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Dataset construction and feature encoding 

The custom dataset used for model training consists of 1000 candidate NaNH2 

structures generated using the AIRSS structure prediction method within the 

experimentally indexed lattice parameters. Each structure contains 64 atoms (16 

NaNH2 formula units) and was decomposed into a direct-space asymmetric unit (DAU). 

To determine the DAU substructure, we used pymatgen1 to identify all symmetry-

equivalent atomic groups in each structure. We then selected the group containing 

sodium atoms with the lowest site index to ensure a consistent and unique encoding for 

all structures. Each subunit in the DAU was encoded using six degrees of freedom: 

three Cartesian translations and three Euler angles defining position and orientation. 

These subunit descriptors were concatenated with the six lattice parameters (a, b, c, α, 

β, γ) to form an observed vector z. To associate each structural configuration with a 

thermodynamic property, total energies E were computed using first-principles 

calculations. The resulting (z, E) pairs formed the training data of both noise and energy 

models in the generative framework. 

Neural network architecture and training 

Two separate neural networks were used: a noise prediction model based on the 

Denoising Diffusion Probabilistic Model (DDPM),2 and an energy regression model 

implemented as a multilayer perceptron (MLP). The noise model comprises three 

hidden layers of 64 units each, while the energy model uses three layers of 128 units, 

reflecting the increased complexity of the energy-structure relationship. Each layer uses 

ReLU activation functions to introduce non-linearity. All weights were initialized using 

the He uniform initialization strategy, which is well-suited for ReLU-based 

architectures and promotes stable convergence during training. All models were trained 

with a batch size of 32 using the Adam optimizer.3 A ReduceLROnPlateau 

scheduler was applied to dynamically adjust the learning rate from an initial value of 

1×10⁻4 to a minimum of 1×10⁻5, with a decay factor of 0.6 and a patience of 20 epochs. 

Mean-squared error was used as the loss function for both models: the noise model 
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learns to recover the added Gaussian noise ε at each timestep, while the energy model 

minimizes the deviation from DFT-calculated total energies. 

Diffusion sampling with energy guidance 

Structure generation is initialized by sampling a noisy vector (0, )T Nz I   from a 

standard Gaussian distribution. This vector is iteratively denoised using the trained 

DDPM model, progressing through T discrete steps to recover a physically meaningful 

vector z0. At each step, the model estimates the residual noise, which is subtracted from 

the current latent vector to produce the next-step estimate. This iterative denoising 

process reconstructs the original structure parameterization from a highly perturbed 

latent representation. To improve the physical relevance of the generated structures, 

energy guidance is incorporated during sampling. At each denoising step, the energy 

model predicts the total energy corresponding to the current latent vector and computes 

its gradient with respect to zt. This gradient is used to introduce a deterministic 

correction, guiding the generation process toward energetically favorable regions. 

Structure decoding and symmetry expansion 

The denoised latent vector z0 is decoded to reconstruct the molecular configuration of 

the DAU. Each DAU consists of rigid NaNH2 subunits, whose positions and 

orientations are determined by the translation and rotation parameters embedded in z0. 

The NH2 group within each subunit is treated as a rigid fragment, based on its optimized 

DFT geometry with an N–H bond length of 1.03 ± 0.02 Å and an H–N–H bond angle 

of 104 ± 3°. To construct the full crystal structure, space group–specific Wyckoff 

symmetry operations are applied to the DAU. The decoding process accommodates 

different Wyckoff multiplicities by dynamically adjusting the number of subunits in the 

DAU, ensuring that the resulting atomic configuration conforms to the target 

crystallographic symmetry. 
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Post-processing and validation 

To ensure structural validity, each generated structure is subjected to a two-stage post-

expansion filtering process. First, a geometric filter checks all interatomic distances 

against predefined, element-specific thresholds to remove unphysical configurations. 

The minimum image convention is used to account for periodic boundary effects. 

Second, symmetry consistency is verified using the spglib4 library. The symmetry 

matching is conducted with a distance tolerance symprec set to 1×10⁻2 Å, which 

enforces strict agreement between the generated structure and the assigned space group. 

Only structures that satisfy both criteria are retained for further analysis. 
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Fig. S1 Distribution of space groups in the generated NaNH2 dataset. 
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Table S1 Cell parameters (a, b, c in Å; α, β, γ in degrees) and Wyckoff positions for 

the unit cells of the top-ranked candidate structures of NaNH2. These structures are 

generated using the conventional crystal structure prediction methods and optimized 

using DFT calculations at ambient pressure. 

