the size of each hyperedge e_g is $q_g = |e_g| = \sum_{i=1}^Z b_{ig}$, which captures
21 the number of participants in the game g . This hypergraph structure is encoded by a $Z \times M$
22 incidence matrix $\mathcal{B} = (b_{ig})$, where $b_{ig} = 1$ if the player i participates in the game g , and $b_{ig} = 0$
23 otherwise. The hyperdegree of a player i is defined as $k_i = \sum_{g=1}^M b_{ig}$, representing the number
24 of games that the player joins. Accordingly, the average hyperdegree in the population is given
25 by $\langle k \rangle = \frac{1}{Z} \sum_{i=1}^Z k_i$.

26 Specifically, in contexts characterized by frequent interactions among individuals, cumulative
27 payoffs depend predominantly on the frequency distribution of strategies within the population.
28 For instance, considering a well-mixed population composed of j cooperators and $N - j$ defectors
29 in social dilemmas, the cumulative payoffs for cooperators (π_C) and defectors (π_D) are
30 given respectively by

$$\pi_C = (j - 1)R + (N - j)S \text{ and } \pi_D = jT + (N - j - 1)P,$$

31 where R , S , T , and P are the standard payoff parameters defining the underlying game dy-
32 namics [1, 2]. However, in scenarios with higher-order interactions, cumulative payoffs for in-
33 dividuals in such high-order structures must incorporate contributions from group interactions
34 beyond pairs, considering the frequency and size of interaction groups (hyperedges). Thus, un-
35 der higher-order interactions, cumulative payoffs become explicitly dependent on the proportion
36 and composition of hyperedges, and can be generalized as

$$\pi_{S_i} = \sum_k \rho_k \sum_{e_g \in \mathcal{G}_k} \Pi_{S_i}(e_g),$$

37 where ρ_k denotes the proportion of hyperedges of order k , \mathcal{G}_k represents the set of all hyperedges
38 of size k involving the focal player, and $\Pi_{S_i}(e_g)$ denotes the payoff of the focal player when
39 interacting within the hyperedge e_g .

40 1.1 Evolutionary process Modeling

41 At each time step, an individual is randomly selected from the population as the focal player.
 42 Subsequently, another individual is randomly chosen from among the neighbors of the focal
 43 player in a hypergraph, where connections are defined by hyperedges of varying sizes. During
 44 each interaction, the focal player's payoff depends on its own strategy as well as the strategies
 45 of the other participants in the relevant hyperedge.

46 Following this interaction, the focal player updates its strategy according to the following rule.
 47 With probability μ , the focal player's current strategy, denoted by S_i , undergoes a mutation
 48 process, whereby it is replaced by an alternative strategy selected randomly from the set of all
 49 available strategies. With probability $1 - \mu$, the focal player attempts to imitate the neighbor's
 50 strategy S_j , adopting it with the probability given by the Fermi function:

$$p = \frac{1}{1 + \exp[-\omega(\pi_{S_j} - \pi_{S_i})]}.$$

51 Here, π_{S_i} and π_{S_j} represent the cumulative payoffs obtained by the focal player and the selected
 52 neighbor, respectively, while $\omega \geq 0$ characterizes the intensity of selection. Under strong se-
 53 lection ($\omega \rightarrow \infty$), the imitation probability p converges to a deterministic outcome: it becomes
 54 $p = 1$ or $p = 0$, depending on the sign of the payoff difference. In contrast, under weak selec-
 55 tion ($\omega \rightarrow 0$), the probability of imitation converges to $1/2$, reflecting an unbiased and random
 56 decision.

57 We define $T_i^\pm(\mathbf{X})$ as the probability that the number of players employing strategy S_i increases
 58 (+) or decreases (-) by one when the system is in state $\mathbf{X} = (X_1, X_2, \dots, X_N)$. It should be
 59 noted that, as previously defined, each X_i denotes the number of individuals who select the
 60 strategy S_i . Specifically, the probability of an increase in the number of players adopting S_i is
 61 given by the sum

$$T_i^+(\mathbf{X}) = \sum_{j, j \neq i} T_{ij}^+(\mathbf{X}),$$

62 where $T_{ij}^+(\mathbf{X})$ denotes the probability that the number of players adopting S_i increases by one
 63 while that of players adopting S_j decreases by one. This probability is expressed as

$$T_{ij}^+(\mathbf{X}) = (1 - \mu) \frac{1}{1 + \exp[-\omega(\pi_{S_i} - \pi_{S_j})]} \frac{X_i}{Z} \frac{X_j}{Z} + \mu \frac{X_j}{(N - 1)Z}.$$

64 Similarly, the probability that the number of players adopting S_i decreases by one is given by

$$T_i^-(\mathbf{X}) = \sum_{j, j \neq i} T_{ij}^-(\mathbf{X}),$$

65 with

$$T_{ij}^-(\mathbf{X}) = (1 - \mu) \frac{1}{1 + \exp[\omega(\pi_{S_i} - \pi_{S_j})]} \frac{X_i}{Z} \frac{X_j}{Z} + \mu \frac{X_i}{(N-1)Z}.$$

66 Indeed, the probability density function, $P^\tau(\mathbf{X})$, i.e. the prevalence of each state at time τ ,
67 evolves in time according to the master equation [3]

$$\begin{aligned} & P^{\tau+1}(\mathbf{X}) - P^\tau(\mathbf{X}) \\ &= \sum_i \sum_{j, j \neq i} P^\tau(X_1, \dots, X_i - 1, \dots, X_j + 1, \dots, X_N) T_{ij}^+(X_1, \dots, X_i - 1, \dots, X_j + 1, \dots, X_N) \\ &+ \sum_i \sum_{j, j \neq i} P^\tau(X_1, \dots, X_i + 1, \dots, X_j - 1, \dots, X_N) T_{ij}^-(X_1, \dots, X_i + 1, \dots, X_j - 1, \dots, X_N) \\ &- \sum_i \sum_{j, j \neq i} P^\tau(\mathbf{X}) T_{ij}^-(\mathbf{X}) - \sum_i \sum_{j, j \neq i} P^\tau(\mathbf{X}) T_{ij}^+(\mathbf{X}) \end{aligned} \quad (1)$$

68 Introducing the notation $x_i = \frac{X_i}{Z}$, $t = \frac{\tau}{Z}$ and the probability density $\rho(\mathbf{x}, t) = Z P^\tau(\mathbf{X})$, we have

$$\begin{aligned} & \rho(\mathbf{x}, t + Z^{-1}) - \rho(\mathbf{x}, t) \\ &= \sum_i \sum_{j, j \neq i} \rho(x_1, \dots, x_i - Z^{-1}, \dots, x_j + Z^{-1}, \dots, x_N, t) T_{ij}^+(x_1, \dots, x_i - Z^{-1}, \dots, x_j + Z^{-1}, \dots, x_N) \\ &+ \sum_i \sum_{j, j \neq i} \rho(x_1, \dots, x_i + Z^{-1}, \dots, x_j - Z^{-1}, \dots, x_N, t) T_{ij}^-(x_1, \dots, x_i + Z^{-1}, \dots, x_j - Z^{-1}, \dots, x_N) \\ &- \sum_i \sum_{j, j \neq i} \rho(\mathbf{x}, t) T_{ij}^-(\mathbf{x}) - \sum_i \sum_{j, j \neq i} \rho(\mathbf{x}, t) T_{ij}^+(\mathbf{x}). \end{aligned}$$

69 Here $\mathbf{x} = (x_1, x_2, \dots, x_N)$ and $\sum_{i=1}^N x_i = 1$. For $Z \gg 1$, applying Taylor expansion to the
70 probability densities and the transition probabilities yields

$$\frac{d\rho(\mathbf{x}, t)}{dt} = - \sum_{i=1}^N \frac{\partial}{\partial x_i} (A_i(\mathbf{x}) \rho(\mathbf{x}, t)) + \frac{1}{2} \sum_{i,j=1}^N \frac{\partial^2}{\partial x_i \partial x_j} (B_{ij}(\mathbf{x}) \rho(\mathbf{x}, t)). \quad (2)$$

71 The drift vector $A(\mathbf{x})$, which characterizes the deterministic component of evolutionary dynam-
72 ics, is defined as

$$A_i(\mathbf{x}) = \sum_{j, j \neq i} (T_{ij}^+(\mathbf{x}) - T_{ij}^-(\mathbf{x})). \quad (3)$$

73 Correspondingly, the diffusion matrix $B(\mathbf{x})$, which captures the stochastic fluctuations inherent
74 in evolutionary dynamics, is expressed as

$$B_{ij}(\mathbf{x}) = \frac{1}{Z} \left[\delta_{ij} \sum_k (T_{ik}^+(\mathbf{x}) + T_{ik}^-(\mathbf{x})) - (T_{ij} + T_{ji}) \right]. \quad (4)$$

75 Here, the Kronecker delta δ_{ij} denotes the identity indicator (with $\delta_{ij} = 1$ if $i = j$, and 0 other-

76 wise). For large but finite Z , Eq. (2) has the form of a Fokker-Planck equation, which has an
77 equivalent Langevin equation

$$\dot{\mathbf{x}} = A(\mathbf{x}) + \Sigma(\mathbf{x})\xi$$

78 where $B = \Sigma\Sigma^T$ and ξ is Gaussian noise. In fact, this is a coupled system, and the evolution
79 equations can be described by the first $N - 1$ equations.

80 1.2 Applications in three strategies

81 In this subsection, we investigate evolutionary dynamics on random hypergraphs consisting of
82 both pairwise and three-player interactions. Specifically, we consider hypergraphs of size Z ,
83 comprising n_1 two-player interactions and n_2 three-player group interactions. The hypergraph
84 structure is characterized by the average hyperdegree $\langle k \rangle = \frac{1}{Z} \sum_{i=1}^Z k_i$, indicating the average
85 number of hyperedges each node participates in. Consequently, a randomly chosen focal player
86 engages in a three-player interaction with probability $\delta = \frac{n_2}{Z\langle k \rangle}$, and participates in a pairwise
87 interaction with probability $1 - \delta$. Here, the total number of interactions satisfies $Z\langle k \rangle = n_1 + n_2$,
88 with $n_1 = \sum_i \sum_{g|q_g=2} b_{ig}$ representing the sum of elements of the incidence matrix restricted to
89 hyperedges of size two, and $n_2 = \sum_i \sum_{g|q_g=3} b_{ig}$ is hyperedges of size three [4].

