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1 Stochastic dynamics of higher-order interactions in11

finite populations12

We consider a finite population system consisting ofZ players who participate simultaneously in13

M distinct games. Each game may involve pairwise (low-order) or multi-player (higher-order)14

interactions. Each player adopts a strategy from a finite set S = {S1, S2, . . . , SN}. LetXk ∈ N15

represent the number of players choosing strategy Sk, with the constraint
∑N

i=1 Xi = Z. To16

model these interactions, we consider the hypergraph H(V , E), where the vertex set V , with17

|V| = Z, represents the Z players, and the hyperedge set E , with |E| = M corresponds to the18

M games. Each hyperedge eg, for g ∈ {1, . . . ,M}, specifies a distinct game involving two or19

more participants. And the size of each hyperedge eg is qg = |eg| =
∑Z

i=1 big, which captures20

the number of participants in the game g. This hypergraph structure is encoded by a Z × M21

incidence matrix B = (big), where big = 1 if the player i participates in the game g, and big = 022

otherwise. The hyperdegree of a player i is defined as ki =
∑M

g=1 big, representing the number23

of games that the player joins. Accordingly, the average hyperdegree in the population is given24

by ⟨k⟩ = 1
Z

∑Z
i=1 ki.25

Specifically, in contexts characterized by frequent interactions among individuals, cumulative26

payoffs depend predominantly on the frequency distribution of strategies within the population.27

For instance, considering a well-mixed population composed of j cooperators and N − j de-28

fectors in social dilemmas, the cumulative payoffs for cooperators (πC) and defectors (πD) are29

given respectively by30

πC = (j − 1)R + (N − j)S and πD = jT + (N − j − 1)P,

where R, S, T, and P are the standard payoff parameters defining the underlying game dy-31

namics [1, 2]. However, in scenarios with higher-order interactions, cumulative payoffs for in-32

dividuals in such high-order structures must incorporate contributions from group interactions33

beyond pairs, considering the frequency and size of interaction groups (hyperedges). Thus, un-34

der higher-order interactions, cumulative payoffs become explicitly dependent on the proportion35

and composition of hyperedges, and can be generalized as36

πSi
=
∑
k

ρk
∑
eg∈Gk

ΠSi
(eg),

where ρk denotes the proportion of hyperedges of order k, Gk represents the set of all hyperedges37

of size k involving the focal player, and ΠSi
(eg) denotes the payoff of the focal player when38

interacting within the hyperedge eg.39
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1.1 Evolutionary process Modeling40

At each time step, an individual is randomly selected from the population as the focal player.41

Subsequently, another individual is randomly chosen from among the neighbors of the focal42

player in a hypergraph, where connections are defined by hyperedges of varying sizes. During43

each interaction, the focal player’s payoff depends on its own strategy as well as the strategies44

of the other participants in the relevant hyperedge.45

Following this interaction, the focal player updates its strategy according to the following rule.46

With probability µ, the focal player’s current strategy, denoted by Si, undergoes a mutation47

process, whereby it is replaced by an alternative strategy selected randomly from the set of all48

available strategies. With probability 1− µ, the focal player attempts to imitate the neighbor’s49

strategy Sj , adopting it with the probability given by the Fermi function:50

p =
1

1 + exp
[
−ω

(
πSj

− πSi

)] .
Here, πSi

and πSj
represent the cumulative payoffs obtained by the focal player and the selected51

neighbor, respectively, while ω ≥ 0 characterizes the intensity of selection. Under strong se-52

lection (ω → ∞), the imitation probability p converges to a deterministic outcome: it becomes53

p = 1 or p = 0, depending on the sign of the payoff difference. In contrast, under weak selec-54

tion (ω → 0), the probability of imitation converges to 1/2, reflecting an unbiased and random55

decision.56

We define T±
i (X) as the probability that the number of players employing strategy Si increases57

(+) or decreases (−) by one when the system is in state X = (X1, X2, . . . , XN). It should be58

noted that, as previously defined, each Xi denotes the number of individuals who select the59

strategy Si. Specifically, the probability of an increase in the number of players adopting Si is60

given by the sum61

T+
i (X) =

∑
j, j ̸=i

T+
ij (X),

where T+
ij (X) denotes the probability that the number of players adopting Si increases by one62

while that of players adopting Sj decreases by one. This probability is expressed as63

T+
ij (X) = (1− µ)

1

1 + exp
[
−ω

(
πSi

− πSj

)]Xi

Z

Xj

Z
+ µ

Xj

(N − 1)Z
.

Similarly, the probability that the number of players adopting Si decreases by one is given by64

T−
i (X) =

∑
j, j ̸=i

T−
ij (X),

4



with65

T−
ij (X) = (1− µ)

1

1 + exp
[
ω
(
πSi

− πSj

)]Xi

Z

Xj

Z
+ µ

Xi

(N − 1)Z
.

Indeed, the probability density function, P τ (X), i.e. the prevalence of each state at time τ ,66

evolves in time according to the master equation [3]67

P τ+1(X)− P τ (X)

=
∑
i

∑
j, j ̸=i

P τ (X1, . . . , Xi − 1, . . . , Xj + 1, . . . , XN)T
+
ij (X1, . . . , Xi − 1, . . . , Xj + 1, . . . , XN)

+
∑
i

∑
j, j ̸=i

P τ (X1, . . . , Xi + 1, . . . , Xj − 1, . . . , XN)T
−
ij (X1, . . . , Xi + 1, . . . , Xj − 1, . . . , XN)

−
∑
i

∑
j, j ̸=i

P τ (X)T−
ij (X)−

∑
i

∑
j, j ̸=i

P τ (X)T+
ij (X)

(1)
Introducing the notation xi =

Xi

Z
, t = τ

Z
and the probability density ρ(x, t) = ZP τ (X), we have68

ρ(x, t+ Z−1)− ρ(x, t)

=
∑
i

∑
j, j ̸=i

ρ(x1, . . . , xi − Z−1, . . . , xj + Z−1, . . . , xN , t)T
+
ij (x1, . . . , xi − Z−1, . . . , xj + Z−1, . . . , xN)

+
∑
i

∑
j, j ̸=i

ρ(x1, . . . , xi + Z−1, . . . , xj − Z−1, . . . , xN , t)T
+
ij (x1, . . . , xi + Z−1, . . . , xj − Z−1, . . . , xN)

−
∑
i

∑
j, j ̸=i

ρ(x, t)T−
ij (x)−

∑
i

∑
j, j ̸=i

ρ(x, t)T+
ij (x).

