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Fig. S1 Distribution of space groups in the generated NaNH: dataset.

Table S1 Cell parameters (a, b, c in A; o, B, y in degrees) and Wyckoff positions for the
unit cells of the top-ranked candidate structures of NaNH»>. These structures are
generated using the conventional crystal structure prediction methods and optimized
using DFT calculations at ambient pressure.

Table S2 Cell parameters (a, b, ¢ in A; o, B, y in degrees) and Wyckoff positions for
the unit cells of the top-ranked candidate structures of NaNHo. These structures are
generated using the proposed CSP model and optimized using DFT calculations at
ambient pressure.



Dataset construction and feature encoding

The custom dataset used for model training consists of 1000 candidate NaNH>
structures generated using the AIRSS structure prediction method within the
experimentally indexed lattice parameters. Each structure contains 64 atoms (16
NaNH: formula units) and was decomposed into a direct-space asymmetric unit (DAU).
To determine the DAU substructure, we used pymatgen! to identify all symmetry-
equivalent atomic groups in each structure. We then selected the group containing
sodium atoms with the lowest site index to ensure a consistent and unique encoding for
all structures. Each subunit in the DAU was encoded using six degrees of freedom:
three Cartesian translations and three Euler angles defining position and orientation.
These subunit descriptors were concatenated with the six lattice parameters (a, b, ¢, a,
p, v) to form an observed vector z. To associate each structural configuration with a
thermodynamic property, total energies E were computed using first-principles
calculations. The resulting (z, E) pairs formed the training data of both noise and energy

models in the generative framework.
Neural network architecture and training

Two separate neural networks were used: a noise prediction model based on the
Denoising Diffusion Probabilistic Model (DDPM),? and an energy regression model
implemented as a multilayer perceptron (MLP). The noise model comprises three
hidden layers of 64 units each, while the energy model uses three layers of 128 units,
reflecting the increased complexity of the energy-structure relationship. Each layer uses
ReLU activation functions to introduce non-linearity. All weights were initialized using
the He uniform initialization strategy, which is well-suited for ReLU-based
architectures and promotes stable convergence during training. All models were trained
with a batch size of 32 using the Adam optimizer.> A ReduceLROnPlateau
scheduler was applied to dynamically adjust the learning rate from an initial value of
1x10~* to a minimum of 1x10~>, with a decay factor of 0.6 and a patience of 20 epochs.

Mean-squared error was used as the loss function for both models: the noise model



learns to recover the added Gaussian noise ¢ at each timestep, while the energy model

minimizes the deviation from DFT-calculated total energies.

Diffusion sampling with energy guidance

Structure generation is initialized by sampling a noisy vector z, ~ N(0,I) from a

standard Gaussian distribution. This vector is iteratively denoised using the trained
DDPM model, progressing through T discrete steps to recover a physically meaningful
vector zo. At each step, the model estimates the residual noise, which is subtracted from
the current latent vector to produce the next-step estimate. This iterative denoising
process reconstructs the original structure parameterization from a highly perturbed
latent representation. To improve the physical relevance of the generated structures,
energy guidance is incorporated during sampling. At each denoising step, the energy
model predicts the total energy corresponding to the current latent vector and computes
its gradient with respect to z, This gradient is used to introduce a deterministic

correction, guiding the generation process toward energetically favorable regions.
Structure decoding and symmetry expansion

The denoised latent vector zo is decoded to reconstruct the molecular configuration of
the DAU. Each DAU consists of rigid NaNH> subunits, whose positions and
orientations are determined by the translation and rotation parameters embedded in zo.
The NH; group within each subunit is treated as a rigid fragment, based on its optimized
DFT geometry with an N-H bond length of 1.03 + 0.02 A and an H-N-H bond angle
of 104 + 3°. To construct the full crystal structure, space group—specific Wyckoff
symmetry operations are applied to the DAU. The decoding process accommodates
different Wyckoff multiplicities by dynamically adjusting the number of subunits in the
DAU, ensuring that the resulting atomic configuration conforms to the target

crystallographic symmetry.



Post-processing and validation

To ensure structural validity, each generated structure is subjected to a two-stage post-
expansion filtering process. First, a geometric filter checks all interatomic distances
against predefined, element-specific thresholds to remove unphysical configurations.
The minimum image convention is used to account for periodic boundary effects.
Second, symmetry consistency is verified using the spglib#* library. The symmetry
matching is conducted with a distance tolerance symprec set to 1x102 A, which
enforces strict agreement between the generated structure and the assigned space group.