90 In order to extend the traditional social dilemma game framework, we incorporate peer pun-
91 ishment as an additional strategic dimension. Thus, players may select among three strategies:
92 cooperation (C), defection (D), and peer punishment (P). A player adopting the punishment
93 strategy incurs a personal cost $\alpha > 0$ each time they punish a defector. In contrast, the punished
94 defective player is charged with a fine $\beta > 0$.

95 At each time step, a randomly selected focal player participates either in a 3-person (namely
96 3-game) or a 2-person (2-game) interaction, according to the probabilities defined above. For
97 the pairwise interaction scenario, the payoff matrix is explicitly given by:

$$\begin{array}{c|ccc} & C & D & P \\ \hline C & 1 & S & 1 \\ D & T & 0 & T - \beta \\ P & 1 & S - \alpha & 1 \end{array} \quad (5)$$

98 In this matrix, the parameters S and T represent the classic payoff structures for social dilemmas.
99 Specifically, the Snowdrift game corresponds to payoff rankings $T > 1 > S > 0$, the Stag-Hunt
100 game to $1 > T > 0 > S$, and the Prisoner's Dilemma to $T > 1 > 0 > S$ [1].

101 For three-person interactions, the payoff structure expands due to multiple co-players, denoted

102 as

$$\begin{array}{c|cccccc}
 & CC & CD & CP & DD & DP & PP \\
 \hline
 C & 1 & G & 1 & S & G & 1 \\
 D & T & W & T - \beta & 0 & W - \beta & T - 2\beta \\
 P & 1 & G - \alpha & 1 & S - 2\alpha & G - \alpha & 1
 \end{array} \quad (6)$$

103 We consider a finite population of size Z , partitioned into three discrete strategic types: cooper-
 104 ators (C, $X_C = i$), defectors (D, $X_D = j$) and peer punishers (P, $X_P = Z - i - j$). The relative
 105 frequencies of these strategies are defined as

$$x_C = \frac{i}{Z}, \quad x_D = \frac{j}{Z}, \quad \text{and} \quad x_P = \frac{Z - i - j}{Z} = 1 - x_C - x_P.$$

106 The state of the system is represented by the vector $\mathbf{X} = (i, j, Z - i - j)$ where $i, j \in \mathbb{N}$,
 107 with the transition $\mathbf{X} \rightarrow \mathbf{X}' = (i + \delta_1, j + \delta_2, Z - i - j + \delta_3)$ following a death-birth process:
 108 components exchange unit mass via vectors

$$(\delta_1, \delta_2, \delta_3) \in \{(\pm 1, \mp 1, 0), (\pm 1, 0, \mp 1), (0, \pm 1, \mp 1)\},$$

109 yielding six transitions per interior state. Then the cumulative payoffs for cooperators (π_C),
 110 defectors (π_D) and punishers (π_P), respectively, are given respectively by

$$\pi_C = \langle k \rangle \{ (1 - \delta) (x_C + x_D S + x_P) + \delta [(x_C + x_P)^2 + 2(x_C + x_P)x_D G + x_D^2 S] \}, \quad (7a)$$

$$\begin{aligned} \pi_D = \delta \langle k \rangle & [(x_C + x_P)^2 T + 2(x_C + x_P)x_D W - 2x_P \beta] \\ & + (1 - \delta) \langle k \rangle [x_C T + x_P (T - \beta)], \end{aligned} \quad (7b)$$

$$\begin{aligned} \pi_P = \delta \langle k \rangle & [(x_C + x_P)^2 + 2(x_C + x_P)x_D G + x_D^2 S - 2x_D \alpha] \\ & + (1 - \delta) \langle k \rangle [x_C + x_D (S - \alpha) + x_P]. \end{aligned} \quad (7c)$$

111 Thus, as described in subsection 1.1, we have

$$\begin{aligned}
 T_{13}^+(\mathbf{X}) &= T_{P \rightarrow C}(\mathbf{X}) = (1 - \mu) \frac{1}{1 + \exp[-\omega(\pi_C - \pi_P)]} x_C x_P + \mu \frac{x_P}{N - 1}, \\
 T_{12}^+(\mathbf{X}) &= T_{D \rightarrow C}(\mathbf{X}) = (1 - \mu) \frac{1}{1 + \exp[-\omega(\pi_C - \pi_D)]} x_C x_D + \mu \frac{x_D}{N - 1}, \\
 T_{23}^+(\mathbf{X}) &= T_{P \rightarrow D}(\mathbf{X}) = (1 - \mu) \frac{1}{1 + \exp[-\omega(\pi_D - \pi_P)]} x_D x_P + \mu \frac{x_P}{N - 1}.
 \end{aligned}$$

112 In a similar manner, expressions for T_{12}^- , T_{13}^- and T_{23}^- can be obtained. The drift vector A and

¹¹³ diffusion matrix B in Eq. (2) are specifically defined as

$$A = \begin{pmatrix} (1-\mu) [x_C x_P \tanh \frac{\omega}{2}(\pi_C - \pi_P) + x_C x_D \tanh \frac{\omega}{2}(\pi_C - \pi_D)] + \frac{\mu}{2} (1 - 3x_C) \\ (1-\mu) [x_D x_P \tanh \frac{\omega}{2}(\pi_D - \pi_P) - x_C x_D \tanh \frac{\omega}{2}(\pi_C - \pi_D)] + \frac{\mu}{2} (1 - 3x_D) \\ (1-\mu) [-x_C x_P \tanh \frac{\omega}{2}(\pi_C - \pi_P) - x_D x_P \tanh \frac{\omega}{2}(\pi_D - \pi_P)] + \frac{\mu}{2} (1 - 3x_P) \end{pmatrix},$$

¹¹⁴ and

$$B = \frac{(1-\mu)}{Z} \begin{pmatrix} x_C(1-x_C) & -x_C x_D & -x_C x_P \\ -x_C x_D & x_D(1-x_D) & -x_D x_P \\ -x_C x_P & -x_D x_P & x_P(1-x_P) \end{pmatrix} + \frac{\mu}{2Z} \begin{pmatrix} 1+x_C & x_C+x_D & x_C+x_P \\ x_C+x_D & 1+x_D & x_D+x_P \\ x_C+x_P & x_D+x_P & 1+x_P \end{pmatrix}.$$

¹¹⁵ Taking the limit $Z \rightarrow \infty$, the diffusion term vanishes as $\mathcal{O}(Z^{-1})$, giving deterministic dynamics

¹¹⁶

$$\dot{x}_C = (1-\mu) \left[x_C x_P \tanh \frac{\omega}{2}(\pi_C - \pi_P) + x_C x_D \tanh \frac{\omega}{2}(\pi_C - \pi_D) \right] + \frac{\mu}{2} (1 - 3x_C), \quad (8a)$$

$$\dot{x}_D = (1-\mu) \left[x_D x_P \tanh \frac{\omega}{2}(\pi_D - \pi_P) - x_C x_D \tanh \frac{\omega}{2}(\pi_C - \pi_D) \right] + \frac{\mu}{2} (1 - 3x_D), \quad (8b)$$

$$\dot{x}_P = (1-\mu) \left[-x_C x_P \tanh \frac{\omega}{2}(\pi_C - \pi_P) - x_D x_P \tanh \frac{\omega}{2}(\pi_D - \pi_P) \right] + \frac{\mu}{2} (1 - 3x_P). \quad (8c)$$

¹¹⁷ 1.3 Stationary Distribution Analysis

¹¹⁸ We still consider Z players who simultaneously engage in M games, with each player selecting a
¹¹⁹ strategy from a set comprising N distinct strategies. The stationary distribution \bar{P} can be derived
¹²⁰ by setting the left-hand side of Eq. (1) to zero, thus the equation reduces to an eigenvector
¹²¹ problem. Specifically, this involves solving the eigenvalue equation $\mathcal{T}^\top \bar{P} = \bar{P}$, where \mathcal{T} is
¹²² the stochastic matrix that encodes the permissible state transitions. The state space \mathcal{S} consists
¹²³ of configurations $\mathbf{X} = (X_1, X_2, \dots, X_N)$, $\sum_{i=1}^N X_i = Z$. Consequently, the cardinality of this
¹²⁴ state space is $|\mathcal{S}| = \binom{Z+N-1}{N-1}$.

¹²⁵ Each off-diagonal element $\mathcal{T}_{\mathbf{X} \rightarrow \mathbf{X}'}$ corresponds to transitions between adjacent states $\mathbf{X}' = \mathbf{X} + \boldsymbol{\delta}$,
¹²⁶ where the vector $\boldsymbol{\delta} = (\delta_1, \dots, \delta_N)$ contains exactly two nonzero entries, specifically $\delta_i =$
¹²⁷ $+1$ and $\delta_j = -1$, representing a shift of one individual from strategy S_j to strategy S_i . The
¹²⁸ corresponding transition probability from state \mathbf{X} to \mathbf{X}' is determined by the given rule

$$\mathcal{T}_{\mathbf{X} \rightarrow \mathbf{X}'} = T_{ij}^+(\mathbf{X}) = (1-\mu) \frac{1}{1 + \exp[-\omega(\pi_{S_i} - \pi_{S_j})]} \frac{X_i}{Z} \frac{X_j}{Z} + \mu \frac{X_j}{(N-1)Z}.$$

¹²⁹ It is evident that diagonal elements of the matrix \mathcal{T} , denoted by $\mathcal{T}_{\mathbf{X} \rightarrow \mathbf{X}}$, satisfy the condition
¹³⁰ $\mathcal{T}_{\mathbf{X} \rightarrow \mathbf{X}} = 1 - \sum_{\mathbf{X}' \neq \mathbf{X}} \mathcal{T}_{\mathbf{X} \rightarrow \mathbf{X}'}$. For example, in the case of $Z = 2$ and $N = 3$, the system exhibits
¹³¹ six distinct states, each represented by an ordered triplet (i, j, k) satisfying $i + j + k = 2$.