 

 

 

P21212 (Z = 2)                P21/c (Z = 4)                Pcca (Z = 8)    

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

a, b, c 3.711 4.710 5.306 

α, β, γ 90.000 90.000 90.000 

H(4c) 0.2910 0.9615 0.8463 

N(2b) 0.5000 1.0000 0.7208 

Na(2a) −0.0000 0.0000 0.4111 

a, b, c 7.121 6.337 7.030 

α, β, γ 90.000 145.882 90.000 

H(4e) 0.1624 0.2712 0.4787 

H(4e) 0.2581 0.3878 0.7556 

N(4e) 0.2806 0.2429 0.7070 

Na(4e) 0.3120 0.8606 0.7081 

a, b, c 12.633 5.059 5.069 

α, β, γ 90.000 90.000 90.000 

H(8f) 1.4221 0.3611 1.1105 

H(8f) 1.4215 0.1370 0.8893 

N(8f) 1.3691 0.2496 1.0002 

Na(8f) 1.3243 0.2502 1.5003 
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                       P21 (Z = 16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a, b, c 12.806 6.306 9.096 

α, β, γ 90.000 106.029 120.000 

H(2a) 0.2218 −0.0571 0.8647 

H(2a) 0.1780 0.1199 0.9624 

H(2a) 0.0348 0.2261 0.3493 

H(2a) −0.0452 0.4134 0.3726 

H(2a) 1.0169 0.9439 0.0705 

H(2a) 0.9871 0.7063 0.1082 

H(2a) 0.6399 0.0893 0.1698 

H(2a) 0.7484 0.1335 0.3025 

H(2a) 0.8138 0.5886 0.5211 

H(2a) 0.7410 0.4366 0.3878 

H(2a) 0.4107 1.0895 0.3716 

H(2a) 0.4968 1.1091 0.2709 

H(2a) 0.4026 0.9374 0.8458 

H(2a) 0.5021 0.9491 0.7709 

H(2a) 0.7923 0.9853 0.7475 

H(2a) 0.6713 0.9288 0.7519 

N(2a) 0.2340 −0.0026 0.9758 

N(2a) 0.0282 0.3416 0.4273 

N(2a) 1.0014 0.8554 0.1585 

N(2a) 0.7153 0.0216 0.2188 

N(2a) 0.7500 0.4812 0.5005 

N(2a) 0.4756 1.0100 0.3492 

N(2a) 0.4774 1.0104 0.8620 

N(2a) 0.7255 1.0547 0.7722 

Na(2a) 0.3763 0.2690 −0.0193 

Na(2a) 1.2062 0.9290 1.2242 

Na(2a) 0.6238 0.7676 0.3668 

Na(2a) 0.3879 0.7327 0.4634 

Na(2a) 0.1249 0.3273 0.6860 

Na(2a) 0.0973 0.7006 0.4213 

Na(2a) 0.6094 0.2856 0.8889 

Na(2a) 0.8353 0.1073 0.0411 
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Table S2 Cell parameters (a, b, c in Å; α, β, γ in degrees) and Wyckoff positions for 

the unit cells of the top-ranked candidate structures of NaNH2. These structures are 

generated using the proposed CSP model and optimized using DFT calculations at 

ambient pressure. 

 

P21/c (Z = 16)                                      P21 (Z = 16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