Here x = (x1, x2, . . . , xN) and
∑N

i=1 xi = 1. For Z ≫ 1, applying Taylor expansion to the69

probability densities and the transition probabilities yields70

dρ(x, t)
dt

= −
N∑
i=1

∂

∂xi

(Ai(x)ρ(x, t)) +
1

2

N∑
i,j=1

∂2

∂xi∂xj

(Bij(x)ρ(x, t)) . (2)

The drift vectorA(x), which characterizes the deterministic component of evolutionary dynam-71

ics, is defined as72

Ai(x) =
∑
j, j ̸=i

(
T+
ij (x)− T−

ij (x)
)
. (3)

Correspondingly, the diffusion matrix B(x), which captures the stochastic fluctuations inherent73

in evolutionary dynamics, is expressed as74

Bij(x) =
1

Z

[
δij
∑
k

(
T+
ik (x) + T−

ik (x)
)
− (Tij + Tji)

]
. (4)

Here, the Kronecker delta δij denotes the identity indicator (with δij = 1 if i = j, and 0 other-75
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wise). For large but finite Z, Eq. (2) has the form of a Fokker-Planck equation, which has an76

equivalent Langevin equation77

ẋ = A(x) + Σ(x)ξ

where B = ΣΣT and ξ is Gaussian noise. In fact, this is a coupled system, and the evolution78

equations can be described by the first N − 1 equations.79

1.2 Applications in three strategies80

In this subsection, we investigate evolutionary dynamics on random hypergraphs consisting of81

both pairwise and three-player interactions. Specifically, we consider hypergraphs of size Z,82

comprising n1 two-player interactions and n2 three-player group interactions. The hypergraph83

structure is characterized by the average hyperdegree ⟨k⟩ = 1
Z

∑Z
i=1 ki, indicating the average84

number of hyperedges each node participates in. Consequently, a randomly chosen focal player85

engages in a three-player interaction with probability δ = n2

Z⟨k⟩ , and participates in a pairwise86

interactionwith probability 1−δ. Here, the total number of interactions satisfiesZ⟨k⟩ = n1+n2,87

with n1 =
∑

i

∑
g|qg=2 big representing the sum of elements of the incidence matrix restricted to88

hyperedges of size two, and n2 =
∑

i

∑
g|qg=3 big is hyperedges of size three [4].89

In order to extend the traditional social dilemma game framework, we incorporate peer pun-90

ishment as an additional strategic dimension. Thus, players may select among three strategies:91

cooperation (C), defection (D), and peer punishment (P). A player adopting the punishment92

strategy incurs a personal cost α > 0 each time they punish a defector. In contract, the punished93

defective player is charged with a fine β > 0.94

At each time step, a randomly selected focal player participates either in a 3-person (namely95

3-game) or a 2-person (2-game) interaction, according to the probabilities defined above. For96

the pairwise interaction scenario, the payoff matrix is explicitly given by:97

C D P

C 1 S 1

D T 0 T − β

P 1 S − α 1

. (5)

In this matrix, the parametersS and T represent the classic payoff structures for social dilemmas.98

Specifically, the Snowdrift game corresponds to payoff rankings T > 1 > S > 0, the Stag-Hunt99

game to 1 > T > 0 > S, and the Prisoner’s Dilemma to T > 1 > 0 > S [1].100

For three-person interactions, the payoff structure expands due to multiple co-players, denoted101
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as102

CC CD CP DD DP PP

C 1 G 1 S G 1

D T W T − β 0 W − β T − 2β

P 1 G− α 1 S − 2α G− α 1

. (6)

We consider a finite population of size Z, partitioned into three discrete strategic types: cooper-103

ators (C,XC = i), defectors (D,XD = j) and peer punishers (P,XP = Z − i− j). The relative104

frequencies of these strategies are defined as105

xC =
i

Z
, xD =

j

Z
, and xP =

Z − i− j

Z
= 1− xC − xP .

The state of the system is represented by the vector X = (i, j, Z − i − j) where i, j ∈ N,106

with the transitionX → X ′ = (i+ δ1, j+ δ2, Z − i− j+ δ3) following a death-birth process:107

components exchange unit mass via vectors108

(δ1, δ2, δ3) ∈ {(±1, ∓1, 0), (±1, 0, ∓1), (0, ±1, ∓1)} ,

yielding six transitions per interior state. Then the cumulative payoffs for cooperators (πC),109

defectors (πD) and punishers (πP ), respectively, are given respectively by110

πC = ⟨k⟩
{
(1− δ) (xC + xDS + xP ) + δ

[
(xC + xP )

2 + 2(xC + xP )xDG+ x2
DS
]}

, (7a)

πD = δ⟨k⟩
[
(xC + xP )

2T + 2(xC + xP )xDW − 2xPβ
]

+ (1− δ) ⟨k⟩ [xCT + xP (T − β)] , (7b)

πP = δ⟨k⟩
[
(xC + xP )

2 + 2(xC + xP )xDG+ x2
DS − 2xDα

]
+ (1− δ) ⟨k⟩ [xC + xD (S − α) + xP ] . (7c)

Thus, as described in subsection 1.1, we have111

T+
13(X) = TP→C(X) = (1− µ)

1

1 + exp [−ω (πC − πP )]
xCxP + µ

xP

N − 1
,

T+
12(X) = TD→C(X) = (1− µ)

1

1 + exp [−ω (πC − πD)]
xCxD + µ

xD

N − 1
,

T+
23(X) = TP→D(X) = (1− µ)

1

1 + exp [−ω (πD − πP )]
xDxP + µ

xP

N − 1
.

In a similar manner, expressions for T−
12, T

−
13 and T−

23 can be obtained. The drift vector A and112
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diffusion matrix B in Eq. (2) are specifically defined as113

A =

 (1− µ)
[
xCxP tanhω

2
(πC − πP ) + xCxDtanhω

2
(πC − πD)

]
+ µ

2
(1− 3xC)

(1− µ)
[
xDxP tanhω

2
(πD − πP )− xCxDtanhω

2
(πC − πD)

]
+ µ

2
(1− 3xD)

(1− µ)
[
−xCxP tanhω

2
(πC − πP )− xDxP tanhω

2
(πD − πP )

]
+ µ

2
(1− 3xP )

 ,

and114

B =
(1− µ)

Z

xC(1− xC) −xCxD −xCxP

−xCxD xD(1− xD) −xDxP

−xCxP −xDxP xP (1− xP )

+
µ

2Z

 1 + xC xC + xD xC + xP

xC + xD 1 + xD xD + xP

xC + xP xD + xP 1 + xP

 .

Taking the limitZ → ∞, the diffusion term vanishes asO(Z−1), giving deterministic dynamics115

116

ẋC = (1− µ)
[
xCxP tanh

ω

2
(πC − πP ) + xCxDtanh

ω

2
(πC − πD)

]
+

µ

2
(1− 3xC) , (8a)

ẋD = (1− µ)
[
xDxP tanh

ω

2
(πD − πP )− xCxDtanh

ω

2
(πC − πD)

]
+

µ

2
(1− 3xD) , (8b)

ẋP = (1− µ)
[
−xCxP tanh

ω

2
(πC − πP )− xDxP tanh

ω

2
(πD − πP )

]
+

µ

2
(1− 3xP ) . (8c)

1.3 Stationary Distribution Analysis117

We still considerZ players who simultaneously engage inM games, with each player selecting a118

strategy from a set comprisingN distinct strategies. The stationary distribution P̄ can be derived119

by setting the left-hand side of Eq. (1) to zero, thus the equation reduces to an eigenvector120

problem. Specifically, this involves solving the eigenvalue equation T ⊤P̄ = P̄ , where T is121

the stochastic matrix that encodes the permissible state transitions. The state space S consists122

of configurations X = (X1, X2, . . . XN) ,
∑N

i=1 Xi = Z. Consequently, the cardinality of this123

state space is |S| =
(
Z+N−1
N−1

)
.124

Each off-diagonal element TX→X′ corresponds to transitions between adjacent statesX′ = X+δ,125

where the vector δ = (δ1, . . . , δN) contains exactly two nonzero entries, specifically δi =126

+1 and δj = −1, representing a shift of one individual from strategy Sj to strategy Si. The127

corresponding transition probability from state X to X′ is determined by the given rule128

TX→X′ = T+
ij (X) = (1− µ)

1

1 + exp
[
−ω

(
πSi

− πSj

)]Xi

Z

Xj

Z
+ µ

Xj

(N − 1)Z
.