Only structures that satisfy both criteria are retained for further analysis.
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Fig. S1 Distribution of space groups in the generated NaNH> dataset.




Table S1 Cell parameters (a, b, c in A; o, B, v in degrees) and Wyckoff positions for
the unit cells of the top-ranked candidate structures of NaNH». These structures are
generated using the conventional crystal structure prediction methods and optimized
using DFT calculations at ambient pressure.
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abc| 3711 4710 | 5306 abc| 7121| 6337| 7.030 abc| 12633 | 5059 | 5.069
@By | 90.000 | 90.000 | 90.000 @B,y | 90.000 | 145.882 | 90.000 @B,y | 90.000 | 90.000 | 90.000
H(4c) | 02910 | 0.9615 | 0.8463 H(4e) | 0.1624 | 02712 | 0.4787 HSH | 14221 | 03611 | 1.1105
N@b) | 0.5000 | 1.0000 | 0.7208 H(4e) | 02581 | 0.3878 | 0.7556 HSP | 1.4215 | 0.1370 | 0.8893
Na(2a) | —0.0000 | 0.0000 | 0.4111 N(4e) | 0.2806 | 0.2429 | 0.7070 N@f) | 1.3691 | 0.2496 | 1.0002
Na(4e) | 03120 | 0.8606 | 0.7081 Na8f) | 13243 | 0.2502 | 1.5003




P2, (Z=16)

a,b,c| 12806 | 6306 | 9.096 | Na2a) | 03763 | 0.2690 | —0.0193
@B,y | 90.000 | 106.029 | 120.000 | Na(2a) | 1.2062 | 0.9290 | 1.2242
H(2a) | 02218 | —0.0571 | 0.8647 | Na(2a) | 0.6238 | 0.7676 | 0.3668
H(2a) | 0.1780 | 0.1199 | 0.9624 | Na(2a) | 0.3879 | 0.7327 | 0.4634
H(2a) | 0.0348 | 02261 | 0.3493 | Na(2a) | 0.1249 | 03273 | 0.6860
H(2a) | —0.0452 | 04134 | 0.3726 | Na(2a) | 0.0973 | 0.7006 | 0.4213
H(2a) | 1.0169 | 0.9439 | 0.0705 | Na(2a) | 0.6094 | 0.2856 | 0.8889
H(2a) | 0.9871 | 0.7063 | 0.1082 | Na(2a) | 0.8353 | 0.1073 | 0.0411
H(2a) | 0.6399 | 0.0893 | 0.1698
H(2a) | 0.7484 | 0.1335 | 0.3025
H(2a) | 0.8138 | 0.5886 | 0.5211
H(2a) | 0.7410 | 0.4366 | 0.3878
H(2a) | 0.4107 | 1.0895 | 0.3716
H(2a) | 04968 | 1.1091 | 0.2709
H(2a) | 0.4026 | 0.9374 | 0.8458
H(2a) | 0.5021 | 0.9491 | 0.7709
H(2a) | 0.7923 | 0.9853 | 0.7475
H(2a) | 0.6713 | 0.9288 | 0.7519
N(2a) | 0.2340 | —0.0026 | 0.9758
N(2a) | 0.0282 | 03416 | 0.4273
N(2a) | 1.0014 | 0.8554 | 0.1585
N(2a) | 0.7153 | 0.0216 | 0.2188
N(2a) | 0.7500 | 0.4812 | 0.5005
N(2a) | 0.4756 | 1.0100 | 0.3492
N(Q2a) | 04774 | 1.0104 | 0.8620
N(Q2a) | 0.7255 | 1.0547 | 0.7722