¹³² Here, the non-negative integers i , j , and k correspond to the number of individuals adopting
¹³³ cooperation (C), defection (D), and punishment (P) strategies, respectively. The corresponding
¹³⁴ state transition matrix is given by

	(0, 0, 2)	(0, 1, 1)	(0, 2, 0)	(1, 1, 0)	(1, 0, 1)	(2, 0, 0)
(0, 0, 2)	$1 - \mu$	$\frac{\mu}{2}$	0	0	$\frac{\mu}{2}$	0
(0, 1, 1)	$\mathcal{F}(\pi_D - \pi_P)$	0	$\mathcal{F}(\pi_P - \pi_D)$	$\frac{\mu}{4}$	$\frac{\mu}{4}$	0
(0, 2, 0)	0	$\frac{\mu}{2}$	$1 - \mu$	$\frac{\mu}{2}$	0	0
(1, 1, 0)	0	$\frac{\mu}{4}$	$\mathcal{F}(\pi_C - \pi_D)$	0	$\frac{\mu}{4}$	$\mathcal{F}(\pi_D - \pi_C)$
(1, 0, 1)	$\mathcal{F}(\pi_C - \pi_P)$	$\frac{\mu}{4}$	0	$\frac{\mu}{4}$	0	$\mathcal{F}(\pi_P - \pi_C)$
(2, 0, 0)	0	0	0	$\frac{\mu}{2}$	$\frac{\mu}{2}$	$1 - \mu$

¹³⁵ where $\mathcal{F}(x)$ is given by

$$\mathcal{F}(x) = (1 - \mu) \frac{1}{1 + \exp(\omega x)} + \frac{\mu}{4}.$$

¹³⁶ The payoffs π_C , π_D , and π_P for cooperation, defection, and punishment strategies, respectively,
¹³⁷ are analytically determined through Eq. (7) under the condition $\delta = 0$, where δ represents the
¹³⁸ probability of interaction with three players.

¹³⁹ 2 Replicator dynamics in higher-order interactions with ¹⁴⁰ punishment mechanisms

¹⁴¹ 2.1 Governing equation derivation

¹⁴² We consider evolutionary dynamics in an infinite population limit ($Z \rightarrow \infty$). Under the condition
¹⁴³ of weak selection ($\omega \ll 1$) and in the absence of mutation ($\mu = 0$), the evolutionary process
¹⁴⁴ (8) can be accurately captured by the replicator equation. Given the payoffs π_C , π_D , and π_P pre-
¹⁴⁵ viously defined in equations (7), the temporal evolution of the frequency of each strategy in a
¹⁴⁶ well-mixed population is described by

$$\frac{dx_i}{dt} = x_i (\pi_i - \langle \pi \rangle), \quad i = C, D, P, \quad (9)$$

¹⁴⁷ where $\langle \pi \rangle = x_C \pi_C + x_D \pi_D + x_P \pi_P$ represents the average payoff of the entire population. By
¹⁴⁸ explicitly substituting the average payoff $\langle \pi \rangle$ into Eq. (9), we obtain the detailed expressions

¹⁴⁹ governing the temporal evolution of each frequency of the strategy as follows:

$$\frac{dx_C}{dt} = x_C (1 - x_C) (\pi_C - \pi_D) + x_C x_P (\pi_D - \pi_P), \quad (10a)$$

$$\frac{dx_D}{dt} = x_D (1 - x_D) (\pi_D - \pi_C) + x_D x_P (\pi_C - \pi_P), \quad (10b)$$

$$\frac{dx_P}{dt} = x_P (1 - x_P) (\pi_P - \pi_C) + x_D x_P (\pi_C - \pi_D). \quad (10c)$$

¹⁵⁰ Let $a := 2(G - W)$, $b := T - S - 1$ and $c := a + b$. In the case of the Prisoner's Dilemma, it
¹⁵¹ is given that for this game $S < 0$, $a > 0$ and $b + S = T - 1 > 0$. Therefore, we conclude that
¹⁵² $c > 0$. Substituting Eq. (7) into Eq. (10), we obtain the following expressions:

$$\begin{aligned} \frac{dx_C}{dt} = & \langle k \rangle \{ -\delta x_C x_D^3 c + \delta x_C x_D [x_D c + x_P (\alpha + \beta)] + x_C x_D^2 (b + 2S - \alpha - \beta) \\ & + x_C x_D (-b - S + \alpha + \beta) - x_C^2 x_D (\alpha + \beta) \}, \end{aligned} \quad (11a)$$

$$\begin{aligned} \frac{dx_D}{dt} = & \langle k \rangle \{ \delta x_D^3 (1 - x_D) c + \delta x_D (1 - x_D) [-x_D (c - \alpha) - x_P \beta] - \delta x_C x_D^2 \alpha - x_D^2 x_C \alpha \\ & + x_D^2 (1 - x_D) (-b - 2S + \alpha + \beta) + x_C x_D (1 - x_D) \beta + x_D (1 - x_D) (b + S - \beta) \}, \end{aligned} \quad (11b)$$

$$\begin{aligned} \frac{dx_P}{dt} = & \langle k \rangle \{ -\delta x_D^3 x_P c + \delta x_D x_P [x_D c + x_P (\alpha + \beta) - \alpha] + x_P x_D^2 (b + 2S) \\ & + x_D x_P^2 (\alpha + \beta) + x_D x_P (-b - S - \alpha) \}. \end{aligned} \quad (11c)$$

¹⁵³ 2.2 Stability criteria and phase transitions

¹⁵⁴ We denote the state of the system $\mathbf{x} = (x_C, x_D, x_P)$. Solving $\frac{dx_i}{dt} = 0$, $i = C, D, P$, we obtain
¹⁵⁵ equilibrium points which can be divided into three categories:

¹⁵⁶ (i) $x_D = 0$, $x_C + x_P = 1$, i.e., a point on the CP -edge, $x^{(CP)} = (x_C^{(CP)}, 0, x_P^{(CP)})$.

¹⁵⁷ (ii) $x_P = 0$, $x_C + x_D = 1$, i.e., a point on the CD -edge, $x^{(CD)} = (x_C^{(CD)}, x_D^{(CD)}, 0)$.

¹⁵⁸ (iii) $x_C = 0$, $x_D + x_P = 1$, i.e., a point on the DP -edge, $x^{(DP)} = (0, x_D^{(DP)}, x_P^{(DP)})$.

¹⁵⁹ **Proposition 1.** *Let $\delta \in (0, 1]$ denote the probability of a three-player interaction and let $\alpha > 0$
¹⁶⁰ represent the cost incurred for peer punishment. Then, the dynamical system described by Eq.
¹⁶¹ (11) does not admit interior equilibria within the strategy simplex $x_C + x_D + x_P = 1$.*

¹⁶² *Proof.* Assuming $x_C, x_D, x_P \neq 0$, for $\frac{d\rho}{dt} = 0$, the right-hand sides of Eq. (11)_a and Eq. (11)_c

¹⁶³ can be reduced to

$$-\delta x_D^2 c + \delta [x_D c + x_P (\alpha + \beta)] + x_D (b + 2S - \alpha - \beta) - b - S + \alpha + \beta - x_C (\alpha + \beta) = 0, \quad (12a)$$

$$-\delta x_D^2 c + \delta [x_D c + x_P (\alpha + \beta) - \alpha] + x_D (b + 2S) + x_P (\alpha + \beta) - b - S - \alpha = 0. \quad (12b)$$

¹⁶⁴ To admit a solution where all variables are strictly positive under the constraint $x_C + x_D + x_P = 1$,
¹⁶⁵ the system must satisfy

$$(1 + \delta) \alpha = 0,$$

¹⁶⁶ which is in contradiction with the definition of α . □

¹⁶⁷ **Case (i): The stability of $x^{(CP)}$** = $\left(x_C^{(CP)}, 0, x_P^{(CP)}\right)$. When $x_D = 0$, it follows that $\frac{dx_C}{dt} = \frac{dx_P}{dt}$,
¹⁶⁸ implying that strategies C and P are indistinguishable. Under this condition, it is appropriate to
¹⁶⁹ consider the combined proportion $x_C + x_P$ as a single state variable. Thus, the system can be
¹⁷⁰ effectively analyzed by examining the dynamics of $\frac{dx_D}{dt}$ and $\frac{d(x_C+x_P)}{dt}$. Since $x_C + x_P = 1 - x_D$,
¹⁷¹ substituting this identity directly yields

$$\begin{aligned} \frac{dx_D}{dt} = \langle k \rangle \{ & \delta x_D^3 (1 - x_D) c + \delta x_D (1 - x_D) [-x_D (c - \alpha) - x_P \beta] - \delta x_C x_D^2 \alpha - x_D^2 x_C \alpha \\ & + x_D^2 (1 - x_D) (-b - 2S + \alpha + \beta) + x_C x_D (1 - x_D) \beta + x_D (1 - x_D) (b + S - \beta) \}. \end{aligned}$$

¹⁷² The element of the single-order Jacobian matrix is

$$\begin{aligned} \frac{d\dot{x}_D}{dx_D} \Big|_{x^{(CP)}} = \langle k \rangle \{ & 3\delta x_D^2 (1 - x_D) c - \delta x_D^3 c - 2\delta x_D (1 - x_D) (c - \alpha) + \delta x_D^2 (c - \alpha) + \delta x_D x_P \beta \\ & - \delta (1 - x_D) x_P \beta - 2(1 + \delta) x_C x_D \alpha + [2x_D (1 - x_D) - x_D^2] (-b - 2S + \alpha + \beta) \\ & + x_C (1 - x_D) \beta - x_C x_D \beta + (1 - x_D) (b + S - \beta) - x_D (b + S - \beta) \}. \end{aligned} \quad (13)$$