It is evident that diagonal elements of the matrix T , denoted by TX→X, satisfy the condition129

TX→X = 1−
∑

X′ ̸=X TX→X′ . For example, in the case of Z = 2 and N = 3, the system exhibits130

six distinct states, each represented by an ordered triplet (i, j, k) satisfying i + j + k = 2.131
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Here, the non-negative integers i, j, and k correspond to the number of individuals adopting132

cooperation (C), defection (D), and punishment (P) strategies, respectively. The corresponding133

state transition matrix is given by134

(0, 0, 2) (0, 1, 1) (0, 2, 0) (1, 1, 0) (1, 0, 1) (2, 0, 0)

(0, 0, 2) 1− µ µ
2

0 0 µ
2

0

(0, 1, 1) F(πD − πP ) 0 F(πP − πD)
µ
4

µ
4

0

(0, 2, 0) 0 µ
2

1− µ µ
2

0 0

(1, 1, 0) 0 µ
4

F(πC − πD) 0 µ
4

F(πD − πC)

(1, 0, 1) F(πC − πP )
µ
4

0 µ
4

0 F(πP − πC)

(2, 0, 0) 0 0 0 µ
2

µ
2

1− µ

,

where F(x) is given by135

F(x) = (1− µ)
1

1 + exp(ωx)
+

µ

4
.

The payoffs πC , πD, and πP for cooperation, defection, and punishment strategies, respectively,136

are analytically determined through Eq. (7) under the condition δ = 0, where δ represents the137

probability of interaction with three players.138

2 Replicator dynamics in higher-order interactionswith139

punishment mechanisms140

2.1 Governing equation derivation141

We consider evolutionary dynamics in an infinite population limit (Z → ∞). Under the condi-142

tion of weak selection (ω ≪ 1) and in the absence of mutation (µ = 0), the evolutionary process143

(8) can be accurately captured by the replicator equation. Given the payoffs πC , πD, and πP pre-144

viously defined in equations (7), the temporal evolution of the frequency of each strategy in a145

well-mixed population is described by146

dxi

dt
= xi (πi − ⟨π⟩) , i = C, D, P, (9)

where ⟨π⟩ = xCπC + xDπD + xPπP represents the average payoff of the entire population. By147

explicitly substituting the average payoff ⟨π⟩ into Eq. (9), we obtain the detailed expressions148
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governing the temporal evolution of each frequency of the strategy as follows:149

dxC

dt
= xC (1− xC) (πC − πD) + xCxP (πD − πP ) , (10a)

dxD

dt
= xD (1− xD) (πD − πC) + xDxP (πC − πP ) , (10b)

dxP

dt
= xP (1− xP ) (πP − πC) + xDxP (πC − πD) . (10c)

Let a := 2 (G−W ), b := T − S − 1 and c := a+ b. In the case of the Prisoner’s Dilemma, it150

is given that for this game S < 0, a > 0 and b+ S = T − 1 > 0. Therefore, we conclude that151

c > 0. Substituting Eq. (7) into Eq. (10), we obtain the following expressions:152

dxC

dt
= ⟨k⟩

{
−δxCx

3
Dc+ δxCxD [xDc+ xP (α + β)] + xCx

2
D (b+ 2S − α− β)

+xCxD (−b− S + α + β)− x2
CxD (α + β)

}
, (11a)

dxD

dt
= ⟨k⟩

{
δx3

D (1− xD) c+ δxD (1− xD) [−xD (c− α)− xPβ]− δxCx
2
Dα− x2

DxCα

+x2
D (1− xD) (−b− 2S + α + β) + xCxD (1− xD) β + xD (1− xD) (b+ S − β)

}
,

(11b)
dxP

dt
= ⟨k⟩

{
−δx3

DxP c+ δxDxP [xDc+ xP (α + β)− α] + xPx
2
D (b+ 2S)

+xDx
2
P (α + β) + xDxP (−b− S − α)

}
. (11c)

2.2 Stability criteria and phase transitions153

We denote the state of the system x = (xC , xD, xP ). Solving dxi

dt = 0, i = C, D, P , we obtain154

equilibrium points which can be divided into three categories:155

(i) xD = 0, xC + xP = 1, i.e., a point on the CP -edge, x(CP ) =
(
x
(CP )
C , 0, x

(CP )
P

)
.156

(ii) xP = 0, xC + xD = 1, i.e., a point on the CD-edge, x(CD) =
(
x
(CD)
C , x

(CD)
D , 0

)
.157

(iii) xC = 0, xD + xP = 1, i.e., a point on the DP -edge, x(DP ) =
(
0, x

(DP )
D , x

(DP )
P

)
.158

Proposition 1. Let δ ∈ (0, 1] denote the probability of a three-player interaction and let α > 0159

represent the cost incurred for peer punishment. Then, the dynamical system described by Eq.160

(11) does not admit interior equilibria within the strategy simplex xC + xD + xP = 1.161

Proof. Assuming xC , xD, xP ̸= 0, for dρ
dt = 0, the right-hand sides of Eq. (11)a and Eq. (11)c162
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can be reduced to163

− δx2
Dc+ δ [xDc+ xP (α + β)] + xD (b+ 2S − α− β)− b− S + α + β − xC (α + β) = 0,

(12a)

− δx2
Dc+ δ [xDc+ xP (α + β)− α] + xD (b+ 2S) + xP (α + β)− b− S − α = 0. (12b)

To admit a solutionwhere all variables are strictly positive under the constraintxC+xD+xP = 1,164

the system must satisfy165

(1 + δ)α = 0,

which is in contradiction with the definition of α.166

Case (i): The stability of x(CP ) =
(
x
(CP )
C , 0, x

(CP )
P

)
. When xD = 0, it follows that dxC

dt = dxP

dt ,167

implying that strategies C and P are indistinguishable. Under this condition, it is appropriate to168

consider the combined proportion xC + xP as a single state variable. Thus, the system can be169

effectively analyzed by examining the dynamics of dxD

dt and d(xC+xP )
dt . Since xC +xP = 1−xD,170

substituting this identity directly yields171

dxD

dt
= ⟨k⟩

{
δx3

D (1− xD) c+ δxD (1− xD) [−xD (c− α)− xPβ]− δxCx
2
Dα− x2

DxCα

+x2
D (1− xD) (−b− 2S + α + β) + xCxD (1− xD) β + xD (1− xD) (b+ S − β)

}
.