a, b, c 7.491 13.587 7.625 

α, β, γ 90.000 72.452 90.000 

H(4e) 0.3280 0.2476 0.2910 

H(4e) 0.2342 0.3102 0.1600 

H(4e) 0.3356 0.7582 0.2681 

H(4e) 0.1626 0.8345 0.3004 

H(4e) 0.1202 0.0027 0.3016 

H(4e) −0.0835 −0.0041 0.2728 

H(4e) 0.5865 0.3874 0.7164 

H(4e) 0.3667 0.4127 0.8038 

N(4e) 0.2491 0.3104 0.2911 

N(4e) 0.2082 0.7756 0.3628 

N(4e) 0.0497 0.0236 0.2099 

N(4e) 0.4962 0.4469 0.7549 

Na(4e) 0.9527 0.3798 0.4857 

Na(4e) 1.0224 0.6892 0.1630 

Na(4e) 0.3443 0.0679 −0.0174 

Na(4e) −0.4582 0.3981 1.0756 

a, b, c 9.061 10.006 8.422 

α, β, γ 90.000 79.733 90.000 

H(2a) 0.0525 0.8840 0.7486 

H(2a) 0.0325 0.0281 −0.1692 

H(2a) 0.8650 0.6188 0.9232 

H(2a) 0.7211 0.6169 0.0654 

H(2a) 0.5983 1.0091 0.6581 

H(2a) 0.4691 0.9918 0.8162 

H(2a) 0.1320 0.3430 0.6260 

H(2a) −0.0341 0.3637 0.7247 

H(2a) 0.3610 0.1638 0.4514 

H(2a) 0.2265 0.1314 0.5983 

H(2a) 0.6165 0.8376 0.2538 

H(2a) 0.5903 0.9771 0.1598 

H(2a) 0.8355 0.2941 0.5411 

H(2a) 0.6711 0.2426 0.6322 

H(2a) 0.3051 0.7987 0.8580 

H(2a) 0.1584 0.7443 0.9734 

N(2a) −0.0299 0.9551 0.7853 

N(2a) 0.7583 0.6598 0.9533 

N(2a) 0.5577 0.9402 0.7477 

N(2a) 0.0663 0.4153 0.6940 

N(2a) 0.2566 0.1178 0.4747 

N(2a) 0.5347 0.9065 0.2392 

N(2a) 0.7647 0.2116 0.5508 

N(2a) 0.2710 0.7208 0.9375 

Na(2a) 0.2912 0.9839 0.2300 

Na(2a) 0.2455 0.5964 1.1759 

Na(2a) 0.7822 0.8026 0.7085 

Na(2a) 0.5935 0.4097 0.4715 

Na(2a) 0.7463 1.0890 0.3090 

Na(2a) 0.8770 0.8582 0.0477 

Na(2a) −0.0072 0.0617 0.5173 

Na(2a) 0.5210 0.7820 0.9783 
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P2/c (Z = 16)                                          Pc (Z = 16)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a, b, c 13.228 7.554 7.341 

α, β, γ 90.000 98.585 90.000 

H(4g) 0.7784 0.6496 0.1180 

H(4e) 0.6604 0.6117 0.1402 

H(4e) 0.2139 0.0778 1.0248 

H(4e) 0.2142 0.0047 0.2267 

H(4e) 0.0392 0.2518 0.6001 

H(4e) 1.0516 0.1786 0.4013 

H(4e) 0.5090 0.3796 0.0433 

H(4e) 0.5393 0.2581 −0.1163 

N(4e) 0.7313 0.5490 0.1526 

N(4e) 0.2655 0.0415 1.1395 

N(4e) 0.9451 0.2971 0.0265 

N(4e) 0.5152 0.2465 0.0117 

Na(4e) 0.2426 0.7117 0.0404 

Na(4e) 0.3863 −0.0204 0.4137 

Na(4e) 0.3538 0.3238 0.1882 

Na(4e) 0.1019 0.4302 0.1709 

a, b, c 6.682 14.273 7.511 

α, β, γ 90.000 87.662 90.000 

H(2a) 0.5527 0.2514 0.6482 

H(2a) 0.6129 0.1891 0.8173 

H(2a) −0.1035 0.8621 0.3597 

H(2a) 1.0066 0.7706 0.4343 

H(2a) 0.0523 0.5101 0.5328 

H(2a) 0.0962 0.6175 0.5859 

H(2a) 1.1496 0.2825 0.4608 

H(2a) 0.9556 0.3256 0.5656 

H(2a) 0.9988 0.9357 0.9488 

H(2a) 0.8685 0.8587 1.0582 

H(2a) 0.4319 0.1199 0.2128 

H(2a) 0.2399 0.0531 0.2177 

H(2a) 0.6175 0.4002 0.6256 

H(2a) 0.5659 0.5114 0.6462 

H(2a) 0.5488 0.7081 0.8822 

H(2a) 0.4510 0.7087 0.6906 

N(2a) 0.4881 0.2157 0.7562 

N(2a) 0.9544 0.8359 0.4756 

N(2a) 0.0216 0.5782 0.4929 

N(2a) 1.0625 0.3426 0.4706 

N(2a) 0.8525 0.9120 0.9660 

N(2a) 0.3952 0.0489 0.2153 

N(2a) 0.5428 0.4474 0.7094 

N(2a) 0.5695 0.6791 0.7560 

Na(2a) 0.8417 0.4508 0.3081 

Na(2a) 0.2897 0.8980 0.4060 

Na(2a) 0.3451 0.4459 0.3948 

Na(2a) 0.2496 0.3480 0.7640 

Na(2a) 0.4947 0.9129 1.0256 

Na(2a) 0.7794 0.0486 0.1589 

Na(2a) 0.6939 0.6570 0.4455 

Na(2a) 0.8850 0.7662 0.7643 
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