¹⁷³ By substituting the expression for $x^{(CP)}$ into Eq. (13), we have

$$\frac{d\dot{x}_D}{dx_D} \Big|_{x^{(CP)}} = \langle k \rangle \left[-(1 + \delta) x_P^{(CP)} \beta + b + S \right]. \quad (14)$$

¹⁷⁴ Therefore, the equilibrium state $x^{(CP)}$ is stable if and only if $x_C^{(CP)} < x_{C,*}^{(CP)}$ (or equivalently,
¹⁷⁵ $x_P^{(CP)} > x_{P,*}^{(CP)}$), where

$$x_{C,*}^{(CP)} = 1 - \frac{b + S}{(1 + \delta) \beta}, \quad (15)$$

¹⁷⁶ and correspondingly,

$$x_{P,*}^{(CP)} = \frac{b + S}{(1 + \delta) \beta}.$$

¹⁷⁷ Although every point on the CP -edge is an equilibrium, only those points satisfying $x_C^{(CP)} <$

178 $x_{C,*}^{(CP)}$ exhibit stability. Through direct calculation, we derive the following explicit conditions:

- 179 • If inequality $b + S < 0$ holds, it necessarily follows that $x_{C,*}^{(CP)} > 1$. Consequently, all
180 points on the CP -edge are stable.
- 181 • If condition $b + S > (1 + \delta)\beta$ is satisfied, it implies $x_{C,*}^{(CP)} < 0$. Thus, all points on the
182 CP -edge are unstable.
- 183 • If inequality $0 < b + S < (1 + \delta)\beta$ holds, we have $0 < x_{C,*}^{(CP)} < 1$. In this case, the points
184 on the CP -edge that satisfy $x_C^{(CP)} < x_{C,*}^{(CP)}$ are stable.

185 **Case (ii): The stability of $x^{(CD)} = (x_C^{(CD)}, x_D^{(CD)}, 0)$.** We cancel $x_P = 1 - x_C - x_D$ and study
186 the dynamics depicted by $\frac{dx_C}{dt}$ and $\frac{dx_D}{dt}$,

$$\begin{aligned} \frac{dx_C}{dt} &= \langle k \rangle \{ -\delta x_C x_D^3 c + \delta x_C x_D [x_D c + (1 - x_C - x_D)(\alpha + \beta)] \\ &\quad + x_C x_D^2 (b + 2S - \alpha - \beta) + x_C x_D (-b - S + \alpha + \beta) - x_C^2 x_D (\alpha + \beta) \}, \end{aligned} \quad (16a)$$

$$\begin{aligned} \frac{dx_D}{dt} &= \langle k \rangle \{ \delta x_D^3 (1 - x_D) c + \delta x_D (1 - x_D) [-x_D (c - \alpha) - (1 - x_C - x_D) \beta] \\ &\quad - \delta x_C x_D^2 \alpha - x_D^2 x_C \alpha + x_D^2 (1 - x_D) (-b - 2S + \alpha + \beta) \\ &\quad + x_C x_D (1 - x_D) \beta + x_D (1 - x_D) (b + S - \beta) \}. \end{aligned} \quad (16b)$$

187 For $0 < x_D^{(CD)} < 1$, it satisfies

$$-\delta c x_D^2 + x_D (\delta c + b + 2S) - b - S = 0. \quad (17)$$

188 Then the Jacobian matrix of the system (16) at $x^{(CD)}$ is

$$J|_{x^{(CD)}} = \begin{pmatrix} m\langle k \rangle & n\langle k \rangle \\ -m\langle k \rangle - x_D^{(CD)} (1 + \delta) \langle k \rangle \alpha & -n\langle k \rangle - x_D^{(CD)} (1 + \delta) \langle k \rangle \alpha \end{pmatrix}, \quad (18)$$

189 where

$$\begin{aligned} m &= (1 + \delta)(\alpha + \beta) \left(x_D^{(CD)} - 1 \right) x_D^{(CD)}, \\ n &= \left(x_D^{(CD)} \right)^2 [b + 2S + (1 + \delta)(\alpha + \beta)] - x_D^{(CD)} [2(b + S) + (1 + \delta)(\alpha + \beta)] + b + S. \end{aligned}$$

190 The matrix has two eigenvalues, denoted as

$$\begin{aligned} \lambda_1 &= -(1 + \delta) \langle k \rangle x_D^{(CD)} \alpha, \\ \lambda_2 &= (m - n) \langle k \rangle = \left[-\left(x_D^{(CD)} \right)^2 S - (b + S) \left(x_D^{(CD)} - 1 \right)^2 \right] \langle k \rangle. \end{aligned}$$

¹⁹¹ Besides, $0 < x_C^{(CD)} < 1$ satisfies

$$-\delta c x_C^2 + x_C (\delta c - b - 2S) + S = 0. \quad (19)$$

¹⁹² Then we deduce that

$$\begin{aligned} \lambda_2 &= -\left(x_C^{(CD)}\right)^2 \langle k \rangle (b + 2S) + 2x_C^{(CD)} \langle k \rangle S - \langle k \rangle S \\ &= -x_C^{(CD)} \langle k \rangle \left[-c\delta \left(x_C^{(CD)}\right)^2 + c\delta x_C^{(CD)} + S\right] + 2x_C^{(CD)} \langle k \rangle S - S \langle k \rangle \\ &= \left(1 - x_C^{(CD)}\right) \langle k \rangle \left[-c\delta \left(x_C^{(CD)}\right)^2 - S\right], \end{aligned}$$

¹⁹³ which implies that λ_2 is negative when $\left(x_C^{(CD)}\right)^2 > -\frac{S}{c\delta}$. Then we will determine the value of ¹⁹⁴ $x_C^{(CD)}$. By solving equation (19), we have the non-trivial stationary solutions:

$$x_{C,\pm}^* = \frac{c\delta - b - 2S \pm \sqrt{(c\delta - b)^2 + 4S(b + S)}}{2c\delta}. \quad (20)$$

¹⁹⁵ It follows that when $\Delta = (c\delta - b)^2 + 4S(b + S) \geq 0$, then $x_{C,\pm}^*$ is real valued for every ¹⁹⁶ b, c, δ, S . Since $c > 0$, $\Delta \geq 0$ requires the following conditions:

$$\delta \geq \delta_+ := \frac{b + \sqrt{-4S(b + S)}}{c}, \quad (21a)$$

$$\delta \leq \delta_- := \frac{b - \sqrt{-4S(b + S)}}{c}. \quad (21b)$$

¹⁹⁷ It can also be verified that if $c\delta - b - 2S < 0$, then $x_{C,\pm}^* < 0$. Conversely, if $c\delta - b - 2S > 0$, ¹⁹⁸ or equivalently, if

$$\delta > \delta_* := \frac{b + 2S}{c}, \quad (22)$$

¹⁹⁹ then $x_{C,\pm}^* > 0$. Since $2S < \sqrt{-4S(b + S)}$, it follows directly that $\delta_- < \delta_* < \delta_+$. Therefore, ²⁰⁰ for $\delta \geq \delta_+$, there exist positive real-valued stationary solutions $0 < x_{C,\pm}^* < 1$, while for ²⁰¹ $\delta \leq \delta_- < \delta_*$, the solutions are real but negative. We also observe that for the appearance of ²⁰² the non-trivial stationary solution $x_{C,+}^*$ at $\delta = \delta_+$ is always abrupt. Meanwhile, we have the ²⁰³ following claim.

²⁰⁴ **Proposition 2.** Suppose $0 < x_{C,\pm}^* < 1$ and $x_{C,+}^* \neq x_{C,-}^*$. Then, the stationary solution ²⁰⁵ $x^{(CD)} = (x_{C,+}^*, 1 - x_{C,+}^*, 0)$ is stable, while the stationary solution $x^{(CD)} = (x_{C,-}^*, 1 - x_{C,-}^*, 0)$ ²⁰⁶ is unstable.

²⁰⁷ *Proof.* Note that λ_1 is always negative. Moreover, we recall that λ_2 is negative in the case of ²⁰⁸ $\left(x_C^{(CD)}\right)^2 > -\frac{S}{c\delta}$. Let $c\delta - b - 2S = M > 0$. Then, we have $M^2 + 4c\delta S = \Delta > 0$. Next, we

²⁰⁹ investigate the condition $(x_{C,+}^*)^2 > -\frac{S}{c\delta}$. This is equivalent to

$$\begin{aligned}(x_{C,+}^*)^2 > -\frac{S}{c\delta} &\iff (M + \sqrt{\Delta})^2 > -4c\delta S \\ &\iff M^2 + 4c\delta S + M\sqrt{\Delta} > 0 \\ &\iff \Delta + M\sqrt{\Delta} > 0.\end{aligned}$$

²¹⁰ The last inequality always holds, since $\Delta > 0$ and $M\sqrt{\Delta} > 0$. Thus, we conclude that the ²¹¹ stationary solution $x^{(CD)} = (x_{C,+}^*, 1 - x_{C,+}^*, 0)$ is stable. Similarly, we have

$$\begin{aligned}(x_{C,-}^*)^2 > -\frac{S}{c\delta} &\iff (M - \sqrt{\Delta})^2 > -4c\delta S \\ &\iff M^2 + 4c\delta S - M\sqrt{\Delta} > 0 \\ &\iff \sqrt{\Delta}(\sqrt{\Delta} - M) > 0.\end{aligned}$$

²¹² This leads to a contradiction, as $S < 0$ and $\sqrt{\Delta} < M$. Therefore, the stationary solution ²¹³ $x^{(CD)} = (x_{C,-}^*, 1 - x_{C,-}^*, 0)$ is unstable. \square

²¹⁴ For $x_D = 0$, it has $x^{(CD)} = (1, 0, 0)$. Then the Jacobian matrix of the system (16) at $x^{(CD)}$ is

$$J|_{x^{(CD)}} = \begin{pmatrix} 0 & (-b - S)\langle k \rangle \\ 0 & (b + S)\langle k \rangle \end{pmatrix}, \quad (23)$$

²¹⁵ with eigenvalues $\lambda_1 = 0$ and $\lambda_2 = (b + S)\langle k \rangle$. Since $b + S > 0$, $x^{(CD)}$ is unstable.