The element of the single-order Jacobian matrix is172

dẋD

dxD

= ⟨k⟩
{
3δx2

D (1− xD) c− δx3
Dc− 2δxD (1− xD) (c− α) + δx2

D (c− α) + δxDxPβ

− δ (1− xD) xPβ − 2 (1 + δ) xCxDα +
[
2xD (1− xD)− x2

D

]
(−b− 2S + α + β)

+xC (1− xD) β − xCxDβ + (1− xD) (b+ S − β)− xD (b+ S − β)} .
(13)

By substituting the expression for x(CP ) into Eq. (13), we have173

dẋD

dxD

∣∣∣
x(CP )

= ⟨k⟩
[
− (1 + δ) x

(CP )
P β + b+ S

]
. (14)

Therefore, the equilibrium state x(CP ) is stable if and only if x(CP )
C < x

(CP )
C,∗ (or equivalently,174

x
(CP )
P > x

(CP )
P,∗ ), where175

x
(CP )
C,∗ = 1− b+ S

(1 + δ) β
, (15)

and correspondingly,176

x
(CP )
P,∗ =

b+ S

(1 + δ) β
.

Although every point on the CP -edge is an equilibrium, only those points satisfying x
(CP )
C <177
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x
(CP )
C,∗ exhibit stability. Through direct calculation, we derive the following explicit conditions:178

• If inequality b + S < 0 holds, it necessarily follows that x(CP )
C,∗ > 1. Consequently, all179

points on the CP -edge are stable.180

• If condition b + S > (1 + δ)β is satisfied, it implies x(CP )
C,∗ < 0. Thus, all points on the181

CP -edge are unstable.182

• If inequality 0 < b+S < (1+ δ)β holds, we have 0 < x
(CP )
C,∗ < 1. In this case, the points183

on the CP -edge that satisfy x(CP )
C < x

(CP )
C,∗ are stable.184

Case (ii): The stability of x(CD) =
(
x
(CD)
C , x

(CD)
D , 0

)
. We cancel xP = 1−xC−xD and study185

the dynamics depicted by dxC

dt and dxD

dt ,186

dxC

dt
= ⟨k⟩

{
−δxCx

3
Dc+ δxCxD [xDc+ (1− xC − xD) (α + β)]

+xCx
2
D (b+ 2S − α− β) + xCxD (−b− S + α + β)− x2

CxD (α + β)
}
, (16a)

dxD

dt
= ⟨k⟩

{
δx3

D (1− xD) c+ δxD (1− xD) [−xD (c− α)− (1− xC − xD) β]

− δxCx
2
Dα− x2

DxCα + x2
D (1− xD) (−b− 2S + α + β)

+xCxD (1− xD) β + xD (1− xD) (b+ S − β)} . (16b)

For 0 < x
(CD)
D < 1, it satisfies187

−δcx2
D + xD (δc+ b+ 2S)− b− S = 0. (17)

Then the Jacobian matrix of the system (16) at x(CD) is188

J |x(CD) =

(
m⟨k⟩ n⟨k⟩

−m⟨k⟩ − x
(CD)
D (1 + δ) ⟨k⟩α −n⟨k⟩ − x

(CD)
D (1 + δ) ⟨k⟩α

)
, (18)

where189

m = (1 + δ) (α + β)
(
x
(CD)
D − 1

)
x
(CD)
D ,

n =
(
x
(CD)
D

)2
[b+ 2S + (1 + δ) (α + β)]− x

(CD)
D [2 (b+ S) + (1 + δ) (α + β)] + b+ S.

The matrix has two eigenvalues, denoted as190

λ1 = − (1 + δ) ⟨k⟩x(CD)
D α,

λ2 = (m− n)⟨k⟩ =
[
−
(
x
(CD)
D

)2
S − (b+ S)

(
x
(CD)
D − 1

)2]
⟨k⟩.
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Besides, 0 < x
(CD)
C < 1 satisfies191

−δcx2
C + xC (δc− b− 2S) + S = 0. (19)

Then we deduce that192

λ2 = −
(
x
(CD)
C

)2
⟨k⟩ (b+ 2S) + 2x

(CD)
C ⟨k⟩S − ⟨k⟩S

= −x
(CD)
C ⟨k⟩

[
−cδ

(
x
(CD)
C

)2
+ cδx

(CD)
C + S

]
+ 2x

(CD)
C ⟨k⟩S − S⟨k⟩

=
(
1− x

(CD)
C

)
⟨k⟩
[
−cδ

(
x
(CD)
C

)2
− S

]
,

which implies that λ2 is negative when
(
x
(CD)
C

)2
> − S

cδ
. Then we will determine the value of193

x
(CD)
C . By solving equation (19), we have the non-trivial stationary solutions:194

x∗
C,± =

cδ − b− 2S ±
√
(cδ − b)2 + 4S (b+ S)

2cδ
. (20)

It follows that when ∆ = (cδ − b)2 + 4S (b+ S) ≥ 0, then x∗
C,± is real valued for every195

b, c, , δ, S. Since c > 0, ∆ ≥ 0 requires the following conditions:196

δ ≥ δ+ :=
b+

√
−4S (b+ S)

c
, (21a)

δ ≤ δ− :=
b−

√
−4S (b+ S)

c
. (21b)

It can also be verified that if cδ − b− 2S < 0, then x∗
C,± < 0. Conversely, if cδ − b− 2S > 0,197

or equivalently, if198

δ > δ∗ :=
b+ 2S

c
, (22)

then x∗
C,± > 0. Since 2S <

√
−4S(b+ S), it follows directly that δ− < δ∗ < δ+. Therefore,199

for δ ≥ δ+, there exist positive real-valued stationary solutions 0 < x∗
C,± < 1, while for200

δ ≤ δ− < δ∗, the solutions are real but negative. We also observe that for the appearance of201

the non-trivial stationary solution x∗
C,+ at δ = δ+ is always abrupt. Meanwhile, we have the202

following claim.203

Proposition 2. Suppose 0 < x∗
C,± < 1 and x∗

C,+ ̸= x∗
C,−. Then, the stationary solution204

x(CD) =
(
x∗
C,+, 1− x∗

C,+, 0
)
is stable, while the stationary solution x(CD) =

(
x∗
C,−, 1− x∗

C,−, 0
)

205

is unstable.206

Proof. Note that λ1 is always negative. Moreover, we recall that λ2 is negative in the case of207 (
x
(CD)
C

)2
> − S

cδ
. Let cδ − b− 2S = M > 0. Then, we have M2 + 4cδS = ∆ > 0. Next, we208

13



investigate the condition
(
x∗
C,+

)2
> − S

cδ
. This is equivalent to209

(
x∗
C,+

)2
> − S

cδ
⇐⇒

(
M +

√
∆
)2

> −4cδS

⇐⇒ M2 + 4cδS +M
√
∆ > 0

⇐⇒ ∆+M
√
∆ > 0.

