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Complete Hamiltonian 

To derive the system Hamiltonian 𝐻̂, we need the equations of motion for the atomic ensemble and the 

digital resonator separately. Assuming the Xe atoms are in a static magnetic field 𝐵𝑧, their motion can be 

described by the Bloch equation1,2: 

𝑴⃑⃑⃑ ̇ = 𝜔⃑⃑ × 𝑴⃑⃑⃑ −
𝑀𝑥

𝑇2
𝑥 −

𝑀𝑦

𝑇2
𝑦 +

𝑀0−𝑀𝑧

𝑇1
𝑧  ,                                               (1) 

here, 𝑴⃑⃑⃑  is the atomic polarization vector, and 𝜔⃑⃑  is the Larmor precession angular velocity. In a magnetic 

field, 𝜔⃑⃑ = Γ𝐵⃑  , where Γ  is the gyromagnetic ratio. 𝑀𝑥(𝑦,𝑧) denotes the component of 𝑴⃑⃑⃑   along the 

𝑥(𝑦, 𝑧)  axis, and 𝑀0 is the magnitude of 𝑀𝑧 at steady state. 𝑇2  and 𝑇1  are the transverse and 

longitudinal relaxation times, respectively. In this experiment, the probe light propagates along the y-axis. It 

interacts with Rb atoms to get their precession signal, and then extracts the signal of Xe atoms (𝑀𝑥(𝑦)) 

through signal demodulation. Since we measure 𝑀𝑥(𝑦), we only need to consider the effect of 𝑇2. 

Expanding 𝑴⃑⃑⃑  in the Bloch equation (1) along the 𝑥, 𝑦, and 𝑧 axes respectively, we obtain the following 

equations: 

𝑀𝑥
̇ = 𝜔𝑦𝑀𝑧 − 𝜔𝑧𝑀𝑦 −

𝑀𝑥

𝑇2
,                                                        (2) 

𝑀𝑦
̇ = 𝜔𝑧𝑀𝑥 − 𝜔𝑥𝑀𝑧 −

𝑀𝑦

𝑇2
 ,                                                       (3) 

𝑀𝑧
̇ = 𝜔𝑥𝑀𝑦 − 𝜔𝑦𝑀𝑥 −

𝑀0−𝑀𝑧

𝑇1
 .                                                    (4) 

By introducing 𝑴+ = 𝑀𝑥 − 𝑖𝑀𝑦 = 𝑀⊥ ∙ 𝑒𝑖𝜑  in equations (2)-(4) and separating the imaginary and real 

parts, we can derive the following: 

𝑴+
̇ = (𝜔𝑦 + 𝑖𝜔𝑥)𝑀𝑧 − (𝑖𝜔𝑧 +

1

𝑇2
)𝑴+ .                                             (5) 

In the experiment, 𝑀𝑦 lies in the 𝑥𝑦-plane and is 90° out of phase with 𝑀𝑥. Thus, we can denote 𝑦1 =

𝑴+, and 𝑥1 = 𝑀𝑧𝜔𝑥 = 𝑀𝑧Γ𝐵𝑥 as the signal input caused by the magnetic field 𝐵𝑥 from the 𝑥-axis coil. 

Here, 𝜔𝑧 = 𝜔1  represents the eigenfrequency of atomic precession, 
1

𝑇2
= 𝛾1 indicates the atomic 

resonance loss, and 𝜔𝑦 = 0 signifies no input along the 𝑦-axis. Assuming 𝑀𝑧 remains constant during 

the experiment, equation (5) can be rewritten as follows. 

𝑦1̇ = −(𝑖𝜔1 + 𝛾1)𝑦1 + 𝑖𝑥1 .                                                       (6) 

Equation (6) indicates that 𝑦1 represents the polarization of Xe atoms within the xy-plane, which is the 

measured quantity. The signal, derived from equation (6), is an oscillating signal of the form 𝑀⊥𝑐𝑜𝑠(𝜔1 +



𝜙0)
2, where 𝜙0 is the initial phase, 𝜔1 is the oscillation frequency, and 𝑀⊥ is the signal amplitude. The 

loss 𝛾1  and input 𝑥1 in equation (6) determine the variation of 𝑀⊥. For subsequent discussion and 

calculation, 𝑦1 continues to represent the output of the magnetometer. 