²¹⁶ **Case (iii): The stability of $x^{(DP)} = (0, x_D^{(DP)}, x_P^{(DP)})$.** We cancel $x_C = 1 - x_D - x_P$ and study ²¹⁷ the dynamics depicted by $\frac{dx_D}{dt}$ and $\frac{dx_P}{dt}$,

$$\begin{aligned}\frac{dx_D}{dt} &= \langle k \rangle \{ \delta x_D^3 (1 - x_D) c + \delta x_D (1 - x_D) [-x_D (c - \alpha) - x_P \beta] \\ &\quad - x_D^2 (1 - x_D) (b + 2S - \alpha - \beta) - (1 + \delta) (1 - x_D - x_P) x_D^2 \alpha \\ &\quad + x_D (1 - x_D) [(1 - x_D - x_P) \beta + (b + S - \beta)] \},\end{aligned} \quad (24a)$$

$$\begin{aligned}\frac{dx_P}{dt} &= \langle k \rangle \{ -\delta x_D^3 x_P c + \delta x_D x_P [x_D c + x_P (\alpha + \beta) - \alpha] + x_P x_D^2 (b + 2S) \\ &\quad + x_D x_P^2 (\alpha + \beta) + x_D x_P (-b - S - \alpha) \}.\end{aligned} \quad (24b)$$

²¹⁸ For $0 < x_D^{(CD)} < 1$, it satisfies

$$\delta c x_D^2 + x_D [\delta (\alpha + \beta - c) + (\alpha + \beta - b - 2S)] + b + S - (1 + \delta) \beta = 0. \quad (25)$$

²¹⁹ Then the Jacobian matrix of the system (24) at $x^{(DP)}$ is

$$J|_{x^{(DP)}} = \begin{pmatrix} m\langle k \rangle & n\langle k \rangle \\ -m\langle k \rangle + x_D^{(DP)}(1+\delta)\langle k \rangle \alpha & -n\langle k \rangle + x_D^{(DP)}(1+\delta)\langle k \rangle \alpha \end{pmatrix}, \quad (26)$$

²²⁰ where

$$\begin{aligned} m &= \left(x_D^{(DP)}\right)^2 [2(1+\delta)(\alpha+\beta) - (b+2S)] + x_D^{(DP)} [2(b+S) - 3(1+\delta)\beta] \\ &\quad - b - S + (1+\delta)\beta, \\ n &= \left(x_D^{(DP)}\right)^2 (1+\delta)(\alpha+\beta) - x_D^{(DP)} (1+\delta)\beta. \end{aligned}$$

²²¹ The matrix has two eigenvalues, denoted as

$$\begin{aligned} \lambda_1 &= x_D^{(DP)} (1+\delta)\langle k \rangle \alpha, \\ \lambda_2 &= \left(x_D^{(DP)}\right)^2 \langle k \rangle [(1+\delta)(\alpha+\beta) - (b+2S)] + 2x_D^{(DP)} \langle k \rangle [(b+S) - (1+\delta)\beta] \\ &\quad - b\langle k \rangle - S\langle k \rangle + (1+\delta)\langle k \rangle \beta. \end{aligned}$$

²²² Since λ_1 is always positive, $x^{(DP)}$ is unstable. Note that, when considering only the points on the DP -edge, we return to the case where only the two strategies D and P are present. In this case,

$$\begin{aligned} \frac{dx_P}{dt} &= x_P (1-x_P) (\pi'_P - \pi'_D) \\ &= x_P (1-x_P) \langle k \rangle \{-c\delta x_P^2 + x_P [c\delta - b - 2S + (1+\delta)(\alpha+\beta)] + S - (1+\delta)\alpha\}, \end{aligned} \quad (27)$$

²²⁵ where

$$\begin{aligned} \pi'_P &= (1-\delta)\langle k \rangle [x_D(S-\alpha) + x_P] + \delta\langle k \rangle [x_P^2 + x_D^2(S-2\alpha) + 2x_Dx_P(G-\alpha)], \\ \pi'_D &= (1-\delta)\langle k \rangle x_P(T-\beta) + \delta\langle k \rangle [x_P^2(T-2\beta) + 2x_Dx_P(W-\beta)]. \end{aligned}$$

²²⁶ In the following, we need to consider the solution of equation $\pi'_P - \pi'_D = 0$. In other words, we ²²⁷ consider the quadratic equation

$$-c\delta x_P^2 + x_P [c\delta - b - 2S + (1+\delta)(\alpha+\beta)] + S - (1+\delta)\alpha = 0 \quad (28)$$

²²⁸ and obtain the following result.

²²⁹ **Proposition 3.** *If $(1+\delta)\beta > b + S$, then the equation (28) admits two real solutions*

$$x_{P,\pm}^* = \frac{c\delta - b - 2S + (1+\delta)(\alpha+\beta) \pm \sqrt{\Delta}}{2c\delta},$$

230 where $\Delta = [c\delta - b - 2S + (1 + \delta)(\alpha + \beta)]^2 + 4c\delta[S - (1 + \delta)\alpha]$. Moreover, these solutions
 231 satisfy the inequalities $0 < x_{P,-}^* < 1$ and $x_{P,+}^* > 1$. In addition, $x_{P,-}^*$ is unstable.

232 *Proof.* Since $(1 + \delta)\beta > b + S$, it follows that

$$\begin{aligned}\Delta &= [c\delta - b - 2S + (1 + \delta)(\alpha + \beta)]^2 + 4c\delta[S - (1 + \delta)\alpha] \\ &> [c\delta - S + (1 + \delta)\alpha]^2 + 4c\delta[S - (1 + \delta)\alpha] \\ &= [c\delta + S - (1 + \delta)\alpha]^2 \\ &> 0.\end{aligned}$$

233 Therefore, the equation has real solutions. Moreover, it is straightforward to verify that both
 234 solutions, $x_{P,\pm}^*$, are positive.

235 Next, we find that $x_{P,-}^* < 1$ is equivalent to

$$-c\delta - b - 2S + (1 + \delta)(\alpha + \beta) < \sqrt{\Delta}. \quad (29)$$

236 Now we consider two cases:

237 (i) If $c\delta + b + 2S \geq (1 + \delta)(\alpha + \beta)$, the inequality (29) always holds.

238 (ii) If $c\delta + b + 2S < (1 + \delta)(\alpha + \beta)$, the inequality (29) is equivalent to

$$[-c\delta - b - 2S + (1 + \delta)(\alpha + \beta)]^2 < \Delta \iff 4c\delta[b + S - (1 + \delta)\beta] < 0$$

239 And the last line always holds under the condition $(1 + \delta)\beta > b + S$.

240 Furthermore, we find that $x_{P,+}^* > 1$ is equivalent to

$$\sqrt{\Delta} > c\delta + b + 2S - (1 + \delta)(\alpha + \beta). \quad (30)$$

241 Similar to $x_{P,-}^*$, we consider two cases as follows:

242 (i) If $c\delta + b + 2S \leq (1 + \delta)(\alpha + \beta)$, the inequality (30) always holds.

243 (ii) If $c\delta + b + 2S > (1 + \delta)(\alpha + \beta)$, the inequality (30) is also equivalent to

$$4c\delta[b + S - (1 + \delta)\beta] < 0,$$

244 which, once again, holds in the case of $(1 + \delta)\beta > b + S$.

245 In conclusion, we have $0 < x_{P,-}^* < 1$ and $x_{P,+}^* > 1$. We then prove that $x_{P,-}^*$ is unstable. Let

$$f(x_P) = x_P(1 - x_P) \{ -c\delta x_P^2 + x_P[c\delta - b - 2S + (1 + \delta)(\alpha + \beta)] + S - (1 + \delta)\alpha \}.$$

246 Then, we compute the derivative of $f(x_P)$ at $x_{P,-}^*$:

$$f'(x_{P,-}^*) = x_{P,-}^* (1 - x_{P,-}^*) [-2c\delta x_{P,-}^* + c\delta - b - 2S + (1 + \delta)(\alpha + \beta)] > 0,$$

247 where $-2c\delta x_{P,-}^* + c\delta - b - 2S + (1 + \delta)(\alpha + \beta) = \sqrt{\Delta} > 0$. Hence, $x_{P,-}^*$ is unstable. \square

248 We now analyze the stable stationary solutions on the *DP*-edge under the condition $b + S \geq (1 + \delta)\beta$. Specifically, we examine the real-valued roots within the interval $(0, 1)$ of equation 249 (28). Suppose that this equation has two distinct solutions $x_1, x_2 \in (0, 1)$. This implies that the 250 251 discriminant Δ must satisfy

$$\Delta = [c\delta - b - 2S + (1 + \delta)(\alpha + \beta)]^2 + 4c\delta [S - (1 + \delta)\alpha] > 0.$$

252 Under this condition, the two distinct solutions are explicitly given by

$$x_{1,2} = \frac{c\delta - b - 2S + (1 + \delta)(\alpha + \beta) \pm \sqrt{\Delta}}{2c\delta}. \quad (31)$$

253 Based on direct calculations, we will identify three scenarios in the following.

254 **(A1)** When

$$\begin{cases} c\delta - b - 2S + (1 + \delta)(\alpha + \beta) > 0, \\ c\delta + b + 2S - (1 + \delta)(\alpha + \beta) > 0, \end{cases}$$

255 both solutions x_1, x_2 lie within $(0, 1)$. Among them, the solution x_1 is unstable, while the 256 solution x_2 is stable.

257 **(A2)** When

$$\begin{cases} c\delta - b - 2S + (1 + \delta)(\alpha + \beta) > 0, \\ c\delta + b + 2S - (1 + \delta)(\alpha + \beta) < 0, \end{cases}$$

258 both solutions x_1, x_2 are greater than 1.