Table S2 Cell parameters (a, b, c in A; o, B, v in degrees) and Wyckoff positions for
the unit cells of the top-ranked candidate structures of NaNH». These structures are
generated using the proposed CSP model and optimized using DFT calculations at

ambient pressure.
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a, b, c 7.491 13.587 7.625 a, b, c 9.061 10.006 8.422 | Na(2a) 0.2912 0.9839 0.2300
a B,y | 90.000 | 72452 | 90.000 @B,y | 90.000 | 79.733 | 90.000 | Na(2a) | 0.2455 | 0.5964 | 1.1759
H(4e) 0.3280 0.2476 0.2910 H(2a) 0.0525 0.8840 0.7486 | Na(2a) 0.7822 0.8026 0.7085
H(4e) 0.2342 0.3102 0.1600 H(2a) 0.0325 0.0281 | —0.1692 | Na(2a) 0.5935 0.4097 0.4715
H(4e) 0.3356 0.7582 0.2681 H(2a) 0.8650 0.6188 0.9232 | Na(2a) 0.7463 1.0890 0.3090
H(4e) 0.1626 0.8345 0.3004 H(2a) 0.7211 0.6169 0.0654 | Na(2a) 0.8770 0.8582 0.0477
H(4e) 0.1202 0.0027 0.3016 H(2a) 0.5983 1.0091 0.6581 | Na(2a) | —0.0072 0.0617 0.5173
H(4e) | —0.0835 | —0.0041 0.2728 H(2a) 0.4691 0.9918 0.8162 | Na(2a) 0.5210 0.7820 0.9783
H(4e) 0.5865 0.3874 0.7164 H(2a) 0.1320 0.3430 0.6260
H(4e) 0.3667 0.4127 0.8038 H(2a) | —0.0341 0.3637 0.7247
N(4e) 0.2491 0.3104 0.2911 H(2a) 0.3610 0.1638 0.4514
N(4e) 0.2082 0.7756 0.3628 H(2a) 0.2265 0.1314 0.5983
N(4e) 0.0497 0.0236 0.2099 H(2a) 0.6165 0.8376 0.2538
N(4e) 0.4962 0.4469 0.7549 H(2a) 0.5903 09771 0.1598
Na(4e) 0.9527 0.3798 0.4857 H(2a) 0.8355 0.2941 0.5411
Na(4e) 1.0224 0.6892 0.1630 H(2a) 0.6711 0.2426 0.6322
Na(4e) 0.3443 0.0679 | —0.0174 H(2a) 0.3051 0.7987 0.8580
Na(4e) | —0.4582 0.3981 1.0756 H(2a) 0.1584 0.7443 0.9734
N(2a) | —0.0299 0.9551 0.7853
N(2a) 0.7583 0.6598 0.9533
NQa) | 0.5577 | 0.9402 | 0.7477
N(2a) 0.0663 0.4153 0.6940
N(2a) 0.2566 0.1178 0.4747
N(2a) 0.5347 0.9065 0.2392
N(2a) 0.7647 0.2116 0.5508
N(2a) 0.2710 0.7208 0.9375
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a, b, c 6.682 14.273 7.511 | Na(2a) 0.8417 0.4508 0.3081
o, B,y 90.000 87.662 90.000 | Na(2a) 0.2897 0.8980 0.4060
H(2a) 0.5527 0.2514 0.6482 | Na(2a) 0.3451 0.4459 0.3948
H(2a) 0.6129 0.1891 0.8173 | Na(2a) 0.2496 0.3480 0.7640
H(2a) | —0.1035 0.8621 0.3597 | Na(2a) 0.4947 0.9129 1.0256
H(2a) 1.0066 0.7706 0.4343 | Na(2a) 0.7794 0.0486 0.1589
H(2a) 0.0523 0.5101 0.5328 | Na(2a) 0.6939 0.6570 0.4455
H(2a) 0.0962 0.6175 0.5859 | Na(2a) 0.8850 0.7662 0.7643
H(2a) 1.1496 0.2825 0.4608
H(2a) 0.9556 0.3256 0.5656
H(2a) 0.9988 0.9357 0.9488
H(2a) 0.8685 0.8587 1.0582
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H(2a) 0.5488 0.7081 0.8822
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N(2a) 0.0216 0.5782 0.4929
N(2a) 1.0625 0.3426 0.4706
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N(2a) 0.5695 0.6791 0.7560




Supplementary References

1.

Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-
source python library for materials analysis. Comput. Mater. Sci. 68,
314-319 (2013).

Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models.
Adv. Neural Inf. Process. Syst. 33, 6840-6851 (2020).

Kingma, D. P. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

Togo, A., Shinohara, K. & Tanaka, |. Spglib: a software library for crystal
symmetry search. Sci. Technol. Adv. Mate. 4, 2384822 (2024).

10