The last inequality always holds, since ∆ > 0 and M
√
∆ > 0. Thus, we conclude that the210

stationary solution x(CD) =
(
x∗
C,+, 1− x∗

C,+, 0
)
is stable. Similarly, we have211

(
x∗
C,−
)2

> − S

cδ
⇐⇒

(
M −

√
∆
)2

> −4cδS

⇐⇒ M2 + 4cδS −M
√
∆ > 0

⇐⇒
√
∆
(√

∆−M
)
> 0.

This leads to a contradiction, as S < 0 and
√
∆ < M . Therefore, the stationary solution212

x(CD) =
(
x∗
C,−, 1− x∗

C,−, 0
)
is unstable.213

For xD = 0, it has x(CD) = (1, 0, 0). Then the Jacobian matrix of the system (16) at x(CD) is214

J |x(CD) =

(
0 (−b− S)⟨k⟩
0 (b+ S)⟨k⟩

)
, (23)

with eigenvalues λ1 = 0 and λ2 = (b+ S)⟨k⟩. Since b+ S > 0, x(CD) is unstable.215

Case (iii): The stability of x(DP ) =
(
0, x

(DP )
D , x

(DP )
P

)
. We cancel xC = 1−xD−xP and study216

the dynamics depicted by dxD

dt and dxP

dt ,217

dxD

dt
= ⟨k⟩

{
δx3

D (1− xD) c+ δxD (1− xD) [−xD (c− α)− xPβ]

− x2
D (1− xD) (b+ 2S − α− β)− (1 + δ) (1− xD − xP ) x

2
Dα

+xD (1− xD) [(1− xD − xP ) β + (b+ S − β)]} , (24a)
dxP

dt
= ⟨k⟩

{
−δx3

DxP c+ δxDxP [xDc+ xP (α + β)− α] + xPx
2
D (b+ 2S)

+xDx
2
P (α + β) + xDxP (−b− S − α)

}
. (24b)

For 0 < x
(CD)
D < 1, it satisfies218

δcx2
D + xD [δ (α + β − c) + (α + β − b− 2S)] + b+ S − (1 + δ) β = 0. (25)
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Then the Jacobian matrix of the system (24) at x(DP ) is219

J |x(DP ) =

(
m⟨k⟩ n⟨k⟩

−m⟨k⟩+ x
(DP )
D (1 + δ) ⟨k⟩α −n⟨k⟩+ x

(DP )
D (1 + δ) ⟨k⟩α

)
, (26)

where220

m =
(
x
(DP )
D

)2
[2 (1 + δ) (α + β)− (b+ 2S)] + x

(DP )
D [2 (b+ S)− 3 (1 + δ) β]

− b− S + (1 + δ) β,

n =
(
x
(DP )
D

)2
(1 + δ) (α + β)− x

(DP )
D (1 + δ) β.

The matrix has two eigenvalues, denoted as221

λ1 = x
(DP )
D (1 + δ) ⟨k⟩α,

λ2 =
(
x
(DP )
D

)2
⟨k⟩ [(1 + δ) (α + β)− (b+ 2S)] + 2x

(DP )
D ⟨k⟩ [(b+ S)− (1 + δ) β]

− b⟨k⟩ − S⟨k⟩+ (1 + δ) ⟨k⟩β.

Since λ1 is always positive, x(DP ) is unstable. Note that, when considering only the points on222

the DP -edge, we return to the case where only the two strategies D and P are present. In this223

case,224

dxP

dt
= xP (1− xP ) (π

′
P − π′

D)

= xP (1− xP ) ⟨k⟩
{
−cδx2

P + xP [cδ − b− 2S + (1 + δ) (α + β)] + S − (1 + δ)α
}
,

(27)
where225

π′
P = (1− δ) ⟨k⟩ [xD (S − α) + xP ] + δ⟨k⟩

[
x2
P + x2

D (S − 2α) + 2xDxP (G− α)
]
,

π′
D = (1− δ) ⟨k⟩xP (T − β) + δ⟨k⟩

[
x2
P (T − 2β) + 2xDxP (W − β)

]
.

In the following, we need to consider the solution of equation π′
P −π′

D = 0. In other words, we226

consider the quadratic equation227

−cδx2
P + xP [cδ − b− 2S + (1 + δ) (α + β)] + S − (1 + δ)α = 0 (28)

and obtain the following result.228

Proposition 3. If (1 + δ) β > b+ S, then the equation (28) admits two real solutions229

x∗
P,± =

cδ − b− 2S + (1 + δ) (α + β)±
√
∆

2cδ
,
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where ∆ = [cδ − b− 2S + (1 + δ) (α + β)]2 + 4cδ [S − (1 + δ)α]. Moreover, these solutions230

satisfy the inequalities 0 < x∗
P,− < 1 and x∗

P,+ > 1. In addition, x∗
P,− is unstable.231

Proof. Since (1 + δ) β > b+ S, it follows that232

∆ = [cδ − b− 2S + (1 + δ) (α + β)]2 + 4cδ [S − (1 + δ)α]

> [cδ − S + (1 + δ)α]2 + 4cδ [S − (1 + δ)α]

= [cδ + S − (1 + δ)α]2

> 0.

Therefore, the equation has real solutions. Moreover, it is straightforward to verify that both233

solutions, x∗
P,±, are positive.234

Next, we find that x∗
P,− < 1 is equivalent to235

−cδ − b− 2S + (1 + δ) (α + β) <
√
∆. (29)

Now we consider two cases:236

(i) If cδ + b+ 2S ≥ (1 + δ) (α + β), the inequality (29) always holds.237

(ii) If cδ + b+ 2S < (1 + δ) (α + β), the inequality (29) is equivalent to238

[−cδ − b− 2S + (1 + δ) (α + β)]2 < ∆ ⇐⇒ 4cδ [b+ S − (1 + δ) β] < 0

And the last line always holds under the condition (1 + δ) β > b+ S.239

Furthermore, we find that x∗
P,+ > 1 is equivalent to240

√
∆ > cδ + b+ 2S − (1 + δ) (α + β) . (30)

Similar to x∗
P,−, we consider two cases as follows:241

(i) If cδ + b+ 2S ≤ (1 + δ) (α + β), the inequality (30) always holds.242

(ii) If cδ + b+ 2S > (1 + δ) (α + β), the inequality (30) is also equivalent to243

4cδ [b+ S − (1 + δ) β] < 0,

which, once again, holds in the case of (1 + δ) β > b+ S.244

In conclusion, we have 0 < x∗
P,− < 1 and x∗

P,+ > 1. We then prove that x∗
P,− is unstable. Let245

f(xP ) = xP (1− xP )
{
−cδx2

P + xP [cδ − b− 2S + (1 + δ) (α + β)] + S − (1 + δ)α
}
.
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Then, we compute the derivative of f(xP ) at x∗
P,−:246

f ′(x∗
P,−) = x∗

P,−
(
1− x∗

P,−
) [

−2cδx∗
P,− + cδ − b− 2S + (1 + δ) (α + β)

]
> 0,

where −2cδx∗
P,− + cδ − b− 2S + (1 + δ) (α + β) =

√
∆ > 0. Hence, x∗

P,− is unstable.247

We now analyze the stable stationary solutions on the DP -edge under the condition b + S ≥248

(1 + δ)β. Specifically, we examine the real-valued roots within the interval (0, 1) of equation249

(28). Suppose that this equation has two distinct solutions x1, x2 ∈ (0, 1). This implies that the250

discriminant ∆ must satisfy251

∆ = [cδ − b− 2S + (1 + δ) (α + β)]2 + 4cδ [S − (1 + δ)α] > 0.