259 **(A3)** When $c\delta - b - 2S + (1 + \delta)(\alpha + \beta) < 0$, both solutions x_1 and x_2 are negative.

260 We proceed by analyzing case **(A1)**. Combining condition $b + S \geq (1 + \delta)\beta$ with the case **(A1)**, 261 we define three critical parameters as

$$\delta_1 = \frac{b + S}{\beta} - 1, \quad \delta_2 = \frac{b + 2S - \alpha - \beta}{c + \alpha + \beta} \quad \text{and} \quad \delta_3 = \frac{\alpha + \beta - b - 2S}{c - \alpha - \beta}.$$

262 If condition $c - \alpha - \beta > 0$ holds, the signs of δ_2 and δ_3 are strictly opposite. Specifically, if 263 $\delta_2 > 0$, then it necessarily follows that $\delta_3 < 0$. In contrast, under the condition $c - \alpha - \beta < 0$,

264 combined with the assumptions outlined in **(A1)**, we must simultaneously have $\delta < \delta_3$ and
265 $\delta > \delta_2$. This scenario warrants further consideration in two distinct cases:

266 • If $\alpha + \beta > b + 2S$, it implies that both $\delta_3 < 0$ and $\delta_2 < 0$, thereby making it impossible
267 to satisfy the simultaneous inequalities, resulting in a contradiction.

268 • If $\alpha + \beta < b + 2S$, noting that $c = a + b < \alpha + \beta$, together with the imposed constraints
269 $S < 0$, $a > 0$, $b > 0$, it is a contradiction to $\alpha + \beta < b + 2S$.

270 Hence, under the condition $c - \alpha - \beta < 0$, both cases inevitably lead to logical contradictions,
271 thus demonstrating that the initial assumptions are invalid in this scenario. Next, we analyze the
272 condition $\Delta > 0$. Let $f(\delta)$ denote

$$f(\delta) = \Delta = \delta^2 [(c - \alpha - \beta)^2 + 4c\beta] + 2\delta \{c(\beta - \alpha - b) + (\alpha + \beta)[(\alpha + \beta) - (b + 2S)]\} + (b + 2S - \alpha - \beta)^2. \quad (32)$$

273 Notice that $f(\delta)$ is a quadratic function in δ with a positive leading coefficient and satisfies
274 $f(0) > 0$. Therefore, if the quadratic does not admit real roots, then $f(\delta) > 0$ holds for all
275 $\delta \in (0, 1)$. If, on the other hand, $f(\delta) = 0$ has two distinct real solutions (that is, its discriminant
276 $\Delta' > 0$), denoted by $x_{\delta,-}$ and $x_{\delta,+}$ with $x_{\delta,-} < x_{\delta,+}$. If both roots lie within the interval $(0, 1)$,
277 then by the upward-opening nature of $f(\delta)$, it follows that $f(\delta) > 0$ precisely for

$$0 < \delta < x_{\delta,-} \quad \text{or} \quad x_{\delta,+} < \delta < 1.$$

278 Define

$$\delta_4 = \begin{cases} x_{\delta,-} & \text{if } x_{\delta,-} \text{ exists} \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \delta_5 = \begin{cases} x_{\delta,+} & \text{if } x_{\delta,+} \text{ exists} \\ 0 & \text{otherwise} \end{cases},$$

279 and it is obvious that $\delta_4 < \delta_5$. Specifically, if the corresponding root lies in the interval $(0, 1)$, δ
280 takes that value; otherwise (or if no such root exists), we set $\delta_4 = 1$ and $\delta_5 = 0$. Based on the
281 preceding discussion, we now state the following proposition.

282 **Proposition 4.** *Let α, β, c, b and S be parameters that satisfy $c - \alpha - \beta > 0$. If*

$$\max \{\delta_2, \delta_3\} < \delta < \min \{\delta_1, \delta_4, 1\} \quad \text{or} \quad \max \{\delta_2, \delta_3, \delta_5\} < \delta < \min \{\delta_1, 1\},$$

283 *then the DP-edge admits two fixed points, x_1 and x_2 , with $x_1, x_2 \in (0, 1)$ as defined in Eq.
284 (31). Moreover, x_1 is unstable, while x_2 is stable.*

285 Let $\delta_6 = \delta_+ = \frac{b + \sqrt{-4S(b+S)}}{c}$ and $\delta_7 = \max \{\delta_2, \delta_3\}$. We analyze the order of stable equilibrium
286 points by comparing the magnitudes of critical thresholds $\delta_1, \delta_4, \delta_5, \delta_6$ and δ_7 . Given the multi-
287 parametric nature of the system, accurate determination of these critical thresholds inherently

288 depends on parameter selection. Based on the preceding analysis, we choose the appropriate
 289 parameter values to provide a clear illustration.

290 With the parameters α , β , b , c , and S fixed appropriately, we explore the relationship between
 291 the sequential emergence of stable equilibrium points and the probability of third-order interac-
 292 tions δ . The relationships can be broadly classified into several distinct categories when $\delta_5 > \delta_1$,
 293 as shown in Fig. 1. Here, δ_1 characterizes the emergence of a stable equilibrium on the CP-edge,
 294 while the relationship between δ_4 and δ_7 governs the formation of a stable equilibrium on the
 295 DP-edge. Similarly, δ_6 determines the stability condition for the equilibria along the CD-edge.
 296 The schematic representation is conceptual rather than quantitative; data points illustrate the
 297 relative ordering (non-strict inequality) of the parameters δ_1 , δ_4 , δ_5 , δ_6 , δ_7 , without implying
 specific numerical values.

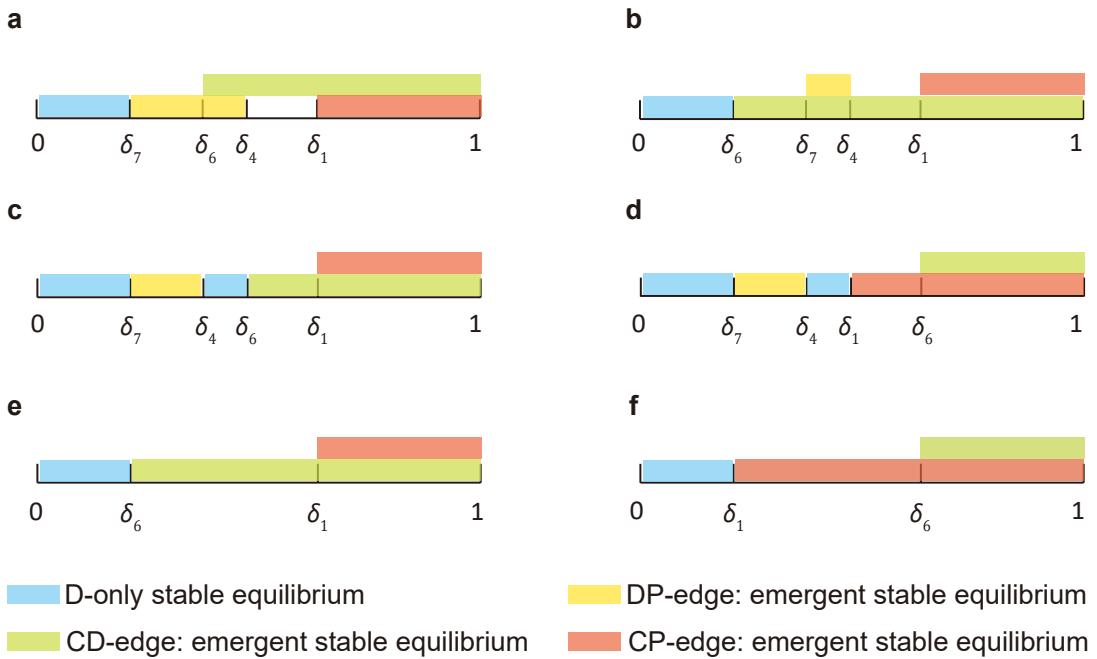


Figure 1: Hierarchical emergence of stable equilibria as governed by the third-order interaction probability δ with all other parameters suitably fixed. Panels **a-d** show the bifurcation sequences and resulting equilibrium types when stable points arise at the *DP*-edge. In contrast, **e-f** illus-
 298 trate scenarios in which no stable equilibria persist at the *DP*-edge.

299 For $x_D = 0$, it has $x^{(DP)} = (0, 0, 1)$. The Jacobian matrix of the system (24) at $x^{(DP)}$ is

$$J|_{x^{(DP)}} = \begin{pmatrix} [b + S - (1 + \delta)\beta] \langle k \rangle & 0 \\ [(1 + \delta)\beta - (b + S)] \langle k \rangle & 0 \end{pmatrix}, \quad (33)$$

300 with eigenvalues $\lambda_1 = 0$ and $\lambda_2 = [b + S - (1 + \delta)\beta] \langle k \rangle$. The stability condition for the
 301 equilibrium point $x^{(DP)} = (0, 0, 1)$ is determined by the sign of the expression $b + S - (1 + \delta)\beta$.

302 For $x_P = 0$, it has $x^{(DP)} = (0, 1, 0)$. The Jacobian matrix of the system (24) at $x^{(DP)}$ is

$$J|_{x^{(DP)}} = \begin{pmatrix} S\langle k \rangle & (1 + \delta)\langle k \rangle \alpha \\ 0 & -(1 + \delta)\langle k \rangle \alpha + S\langle k \rangle \end{pmatrix}, \quad (34)$$

303 with eigenvalues $\lambda_1 = S\langle k \rangle$ and $\lambda_2 = -(1 + \delta)\langle k \rangle \alpha + S\langle k \rangle$. Since $\alpha > 0$ and $S < 0$, $x^{(DP)}$
304 is stable.

305 3 Replicator Dynamics in Two-Population Games un- 306 der Higher-Order Interactions and Punishment Mech- 307 anisms

308 In this section, we consider a theoretical model involving two distinct roles, each associated
309 with two strategies, in a population where individuals participate concurrently in both pairwise
310 and three-player interactions. Our primary objective is to determine how the proportion of these
311 two roles affects the prevalence of cooperation in the population.

