Supplementary Text
Complete Hamiltonian

To derive the system Hamiltonian H, we need the equations of motion for the atomic ensemble and the
digital resonator separately. Assuming the Xe atoms are in a static magnetic field B,, their motion can be
described by the Bloch equation'-?:

M=5><M—%f——y+;z, (1)

here, M is the atomic polarization vector, and @ is the Larmor precession angular velocity. In a magnetic
field, @ =TB, where T is the gyromagnetic ratio. My, ,y denotes the component of M along the
x(y,z) axis, and M, is the magnitude of M, at steady state. T, and T; are the transverse and
longitudinal relaxation times, respectively. In this experiment, the probe light propagates along the y-axis. It
interacts with Rb atoms to get their precession signal, and then extracts the signal of Xe atoms (Myy))
through signal demodulation. Since we measure M, ,, we only need to consider the effect of T5.

Expanding M in the Bloch equation (1) along the x, y, and z axes respectively, we obtain the following

equations:
. M,

M, = wyM, — My — 7%, (2)
. M,

My = w My — w0, M; =2, (3)
. Mo—M,

M, = oM, — wy,M, — °T1 . 4)

By introducing M, = M, —iM,, = M, - e!? in equations (2)-(4) and separating the imaginary and real

parts, we can derive the following:
; . . 1
M, = (a)y+1wx)MZ—(la)Z+T—2)M+. (5)

In the experiment, M, lies in the xy-plane and is 90° out of phase with M,. Thus, we can denote y; =

M_, and x; = M,w, = M,I'B, as the signal input caused by the magnetic field B, from the x-axis coil.
. . . 1 L .
Here, w, = w; represents the eigenfrequency of atomic precession, m=N indicates the atomic
2

resonance loss, and w, = 0 signifies no input along the y-axis. Assuming M, remains constant during

the experiment, equation (5) can be rewritten as follows.

Y1 = —(lwg + vy +ix;. (6)

Equation (6) indicates that y; represents the polarization of Xe atoms within the xy-plane, which is the
measured quantity. The signal, derived from equation (6), is an oscillating signal of the form M| cos(w; +



¢o)?, where ¢, is the initial phase, w; is the oscillation frequency, and M, is the signal amplitude. The
loss y; and input x; in equation (6) determine the variation of M,. For subsequent discussion and

calculation, y; continues to represent the output of the magnetometer.

Similarly, for the digital resonator, we can derive an analogous equation of motion, which is also governed

by a second-order differential equation?:

Vo + 2¥2Y2 + 05y, = 2y,w5x,, (7

here, x,and y, represent the input and output, w, is the eigenfrequency, and y, is the loss. Assuming
the output signal is oscillatory, expressed as y, = Ae ™2t (where 4 is the signal amplitude), substituting

this into equation (7) and neglecting the slow-varying term Ae~i®2t, we obtain:
—2iwyAe 2t — 2 Ae~ w2t + 2yAeiO2t — 2iw,y,Ae "9t + widAe T2t = 2y, w,x,. (8)
After simplification, the equation (8) becomes:

2
7
W2

Yo = —(iwy +¥2)y2 + 2 x5 + iy, 9

Given that w, > y,, the term Z)—Zzzxz can be neglected. After normalizing the input term with respect to y,
, equation (9) simplifies to:

Y2 = —(iwy +y2)y2 +ixg, (10)
whose form is identical to equation (6). Finally, they can be transformed into a Schrodinger-like form:

(Y12 = (0)1,2 - i)’1,2)3’1,2 —X1,2- (11)

Finally, by setting the inputs as a linear combination of the output signals, specifically x, = g, (x;e "y, +

K,e7'%y,), we can derive the Hamiltonian matrix:

_ — iy, — g1k —g1k,e”

iq= [a)1 V1 9:01 .91 2 . ] (12)
—gzKq€ w, — iy, — goke ™%

After shifting the matrix by wl;wz, we obtain:

. — v, — —-i6 _ —ig

iq= V—=1y 91K'19€ .91’(29 . (13)
—gokie =V — iy, — gake™?

w1—w;

where v = . Finally, the full expression for the eigenvalues can be calculated from the matrix:

A= %(_iyl — g1k — iy, — gor,e™ £ \JQv — iy, — giki€70 + iy, + gokoeT9)2 + 4gy goky keI OFO) (14)



Signal processing
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Fig. s1 | The signal processing
As shown in Figure sla, the system's original output signal S; is a damped oscillation signal:
S, = Ay (t) - e tcos (wt), (15)
where y is the decay rate, w is the frequency. When we modulate the magnetic field sinusoidally, the
signal's frequency w also oscillates accordingly. The first step in processing the signal is to use a lock-in
amplifier to obtain the time-varying frequency w, resulting in a frequency signal S. During the experiment,
we applied periodic modulation to the magnetic field B,, expressed as B, = B, + dBcos ({lt), where §B
is the modulation amplitude and Q = 21 - 0.05Hz is the modulation frequency. As depicted in Figure s1b,
the frequency signal Sy obtained using a lock-in amplifier is a sine signal with the same period as the
modulation signal. To ensure the original signal S; has sufficient intensity, each data set was processed
using only the first 100 seconds of the raw signal. Finally, as shown in Figure s1c, the time-domain frequency
signal Sy is transformed into the frequency domain via FFT to obtain the spectrum Sgpr:
?(Sf) = Skrr (16)
In the spectrum signal Sppr, there's a clear peak at 0.05 Hz, matching the modulation frequency (0 of the
magnetic field. The peak height represents the signal strength.
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Fig. s2 | The background noise
The average spectrum between 0.5 Hz and 1 Hz indicates the noise level, which aligns well with the
experimental conditions. As shown in Figure s2, to observe the system's noise enhancement effect, we
measured the background noise of conventional atomic magnetometer (purple) and EP-enhanced

magnetometer (orange). In the 0.05-1.2Hz band, the noise tends to flatten overall and shows no obvious
frequency selectivity when amplified.
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Fig. s3 | Noise of the EP-enhanced magnetometer with low input signal amplitudes

In Figure s3, as the input signal amplitude gradually increases from 0 mV to 0.1 mV, the noise of the EP-
enhanced magnetometer in the 0.08—1.2 Hz band remains flat, consistent with the background noise
characteristics. A signal peak begins to emerge at 0.05 Hz. To further validate the noise characteristics in the
0.08-1.2 Hz band, we calculated the noise enhancement of the EP-enhanced magnetometer relative to the
conventional atomic magnetometer using two frequency bands (0.08—1 Hz and 0.5-1 Hz) at a signal
amplitude of 0.1 mV. Results from five repeated experiments showed a noise enhancement of 1.33% and
1.36x%, respectively, which indicate stable noise levels in these bands.
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Fig. s4 | Noise of the EP-enhanced magnetometer with high input signal amplitudes (0.5mV)
As the modulation amplitude increases, the noise characteristics in the low-frequency region begin to change.
In Figure s4, high modulation amplitudes (0.5mV) caused multiple harmonic peaks near the signal due to
the nonlinear response near the EP. To avoid such interference, we chose the 0.5-1Hz band for noise
evaluation.
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