Under this condition, the two distinct solutions are explicitly given by252

x1,2 =
cδ − b− 2S + (1 + δ) (α + β)±

√
∆

2cδ
. (31)

Based on direct calculations, we will identify three scenarios in the following.253

(A1) When254 cδ − b− 2S + (1 + δ)(α + β) > 0,

cδ + b+ 2S − (1 + δ)(α + β) > 0,

both solutions x1, x2 lie within (0,1). Among them, the solution x1 is unstable, while the255

solution x2 is stable.256

(A2) When257 cδ − b− 2S + (1 + δ)(α + β) > 0,

cδ + b+ 2S − (1 + δ)(α + β) < 0,

both solutions x1, x2 are greater than 1.258

(A3) When cδ − b− 2S + (1 + δ)(α + β) < 0, both solutions x1 and x2 are negative.259

We proceed by analyzing case (A1). Combining condition b+S ≥ (1+ δ)β with the case (A1),260

we define three critical parameters as261

δ1 =
b+ S

β
− 1, δ2 =

b+ 2S − α− β

c+ α + β
and δ3 =

α + β − b− 2S

c− α− β
.

If condition c − α − β > 0 holds, the signs of δ2 and δ3 are strictly opposite. Specifically, if262

δ2 > 0, then it necessarily follows that δ3 < 0. In contrast, under the condition c− α − β < 0,263
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combined with the assumptions outlined in (A1), we must simultaneously have δ < δ3 and264

δ > δ2. This scenario warrants further consideration in two distinct cases:265

• If α + β > b + 2S, it implies that both δ3 < 0 and δ2 < 0, thereby making it impossible266

to satisfy the simultaneous inequalities, resulting in a contradiction.267

• If α+ β < b+ 2S, noting that c = a+ b < α+ β, together with the imposed constraints268

S < 0, a > 0, b > 0, it is a contradiction to α + β < b+ 2S.269

Hence, under the condition c− α− β < 0, both cases inevitably lead to logical contradictions,270

thus demonstrating that the initial assumptions are invalid in this scenario. Next, we analyze the271

condition ∆ > 0. Let f(δ) denote272

f(δ) = ∆ = δ2
[
(c− α− β)2 + 4cβ

]
+ 2δ {c(β − α− b) + (α + β) [(α + β)− (b+ 2S)]}

+ (b+ 2S − α− β)2 .
(32)

Notice that f(δ) is a quadratic function in δ with a positive leading coefficient and satisfies273

f(0) > 0. Therefore, if the quadratic does not admit real roots, then f(δ) > 0 holds for all274

δ ∈ (0, 1). If, on the other hand, f(δ) = 0 has two distinct real solutions (that is, its discriminant275

∆′ > 0), denoted by xδ,− and xδ,+ with xδ,− < xδ,+. If both roots lie within the interval (0, 1),276

then by the upward-opening nature of f(δ), it follows that f(δ) > 0 precisely for277

0 < δ < xδ,− or xδ,+ < δ < 1.

Define278

δ4 =

xδ,− if xδ,− exists

1 otherwise
and δ5 =

xδ,+ if xδ,+ exists

0 otherwise
,

and it is obvious that δ4 < δ5. Specifically, if the corresponding root lies in the interval (0, 1), δ279

takes that value; otherwise (or if no such root exists), we set δ4 = 1 and δ5 = 0. Based on the280

preceding discussion, we now state the following proposition.281

Proposition 4. Let α, β, c, b and S be parameters that satisfy c− α− β > 0. If282

max {δ2, δ3} < δ < min {δ1, δ4, 1} or max {δ2, δ3, δ5} < δ < min {δ1, 1} ,

then the DP -edge admits two fixed points, x1 and x2, with x1, x2 ∈ (0, 1) as defined in Eq.283

(31). Moreover, x1 is unstable, while x2 is stable.284

Let δ6 = δ+ =
b+
√

−4S(b+S)

c
and δ7 = max {δ2, δ3}. We analyze the order of stable equilibrium285

points by comparing the magnitudes of critical thresholds δ1, δ4, δ5, δ6 and δ7. Given the multi-286

parametric nature of the system, accurate determination of these critical thresholds inherently287
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depends on parameter selection. Based on the preceding analysis, we choose the appropriate288

parameter values to provide a clear illustration.289

With the parameters α, β, b, c, and S fixed appropriately, we explore the relationship between290

the sequential emergence of stable equilibrium points and the probability of third-order interac-291

tions δ. The relationships can be broadly classified into several distinct categories when δ5 > δ1,292

as shown in Fig. 1. Here, δ1 characterizes the emergence of a stable equilibrium on the CP-edge,293

while the relationship between δ4 and δ7 governs the formation of a stable equilibrium on the294

DP-edge. Similarly, δ6 determines the stability condition for the equilibria along the CD-edge.295

The schematic representation is conceptual rather than quantitative; data points illustrate the296

relative ordering (non-strict inequality) of the parameters δ1, δ4, δ5, δ6, δ7, without implying297

specific numerical values.

D-only stable equilibrium DP-edge: emergent stable equilibrium

CD-edge: emergent stable equilibrium CP-edge: emergent stable equilibrium

0 1δ7 δ6 δ4 δ1

a b

c d

0 1δ6 δ1

e f

0 1δ6 δ7 δ4 δ1

0 1δ7 δ4 δ6 δ1
0 1δ7 δ4 δ1 δ6

0 1δ1 δ6

Figure 1: Hierarchical emergence of stable equilibria as governed by the third-order interaction
probability δ with all other parameters suitably fixed. Panels a-d show the bifurcation sequences
and resulting equilibrium types when stable points arise at the DP -edge. In contrast, e-f illus-
trate scenarios in which no stable equilibria persist at the DP -edge.