312 We denote the two roles by M_1 and M_2 , with η representing the proportion of individuals in
313 role M_1 , and $1 - \eta$ the proportion in role M_2 . The set of strategies for M_1 is $S_{M_1} = \{C, D_1\}$,
314 while the set of strategies for M_2 is $S_{M_2} = \{P, D_2\}$. Let $x_C \in [0, \eta]$ and $x_{D_1} \in [0, \eta]$ denote
315 the proportions of the population adopting strategies C and D_1 respectively, constrained by
316 $x_C + x_{D_1} = \eta$. Similarly, define $x_P \in [0, 1 - \eta]$ and $x_{D_2} \in [0, 1 - \eta]$ as the proportions for
317 strategies P and D_2 , satisfying $x_P + x_{D_2} = 1 - \eta$. Moreover, by direct computation, $x_1 = \frac{x_C}{\eta}$
318 is the proportion of M_1 individuals using strategy C , which implies that the proportion of M_1
319 individuals using strategy D_1 is $1 - x_1$. Similarly, $x_2 = \frac{x_P}{1 - \eta}$ is the proportion of M_2 individuals
320 using strategy P , while $1 - x_2$ is the proportion of M_2 individuals using strategy D_2 . For the
321 pairwise interaction scenario, the payoff matrix is explicitly given by

$$\begin{array}{c|cccc} M_1 & P & D_2 & C & D_1 \\ \hline C & 1 & S & 1 & S \\ D_1 & T - \beta & 0 & T & 0 \end{array} \quad \text{and} \quad \begin{array}{c|cccc} M_2 & C & D_1 & P & D_2 \\ \hline P & 1 & S - \alpha & 1 & S - \alpha \\ D_2 & T & 0 & T - \beta & 0 \end{array}.$$

322 For three-person interactions, the payoff structure expands due to multiple co-players, denoted
323 as

$$\begin{array}{c|cccccccccc} M_1 & CC & CD_1 & CD_2 & CP & D_1D_2 & D_1D_1 & D_2D_2 & D_1P & D_2P & PP \\ \hline C & 1 & G & G & 1 & S & S & S & G & G & 1 \\ D_1 & T & W & W & T - \beta & 0 & 0 & 0 & W - \beta & W - \beta & T - 2\beta \end{array},$$

³²⁴ and

M_2	CC	CD_1	CD_2	CP	D_1D_2	D_1D_1	D_2D_2	D_1P	D_2P	PP
P	1	$G - \alpha$	$G - \alpha$	1	$S - 2\alpha$	$S - 2\alpha$	$S - 2\alpha$	$G - \alpha$	$G - \alpha$	1
D_2	T	W	W	$T - \beta$	0	0	0	$W - \beta$	$W - \beta$	$T - 2\beta$

³²⁵ The expected payoffs for each strategy are given by

$$\begin{aligned} \pi_C &= (1 - \delta) \langle k \rangle [(1 - x_C - x_P) S + x_C + x_P] + \delta \langle k \rangle [(1 - x_C - x_P)^2 S \\ &\quad + 2(x_C + x_P)(1 - x_C - x_P)G + (x_C + x_P)^2], \end{aligned} \quad (35a)$$

$$\begin{aligned} \pi_{D_1} &= \pi_{D_2} = (1 - \delta) \langle k \rangle [(x_C + x_P)T - x_P\beta] + \delta \langle k \rangle [(x_C + x_P)^2 T - 2x_P\beta \\ &\quad + 2(x_C + x_P)(1 - x_C - x_P)W], \end{aligned} \quad (35b)$$

$$\begin{aligned} \pi_P &= (1 - \delta) \langle k \rangle [(1 - x_C - x_P)(S - \alpha) + x_P + x_C] + \delta \langle k \rangle [(1 - x_C - x_P)^2 S \\ &\quad + 2(x_C + x_P)(1 - x_C - x_P)G - 2(1 - x_C - x_P)\alpha + (x_C + x_P)^2]. \end{aligned} \quad (35c)$$

³²⁶ The mean payoff of the population M_1 is then calculated by $\langle \pi_1 \rangle = x_1 \pi_C + (1 - x_1) \pi_{D_1}$, while
³²⁷ the mean payoff of the population M_2 is $\langle \pi_2 \rangle = x_2 \pi_P + (1 - x_2) \pi_{D_2}$. Then the evolution in
³²⁸ time of the proportion of x_1 and x_2 is given by the replicator equation

$$\begin{cases} \dot{x}_1 = x_1(\pi_C - \langle \pi_1 \rangle) \\ \dot{x}_2 = x_2(\pi_P - \langle \pi_2 \rangle) \end{cases}. \quad (36)$$

³²⁹ Substituting the expression for $\langle \pi_1 \rangle$ and $\langle \pi_2 \rangle$ into Eq. (10), we have

$$\begin{cases} \dot{x}_1 = x_1(1 - x_1)(\pi_C - \pi_{D_1}), \\ \dot{x}_2 = x_2(1 - x_2)(\pi_P - \pi_{D_2}), \end{cases} \quad (37)$$

³³⁰ where

$$\begin{aligned} \pi_C - \pi_{D_1} &= \delta \langle k \rangle (x_C + x_P)^2 (1 - T + 2W - 2G + S) + (x_C + x_P) \langle k \rangle (1 - S - T) + S \langle k \rangle \\ &\quad + x_P \langle k \rangle \beta + \delta \langle k \rangle [(x_C + x_P)(T - 1 + 2G - 2W - S) + x_P \beta] \end{aligned}$$

³³¹ and

$$\pi_P - \pi_{D_2} = \pi_C - \pi_{D_1} - (1 + \delta) \langle k \rangle (1 - x_C - x_P) \alpha.$$

³³² We also denote $a = 2(G - W)$, $b = T - 1 - S$ and $c = a + b$. We define the payoff difference
³³³ functions $f(x_C, x_P) = \pi_C - \pi_{D_1}$ and $g(x_C, x_P) = \pi_P - \pi_{D_2}$ as

$$f(x_C, x_P) = [(x_C + x_P)(c\delta - b - 2S) - c\delta(x_C + x_P)^2 + (1 + \delta)x_P\beta + S] \langle k \rangle$$

334 and

$$g(x_C, x_P) = f(x_C, x_P) - (1 + \delta)\langle k \rangle(1 - x_C - x_P)\alpha,$$

335 respectively. Assuming that $\dot{x}_1 = 0$ and $\dot{x}_2 = 0$, the equilibrium points in Eq. (37) classified
336 into three distinct categories:

337 (i) **Vertex equilibrium points.** Four vertex equilibrium points are given by $V_1 = (0, 0)$, $V_2 =$
338 $(0, 1)$, $V_3 = (1, 0)$, and $V_4 = (1, 1)$.

339 (ii) **Interior equilibrium point.** There exists one interior equilibrium point $V_5 = (x_1^*, x_2^*)$,
340 where

$$x_1^* = \frac{(1 + \delta)\beta - (T - 1)}{(1 + \delta)\beta\eta} \text{ and } x_2^* = \frac{T - 1}{(1 - \eta)(1 + \delta)\beta}.$$

341 This equilibrium is meaningful if and only if the condition $T - 1 = b + S < (1 + \delta)\beta$ is
342 satisfied.

343 (iii) **Boundary equilibrium points.** There are four boundary equilibrium points defined as
344 follows:

- 345 • $V_6 = (1, x_2')$, with $x_2' \in (0, 1)$ satisfying $g(\eta, (1 - \eta)x_2') = 0$;
- 346 • $V_7 = (0, x_2')$, with $x_2' \in (0, 1)$ satisfying $g(0, (1 - \eta)x_2') = 0$;
- 347 • $V_8 = (x_1', 0)$, with $x_1' \in (0, 1)$ satisfying $f(\eta x_1', 0) = 0$;
- 348 • $V_9 = (x_1', 1)$, with $x_1' \in (0, 1)$ satisfying $f(\eta x_1', 1 - \eta) = 0$.

349 We turn to studying the stability of these equilibrium points. The Jacobian matrix of the system
350 (37) is

$$J = \begin{pmatrix} (1 - 2x_1)f(\eta x_1, (1 - \eta)x_2) + x_1(1 - x_1)\frac{\partial f}{\partial x_1} & x_1(1 - x_1)\frac{\partial f}{\partial x_2} \\ x_2(1 - x_2)\frac{\partial g}{\partial x_1} & (1 - 2x_2)g(\eta x_1, (1 - \eta)x_2) + x_2(1 - x_2)\frac{\partial g}{\partial x_2} \end{pmatrix}. \quad (38)$$

351 **Case (i): The stability of vertex equilibrium points.** Substituting the value of $V_1 = (0, 0)$ into
352 Eq. (38), we have

$$J|_{V_1} = \begin{pmatrix} S\langle k \rangle & 0 \\ 0 & S\langle k \rangle - (1 + \delta)\langle k \rangle\alpha \end{pmatrix}.$$

353 We know that V_1 is stable if and only if $S < 0$. Similarly, substituting $V_2 = (0, 1)$, $V_3 = (1, 0)$,
354 and $V_4 = (1, 1)$ into Eq. (38), we obtain

$$J|_{V_2} = \begin{pmatrix} f(0, 1 - \eta) & 0 \\ 0 & -g(0, 1 - \eta) \end{pmatrix}, \quad J|_{V_3} = \begin{pmatrix} -f(\eta, 0) & 0 \\ 0 & g(\eta, 0) \end{pmatrix},$$

355 and

$$J|_{V_4} = \begin{pmatrix} -f(\eta, 1-\eta) & 0 \\ 0 & -g(\eta, 1-\eta) \end{pmatrix}.$$

356 For the equilibrium point V_2 :

- 357 • If $f(0, 1-\eta) < 0$, it follows that $g(0, 1-\eta) = f(0, 1-\eta) - (1+\delta)\langle k \rangle \eta \alpha < 0$, implying
358 that V_2 is a saddle point.
- 359 • If $f(0, 1-\eta) > 0$, then V_2 is a saddle when $g(0, 1-\eta) > 0$ and unstable when $g(0, 1-\eta) <$
360 0 .

