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S1. PaD Method
[bookmark: _Hlk201495192]In this method, the partial derivative of the output is calculated with respect to each input variable, while keeping all other variables constant. The magnitude of this derivative indicates how sensitive the output is to small changes in that specific input variable. It is utilized in engineering, climatology, and ML for the preliminary assessment of inputs (Nourani and Sayyah-Fard, 2012). The magnitude of the derivatives is often measured using the Sum of Squared Derivatives (SSD). This SSD-based sensitivity analysis, derived from the nonlinear ANN model, offers valuable insight into the nonlinear influence of input variables and can be utilized to identify the most influential variables under a nonlinear regression framework. If the model is  , then the partial derivatives  are calculated on the  , ith input variable, domain accordingly. The SSD number is ultimately derived by averaging the squared values of these partial derivatives as: 

							(S1-1)
where, the total count of input variables and sampels are represented by ni and n, respectivly, N represents the output signal of the neuron, while o denotes the output node, and  represents the pth input to the model. Inputs associated with larger SSD values exert a more significant influence on the network's output. In ANN-based model, the Jacobian matrix, which contains the first-order partial derivatives of the outputs with respect to the inputs, is commonly used for conducting PaD values (Dimopoulos, et al. 1995, Gevrey et al., 2003). 
S2. Some parameter settings for SA algorithm
The optimization process in AI/ML models was carried out using the SA algorithm, based on previous studies (e.g., Khosravi et al., 2011) and empirical adjustments through trial and error. Some parameter settings for each model are presented in Table S1.
TABLE S1 Summary of SA algorithm hyperparameter settings
	Parameters
	Numerical value

	Geometric cooling schedule
	


	Initial temperature (T0)
	

	Stopping temperature
	

	Maximum number of tries within one temperature
	30



S3. Visualization of PIs 
Figs. S1 to S2 illustrate the best uncertainty bounds estimated by individual models and ensemble methods. As shown, the refined bounds produced by INI aggregation approach yield the highest resolution among PIs.















[image: ][image: ][image: ]Fig. S1 Visual comparison of PIs produced by individual and hybrid models for various targets at Tabriz station: (a) Et, (b) SPI-6, (c) SPI-12, (d) SPEI-6, (e) SPEI-12.
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Fig. S2 Visual comparison of PIs produced by individual and hybrid models for various targets at Ahvaz station: (a) Et, (b) SPI-6, (c) SPI-12, (d) SPEI-6, (e) SPEI-12[image: ][image: ][image: ]
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S4. Statistical characteristics of uncertainty classes
Table S2 and Fig. S3 present the statistical characteristics of the uncertainty classes generated by Fig. 5 in the main text. These statistics provide insights into the distribution and variability within each uncertainty class, supporting the interpretation of the uncertainty analysis results.
	[bookmark: _Hlk198930406]

Variable
	Class Label (UQ)

	Tabriz station
	Ahvaz station

	
	
	Q1
	Q2
	Q3
	Min
	Max
	Class Data (%)
	Q1
	Q2
	Q3
	Min
	Max
	Class Data (%)

	Et
	●
	5.90
	8.80
	12
	0.60
	21
	60.91
	7.80
	10.0
	14.0
	0.9
	22.90
	60.36

	
	●
	2.20000000000000
	3.05296100000000
	3.59724400000000
	0.500000000000000
	5.30
	2.77
	3.50
	4.60000000000000
	5.35000000000000
	0.90
	8.50
	4.87

	
	●
	2.5617052500000
	2.95590000000000
	3.26055850000000
	1.60
	4.0
	3.71
	2.65
	3.80000000000000
	4.82500000000000
	0.30
	7.50
	5.09

	
	●
	0.245100000000000
	1.09020400000000
	1.94935600000000
	-0.05
	4.50
	32.62
	1.60
	2.40000000000000
	3.20000000000000
	0
	5.6
	29.68

	SPI-6
	●
	-1/77
	-0/75
	1/94
	-2.91
	3/17
	9/70
	0/27
	0/88
	1.26
	-0.61
	2/5
	6/03

	
	●
	-1/03
	-0/33
	1/05
	-2.41
	2/51
	15/81
	-0/35
	0/45
	1.12
	-2/44
	2/29
	18/73

	
	●
	-0/62
	-0/16
	0/84
	-2.3
	1/91
	28/26
	-0/755
	0/27
	0.75
	-2/17
	2/32
	30/76

	
	●
	-0/17
	0/21
	0/62
	-1.29
	1/54
	46/23
	-0/66
	-0.03
	0.44
	-2/04
	1.65
	44/50

	SPI-12
	●
	1/02
	1/56
	2/19
	0.02
	3/24
	11/57
	-1/68
	-1/31
	-0/31
	-3/01
	1/22
	14/04

	
	●
	-1/09
	0/71
	1/013
	-2/46
	1/59
	6/87
	-0/89
	-0/17
	1/04
	-2/42
	2/25
	20/53

	
	●
	-0/72
	0/39
	0/76
	-2/82
	1/99
	36/02
	-0/83
	-0/01
	1/05
	-2/09
	2/16
	27/81

	
	●
	-0/64
	-0/26
	0/14
	-1/58
	1/31
	45/54
	0/19
	0/44
	0/78
	-0/69
	1/58
	37/62

	SPEI-6
	●
	-1/47
	-0/56
	-0/23
	-2/90
	0/73
	20/94
	-1/32
	-0/72
	-0/25
	-2/85
	0/54
	51/69

	
	●
	-1/21
	-0/65
	0/18
	-2/64
	1/37
	40/15
	0/28
	0/44
	0/61
	-0/20
	1/01
	14/21

	
	●
	0/55
	0/61
	0/67
	0.51
	0.71
	7/51
	0/62
	0/72
	0/83
	0/33
	1/02
	9/74

	
	●
	0/79
	0/89
	0/99
	0.55
	1/19
	31/40
	0/82
	0/93
	0/98
	0/66
	1/07
	24/36

	SPEI-12
	●
	-2/42
	-2/16
	-1/62
	-2/82
	-0/65
	3/97
	-2/50
	-2/11
	-1/81
	-3/29
	-1/11
	6/96

	
	●
	-1/87
	-1/56
	-1/29
	-2/65
	-0.78
	5/33
	-1/16
	-0/86
	-0/58
	-2/01
	-0.03
	22/24

	
	●
	-0/34
	0/18
	1/00
	-1/91
	1/80
	34/49
	-0/27
	0/26
	0/63
	-0/96
	1/40
	32/74

	
	●
	-0/54
	0/22
	0/72
	-2/04
	1/33
	56/20
	0/03
	0/33
	0/89
	-0/64
	1/21
	38/06

	      ● Very High,  ●  High,  ● Low, ● Very low


Table S2. Statistical characteristics of the uncertainty






























Fig. S3. Boxplots of data classes based on uncertainty content within PIANN AGG: (a) Tabriz station (for drought indexes), (b) Ahvaz station (for drought indexes), and (c) for Et at each station.
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