298

For xD = 0, it has x(DP ) = (0, 0, 1). The Jacobian matrix of the system (24) at x(DP ) is299

J |x(DP ) =

(
[b+ S − (1 + δ) β] ⟨k⟩ 0

[(1 + δ) β − (b+ S)] ⟨k⟩ 0

)
, (33)

with eigenvalues λ1 = 0 and λ2 = [b+ S − (1 + δ) β] ⟨k⟩. The stability condition for the300

equilibrium point x(DP ) = (0, 0, 1) is determined by the sign of the expression b+S− (1+ δ)β.301
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For xP = 0, it has x(DP ) = (0, 1, 0). The Jacobian matrix of the system (24) at x(DP ) is302

J |x(DP ) =

(
S⟨k⟩ (1 + δ) ⟨k⟩α
0 − (1 + δ) ⟨k⟩α + S⟨k⟩

)
, (34)

with eigenvalues λ1 = S⟨k⟩ and λ2 = − (1 + δ) ⟨k⟩α + S⟨k⟩. Since α > 0 and S < 0, x(DP )303

is stable.304

3 Replicator Dynamics in Two-Population Games un-305

der Higher-Order Interactions andPunishmentMech-306

anisms307

In this section, we consider a theoretical model involving two distinct roles, each associated308

with two strategies, in a population where individuals participate concurrently in both pairwise309

and three-player interactions. Our primary objective is to determine how the proportion of these310

two roles affects the prevalence of cooperation in the population.311

We denote the two roles by M1 and M2, with η representing the proportion of individuals in312

role M1, and 1 − η the proportion in role M2. The set of strategies for M1 is SM1 = {C, D1},313

while the set of strategies for M2 is SM2 = {P, D2}. Let xC ∈ [0, η] and xD1 ∈ [0, η] denote314

the proportions of the population adopting strategies C and D1 respectively, constrained by315

xC + xD1 = η. Similarly, define xP ∈ [0, 1 − η] and xD2 ∈ [0, 1 − η] as the proportions for316

strategies P and D2, satisfying xP + xD2 = 1− η. Moreover, by direct computation, x1 =
xC

η
317

is the proportion of M1 individuals using strategy C, which implies that the proportion of M1318

individuals using strategyD1 is 1−x1. Similarly, x2 =
xP

1−η
is the proportion ofM2 individuals319

using strategy P , while 1 − x2 is the proportion of M2 individuals using strategy D2. For the320

pairwise interaction scenario, the payoff matrix is explicitly given by321

M1 P D2 C D1

C 1 S 1 S

D1 T − β 0 T 0

and
M2 C D1 P D2

P 1 S − α 1 S − α

D2 T 0 T − β 0

.

For three-person interactions, the payoff structure expands due to multiple co-players, denoted322

as323

M1 CC CD1 CD2 CP D1D2 D1D1 D2D2 D1P D2P PP

C 1 G G 1 S S S G G 1

D1 T W W T − β 0 0 0 W − β W − β T − 2β

,
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and324

M2 CC CD1 CD2 CP D1D2 D1D1 D2D2 D1P D2P PP

P 1 G− α G− α 1 S − 2α S − 2α S − 2α G− α G− α 1

D2 T W W T − β 0 0 0 W − β W − β T − 2β

.

The expected payoffs for each strategy are given by325

πC = (1− δ) ⟨k⟩ [(1− xC − xP )S + xC + xP ] + δ⟨k⟩
[
(1− xC − xP )

2 S

+2(xC + xP )(1− xC − xP )G+ (xC + xP )
2] , (35a)

πD1 = πD2 = (1− δ) ⟨k⟩ [(xC + xP )T − xPβ] + δ⟨k⟩
[
(xC + xP )

2T − 2xPβ

+2(xC + xP )(1− xC − xP )W ] , (35b)

πP = (1− δ) ⟨k⟩ [(1− xC − xP )(S − α) + xP + xC ] + δ⟨k⟩
[
(1− xC − xP )

2S

+2(xC + xP )(1− xC − xP )G− 2(1− xC − xP )α + (xC + xP )
2
]
. (35c)

The mean payoff of the populationM1 is then calculated by ⟨π1⟩ = x1πC + (1− x1)πD1 , while326

the mean payoff of the population M2 is ⟨π2⟩ = x2πP + (1 − x2)πD2 . Then the evolution in327

time of the proportion of x1 and x2 is given by the replicator equation328 ẋ1 = x1(πC − ⟨π1⟩)

ẋ2 = x2(πP − ⟨π2⟩)
. (36)

Substituting the expression for ⟨π1⟩ and ⟨π2⟩ into Eq. (10), we have329 ẋ1 = x1(1− x1)(πC − πD1),

ẋ2 = x2(1− x2)(πP − πD2),
(37)

where330

πC − πD1 = δ⟨k⟩(xC + xP )
2(1− T + 2W − 2G+ S) + (xC + xP )⟨k⟩(1− S − T ) + S⟨k⟩

+ xP ⟨k⟩β + δ⟨k⟩ [(xC + xP )(T − 1 + 2G− 2W − S) + xPβ]

and331

πP − πD2 = πC − πD1 − (1 + δ)⟨k⟩(1− xC − xP )α.

We also denote a = 2(G−W ), b = T − 1− S and c = a+ b. We define the payoff difference332

functions f(xC , xP ) = πC − πD1 and g(xC , xP ) = πP − πD2 as333

f(xC , xP ) =
[
(xC + xP )(cδ − b− 2S)− cδ(xC + xP )

2 + (1 + δ)xPβ + S
]
⟨k⟩
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and334

g(xC , xP ) = f(xC , xP )− (1 + δ)⟨k⟩(1− xC − xP )α,

respectively. Assuming that ẋ1 = 0 and ẋ2 = 0, the equilibrium points in Eq. (37) classified335

into three distinct categories:336

(i) Vertex equilibrium points. Four vertex equilibrium points are given by V1 = (0, 0), V2 =337

(0, 1), V3 = (1, 0), and V4 = (1, 1).338

(ii) Interior equilibrium point. There exists one interior equilibrium point V5 = (x∗
1, x

∗
2),339

where340

x∗
1 =

(1 + δ)β − (T − 1)

(1 + δ)βη
and x∗

2 =
T − 1

(1− η)(1 + δ)β
.

This equilibrium is meaningful if and only if the condition T − 1 = b + S < (1 + δ)β is341

satisfied.342

(iii) Boundary equilibrium points. There are four boundary equilibrium points defined as343

follows:344

• V6 = (1, x′
2), with x′

2 ∈ (0, 1) satisfying g(η, (1− η)x′
2) = 0;345

• V7 = (0, x′
2), with x′

2 ∈ (0, 1) satisfying g(0, (1− η)x′
2) = 0;346

• V8 = (x′
1, 0), with x′

1 ∈ (0, 1) satisfying f(ηx′
1, 0) = 0;347

• V9 = (x′
1, 1), with x′

1 ∈ (0, 1) satisfying f(ηx′
1, 1− η) = 0.348

We turn to studying the stability of these equilibrium points. The Jacobian matrix of the system349

(37) is350

J =

(
(1− 2x1)f(ηx1, (1− η)x2) + x1(1− x1)

∂f
∂x1

x1(1− x1)
∂f
∂x2

x2(1− x2)
∂g
∂x1

(1− 2x2)g(ηx1, (1− η)x2) + x2(1− x2)
∂g
∂x2

)
.

(38)

Case (i): The stability of vertex equilibrium points. Substituting the value of V1 = (0, 0) into351

Eq. (38), we have352

J |V1 =

(
S⟨k⟩ 0

0 S⟨k⟩ − (1 + δ)⟨k⟩α

)
.

We know that V1 is stable if and only if S < 0. Similarly, substituting V2 = (0, 1), V3 = (1, 0),353

and V4 = (1, 1) into Eq. (38), we obtain354

J |V2 =

(
f(0, 1− η) 0

0 −g(0, 1− η)

)
, J |V3 =

(
−f(η, 0) 0

0 g(η, 0)

)
,
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and355

J |V4 =

(
−f(η, 1− η) 0

0 −g(η, 1− η)

)
.