361 For the equilibrium point V_3 :

- 362 • If $f(\eta, 0) < 0$, then $g(\eta, 0) = f(\eta, 0) - (1+\delta)\langle k \rangle (1-\eta) \alpha < 0$, indicating that V_2 is a
363 saddle point.
- 364 • If $f(\eta, 0) > 0$, then V_2 is a saddle when $g(\eta, 0) > 0$ and stable when $g(\eta, 0) < 0$.

365 For the equilibrium point V_4 :

- 366 • Since $f(\eta, 1-\eta) = g(\eta, 1-\eta) = (1+\delta)\langle k \rangle (1-\eta) \beta - b - S$, V_4 is stable when
367 $f(\eta, 1-\eta) > 0$ and unstable when $f(\eta, 1-\eta) < 0$.

368 **Case (ii): The stability of the interior equilibrium point.** Substituting $V_5 = (x_1^*, x_2^*)$ into Eq.
369 (38), since $\eta x_1^* + (1-\eta)x_2^* = 1$ and $f(\eta x_1^*, (1-\eta)x_2^*) = g(\eta x_1^*, (1-\eta)x_2^*) = 0$, we have

$$J|_{V_5} = \begin{pmatrix} -QM\langle k \rangle & -Q\langle k \rangle [M - (1+\delta)\beta] \\ -R\langle k \rangle [M - (1+\delta)\alpha] & -R\langle k \rangle [M - (1+\delta)(\alpha + \beta)] \end{pmatrix},$$

370 where $M = c\delta + b + 2S$, $Q = \eta x_1^*(1 - x_1^*)$ and $R = (1 - \eta)x_2^*(1 - x_2^*)$. Then we obtain

$$\begin{aligned} \det(\lambda I - J|_{V_5}) &= \begin{vmatrix} \lambda + MQ\langle k \rangle & Q\langle k \rangle [M - (1+\delta)\beta] \\ R\langle k \rangle [M - (1+\delta)\alpha] & \lambda + R\langle k \rangle [M - (1+\delta)(\alpha + \beta)] \end{vmatrix} \\ &= \lambda^2 + [(Q + R)M - R(1+\delta)(\alpha + \beta)] \langle k \rangle \lambda - QR(1+\delta)^2 \langle k \rangle^2 \alpha \beta. \end{aligned}$$

371 Given that

$$\Delta = [(Q + R)M - R(1+\delta)(\alpha + \beta)]^2 \langle k \rangle^2 + 4QR(1+\delta)^2 \langle k \rangle^2 \alpha \beta > 0,$$

372 the characteristic equation $\det(\lambda I - J|_{V_5}) = 0$ has two distinct real roots, denoted λ_1 and λ_2 .
373 Furthermore, since

$$\lambda_1 \lambda_2 = -QR(1+\delta)^2 \langle k \rangle^2 \alpha \beta < 0,$$

³⁷⁴ it follows that λ_1 and λ_2 have opposite signs. This indicates that V_5 is a saddle point.

³⁷⁵ **Case (iii): The stability of boundary equilibrium points.** Substituting $V_6 = (1, x'_2)$ into Eq. ³⁷⁶ (38), and noting that

$$g(\eta, (1 - \eta)x'_2) = f(\eta, (1 - \eta)x'_2) - (1 + \delta)(1 - \eta)(1 - x'_2)\alpha = 0,$$

³⁷⁷ yields

$$J|_{V_6} = \begin{pmatrix} -f(\eta, (1 - \eta)x'_2) & 0 \\ x'_2(1 - x'_2)\frac{\partial g}{\partial x_1}|_{V_6} & x'_2(1 - x'_2)\frac{\partial g}{\partial x_2}|_{V_6} \end{pmatrix}.$$

³⁷⁸ Here, the term $\frac{\partial g}{\partial x_2}|_{V_6}$ satisfies that

$$\frac{\partial g}{\partial x_2}|_{V_6} = (1 - \eta)\langle k \rangle \{-2c\delta[\eta + x'_2(1 - \eta)] + c\delta - (b + 2S) + (1 + \delta)(\alpha + \beta)\}.$$

³⁷⁹ Moreover, x'_2 satisfies the quadratic equation

$$\begin{aligned} -c\delta(1 - \eta)^2(x'_2)^2 + x'_2[(1 - \eta)c\delta + (1 + \delta)(1 - \eta)(\alpha + \beta) - 2c\delta\eta(1 - \eta) \\ - (1 - \eta)(b + 2S)] - c\delta\eta^2 + c\delta\eta - \eta(b + 2S) - (1 - \eta)(1 + \delta)\alpha + S = 0. \end{aligned}$$

³⁸⁰ Since $f(\eta, (1 - \eta)x'_2) = (1 + \delta)\langle k \rangle(1 - \eta)(1 - x'_2)\alpha > 0$, if one selects appropriate values ³⁸¹ for $\alpha, \beta, c, S, \eta$ and δ so that the roots $x'_{2,\pm}$ with $x'_{2,-} < x'_{2,+}$, lie within the interval $(0, 1)$, it ³⁸² follows that $\frac{\partial g}{\partial x_2}|_{(1, x'_{2,+})} < 0$ and $\frac{\partial g}{\partial x_2}|_{(1, x'_{2,-})} > 0$. Consequently, the equilibrium point $(1, x'_{2,+})$ ³⁸³ is stable and $(1, x'_{2,-})$ is a saddle point.

³⁸⁴ By substituting $V_7 = (0, x'_2)$ into Eq. (38), and noting that

$$g(0, (1 - \eta)x'_2) = f(0, (1 - \eta)x'_2) - (1 + \delta)\langle k \rangle [1 - (1 - \eta)x'_2]\alpha = 0,$$

³⁸⁵ we obtain

$$J|_{V_7} = \begin{pmatrix} f(0, (1 - \eta)x'_2) & 0 \\ x'_2(1 - x'_2)\frac{\partial g}{\partial x_1}|_{V_7} & x'_2(1 - x'_2)\frac{\partial g}{\partial x_2}|_{V_7} \end{pmatrix}.$$

³⁸⁶ Here, the term $\frac{\partial g}{\partial x_2}|_{V_7}$ satisfies that

$$\frac{\partial g}{\partial x_2}|_{V_7} = (1 - \eta)\langle k \rangle \{-2c\delta x'_2(1 - \eta) + c\delta - (b + 2S) + (1 + \delta)(\alpha + \beta)\}.$$

³⁸⁷ Since $f(0, (1 - \eta)x'_2) = (1 + \delta)\langle k \rangle [1 - (1 - \eta)x'_2]\alpha > 0$, V_7 is unstable when $\frac{\partial g}{\partial x_2}|_{V_7} > 0$ and ³⁸⁸ becomes a saddle point when $\frac{\partial g}{\partial x_2}|_{V_7} < 0$.

389 Similarly, substituting $V_8 = (x'_1, 0)$ into Eq. (38), and noting that $f(\eta x'_1, 0) = 0$, we have

$$J|_{V_8} = \begin{pmatrix} x'_1(1 - x'_1) \frac{\partial f}{\partial x_1} \big|_{V_8} & x'_1(1 - x'_1) \frac{\partial f}{\partial x_2} \big|_{V_8} \\ 0 & g(\eta x'_1, 0) \end{pmatrix}.$$

390 Since $g(\eta x'_1, 0) = -(1 + \delta) \langle k \rangle (1 - x'_1) \alpha < 0$, the equilibrium point V_8 is stable when $\frac{\partial f}{\partial x_1} \big|_{V_8} < 0$
 391 and becomes a saddle point when $\frac{\partial f}{\partial x_1} \big|_{V_8} > 0$.

392 Finally, we analyze the stability of the equilibrium point V_9 . Since $f(x'_1 \eta, 1) = 0$, the Jacobian
 393 evaluated at V_9 is given by

$$J|_{V_9} = \begin{pmatrix} x'_1(1 - x'_1) \frac{\partial f}{\partial x_1} \big|_{V_9} & x'_1(1 - x'_1) \frac{\partial f}{\partial x_2} \big|_{V_9} \\ 0 & -g(\eta x'_1, 1) \end{pmatrix}.$$

394 Since $g(\eta x'_1, 1) = -(1 + \delta) \langle k \rangle \eta (1 - x'_1) \alpha < 0$, it follows that the equilibrium V_9 is unstable
 395 when $\frac{\partial f}{\partial x_1} \big|_{V_9} > 0$, and becomes a saddle point when $\frac{\partial f}{\partial x_1} \big|_{V_9} < 0$.

396 In fact, the behavior of V_7 , V_8 and V_9 is analogous to that of V_6 . The unknowns x'_1 and x'_2 are
 397 determined by a quadratic function with a negative leading coefficient. Setting this function
 398 equal to zero, the existence of roots within the interval $(0, 1)$ confirms the presence of the cor-
 399 responding equilibria V_7 , V_8 and V_9 . Furthermore, analyzing the sign of the derivative at these
 400 roots determines the stability of each equilibrium.

401 References

- 402 [1] F. C. Santos, J. M. Pacheco, and T. Lenaerts. Evolutionary dynamics of social dilemmas in
 403 structured heterogeneous populations. *Proc. Natl. Acad. Sci. U. S. A.*, 103(9): 3490–3494,
 404 2006.
- 405 [2] A. Traulsen, M. A. Nowak, and J. M. Pacheco. Stochastic dynamics of invasion and fixa-
 406 tion. *Phys. Rev. E*, 74: 011909, 2006.
- 407 [3] N. G. Van Kampen. *Stochastic processes in physics and chemistry*. Elsevier, 1992.
- 408 [4] A. Civilini, O. Sadekar, et al. Explosive Cooperation in Social Dilemmas on Higher-Order
 409 Networks. *Phys. Rev. Lett.*, 132: 167401, 2024.