For the equilibrium point V2:356

• If f(0, 1− η) < 0, it follows that g(0, 1− η) = f(0, 1− η)− (1+ δ)⟨k⟩ηα < 0, implying357

that V2 is a saddle point.358

• If f(0, 1−η) > 0, then V2 is a saddle when g(0, 1−η) > 0 and unstable when g(0, 1−η) <359

0.360

For the equilibrium point V3:361

• If f(η, 0) < 0, then g(η, 0) = f(η, 0) − (1 + δ)⟨k⟩(1 − η)α < 0, indicating that V2 is a362

saddle point.363

• If f(η, 0) > 0, then V2 is a saddle when g(η, 0) > 0 and stable when g(η, 0) < 0.364

For the equilibrium point V4:365

• Since f(η, 1 − η) = g(η, 1 − η) = (1 + δ)⟨k⟩(1 − η)β − b − S, V4 is stable when366

f(η, 1− η) > 0 and unstable when f(η, 1− η) < 0.367

Case (ii): The stability of the interior equilibrium point. Substituting V5 = (x∗
1, x

∗
2) into Eq.368

(38), since ηx∗
1 + (1− η)x∗

2 = 1 and f(ηx∗
1, (1− η)x∗

2) = g(ηx∗
1, (1− η)x∗

2) = 0, we have369

J |V5 =

(
−QM⟨k⟩ −Q⟨k⟩ [M − (1 + δ)β]

−R⟨k⟩ [M − (1 + δ)α] −R⟨k⟩ [M − (1 + δ)(α + β)]

)
,

whereM = cδ + b+ 2S, Q = ηx∗
1(1− x∗

1) and R = (1− η)x∗
2(1− x∗

2). Then we obtain370

det(λI − J |V5) =

∣∣∣∣∣ λ+MQ⟨k⟩ Q⟨k⟩ [M − (1 + δ)β]

R⟨k⟩ [M − (1 + δ)α] λ+R⟨k⟩ [M − (1 + δ)(α + β)]

∣∣∣∣∣
= λ2 + [(Q+R)M −R(1 + δ)(α + β)] ⟨k⟩λ−QR(1 + δ)2⟨k⟩2αβ.

Given that371

∆ = [(Q+R)M −R(1 + δ)(α + β)]2 ⟨k⟩2 + 4QR(1 + δ)2⟨k⟩2αβ > 0,

the characteristic equation det(λI − J |V5) = 0 has two distinct real roots, denoted λ1 and λ2.372

Furthermore, since373

λ1λ2 = −QR(1 + δ)2⟨k⟩2αβ < 0,
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it follows that λ1 and λ2 have opposite signs. This indicates that V5 is a saddle point.374

Case (iii): The stability of boundary equilibrium points. Substituting V6 = (1, x′
2) into Eq.375

(38), and noting that376

g(η, (1− η)x′
2) = f(η, (1− η)x′

2)− (1 + δ)(1− η)(1− x′
2)α = 0,

yields377

J |V6 =

(
−f(η, (1− η)x′

2) 0

x′
2(1− x′

2)
∂g
∂x1

∣∣
V6

x′
2(1− x′

2)
∂g
∂x2

∣∣
V6

)
.

Here, the term ∂g
∂x2

∣∣
V6

satisfies that378

∂g

∂x2

∣∣
V6

= (1− η)⟨k⟩ {−2cδ [η + x′
2(1− η)] + cδ − (b+ 2S) + (1 + δ)(α + β)} .

Moreover, x′
2 satisfies the quadratic equation379

− cδ(1− η)2(x′
2)

2 + x′
2 [(1− η)cδ + (1 + δ)(1− η)(α + β)− 2cδη(1− η)

−(1− η)(b+ 2S)]− cδη2 + cδη − η(b+ 2S)− (1− η)(1 + δ)α + S = 0.

Since f(η, (1 − η)x′
2) = (1 + δ)⟨k⟩(1 − η)(1 − x′

2)α > 0, if one selects appropriate values380

for α, β, c, S, η and δ so that the roots x′
2,± with x′

2,− < x′
2,+, lie within the interval (0,1), it381

follows that ∂g
∂x2

∣∣
(1,x′

2,+)
< 0 and ∂g

∂x2

∣∣
(1,x′

2,−)
> 0. Consequently, the equilibrium point (1, x′

2,+)382

is stable and (1, x′
2,−) is a saddle point.383

By substituting V7 = (0, x′
2) into Eq. (38), and noting that384

g(0, (1− η)x′
2) = f(0, (1− η)x′

2)− (1 + δ)⟨k⟩ [1− (1− η)x′
2]α = 0,

we obtain385

J |V7 =

(
f(0, (1− η)x′

2) 0

x′
2(1− x′

2)
∂g
∂x1

∣∣
V7

x′
2(1− x′

2)
∂g
∂x2

∣∣
V7

)
.

Here, the term ∂g
∂x2

∣∣
V7

satisfies that386

∂g

∂x2

∣∣
V7

= (1− η)⟨k⟩ {−2cδx′
2(1− η) + cδ − (b+ 2S) + (1 + δ)(α + β)} .

Since f(0, (1− η)x′
2) = (1 + δ)⟨k⟩ [1− (1− η)x′

2]α > 0, V7 is unstable when ∂g
∂x2

∣∣
V7

> 0 and387

becomes a saddle point when ∂g
∂x2

∣∣
V7

< 0.388
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Similarly, substituting V8 = (x′
1, 0) into Eq. (38), and noting that f(ηx′

1, 0) = 0, we have389

J |V8 =

(
x′
1(1− x′

1)
∂f
∂x1

∣∣
V8

x′
1(1− x′

1)
∂f
∂x2

∣∣
V8

0 g(ηx
′
1, 0)

)
.

Since g(ηx′
1, 0) = −(1+δ)⟨k⟩(1−x′

1η)α < 0, the equilibrium pointV8 is stable when ∂f
∂x1

∣∣
V8

< 0390

and becomes a saddle point when ∂f
∂x1

∣∣
V8

> 0.391

Finally, we analyze the stability of the equilibrium point V9. Since f(x′
1η, 1) = 0, the Jacobian392

evaluated at V9 is given by393

J |V9 =

(
x′
1(1− x′

1)
∂f
∂x1

∣∣
V9

x′
1(1− x′

1)
∂f
∂x2

∣∣
V9

0 −g(ηx
′
1, 1)

)
.

Since g(ηx′
1, 1) = −(1 + δ)⟨k⟩η(1 − x′

1)α < 0, it follows that the equilibrium V9 is unstable394

when ∂f
∂x1

∣∣
V9

> 0, and becomes a saddle point when ∂f
∂x1

∣∣
V9

< 0.395

In fact, the behavior of V7, V8 and V9 is analogous to that of V6. The unknowns x′
1 and x′

2 are396

determined by a quadratic function with a negative leading coefficient. Setting this function397

equal to zero, the existence of roots within the interval (0,1) confirms the presence of the cor-398

responding equilibria V7, V8 and V9. Furthermore, analyzing the sign of the derivative at these399

roots determines the stability of each equilibrium.400
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