Similarly, for the digital resonator, we can derive an analogous equation of motion, which is also governed 

by a second-order differential equation3: 

𝑦2̈ + 2𝛾2𝑦2̇ + 𝜔2
2𝑦2 = 2𝛾2𝜔2𝑥2 ,                                                   (7) 

here, 𝑥2and 𝑦2 represent the input and output, 𝜔2 is the eigenfrequency, and 𝛾2 is the loss. Assuming 

the output signal is oscillatory, expressed as 𝑦2 = 𝐴𝑒−𝑖𝜔2𝑡 (where A is the signal amplitude), substituting 

this into equation (7) and neglecting the slow-varying term 𝐴̈𝑒−𝑖𝜔2𝑡, we obtain: 

−2𝑖𝜔2𝐴̇𝑒−𝑖𝜔2𝑡 − 𝜔2
2𝐴𝑒−𝑖𝜔2𝑡 + 2𝛾𝐴̇𝑒−𝑖𝜔2𝑡 − 2𝑖𝜔2𝛾2𝐴𝑒−𝑖𝜔2𝑡 + 𝜔2

2𝐴𝑒−𝑖𝜔2𝑡 = 2𝛾2𝜔2𝑥2 .           (8) 

After simplification, the equation (8) becomes: 

𝑦2̇ = −(𝑖𝜔2 + 𝛾2)𝑦2 +
𝛾2

2

𝜔2
𝑥2 + 𝑖𝛾2𝑥2 .                                               (9) 

Given that 𝜔2 ≫ 𝛾2, the term 
𝛾2

2

𝜔2
𝑥2 can be neglected. After normalizing the input term with respect to 𝛾2

, equation (9) simplifies to: 

𝑦2̇ = −(𝑖𝜔2 + 𝛾2)𝑦2 + 𝑖𝑥2 ,                                                      (10) 

whose form is identical to equation (6). Finally, they can be transformed into a Schrödinger-like form: 

𝑖𝑦1,2̇ = (𝜔1,2 − 𝑖𝛾1,2)𝑦1,2 − 𝑥1,2 .                                                  (11) 

Finally, by setting the inputs as a linear combination of the output signals, specifically 𝑥𝑛 = 𝑔𝑛(𝜅1𝑒
−𝑖𝜃𝑦1 +

𝜅2𝑒
−𝑖𝜑𝑦2), we can derive the Hamiltonian matrix: 

𝐻̂ = [
𝜔1 − 𝑖𝛾1 − 𝑔1𝜅1𝑒

−𝑖𝜃 −𝑔1𝜅2𝑒
−𝑖𝜑

−𝑔2𝜅1𝑒
−𝑖𝜃 𝜔2 − 𝑖𝛾2 − 𝑔2𝜅2𝑒

−𝑖𝜑
] .                                  (12) 

After shifting the matrix by 
𝜔1+𝜔2

2
, we obtain: 

𝐻̂ = [
𝜈 − 𝑖𝛾1 − 𝑔1𝜅1𝑒

−𝑖𝜃 −𝑔1𝜅2𝑒
−𝑖𝜑

−𝑔2𝜅1𝑒
−𝑖𝜃 −𝜈 − 𝑖𝛾2 − 𝑔2𝜅2𝑒

−𝑖𝜑
] ,                                   (13) 

where 𝜈 =
𝜔1−𝜔2

2
. Finally, the full expression for the eigenvalues can be calculated from the matrix: 

𝜆 =
1

2
(−𝑖𝛾1 − 𝑔1𝜅1𝑒

−𝑖𝜃 − 𝑖𝛾2 − 𝑔2𝜅2𝑒
−𝑖𝜑 ± √(2𝜈 − 𝑖𝛾1 − 𝑔1𝜅1𝑒

−𝑖𝜃 + 𝑖𝛾2 + 𝑔2𝜅2𝑒
−𝑖𝜑)2 + 4𝑔1𝑔2𝜅1𝜅2𝑒

−𝑖(𝜃+𝜑)) .            (14 ) 

 



Signal processing 

 

Fig. s1 | The signal processing 

As shown in Figure s1a, the system's original output signal 𝑆𝑡 is a damped oscillation signal: 

𝑆𝑡 = 𝐴0(𝑡) ∙ 𝑒−𝛾𝑡cos (𝜔𝑡) ,                                                      (15) 

where 𝛾  is the decay rate, 𝜔  is the frequency. When we modulate the magnetic field sinusoidally, the 

signal's frequency 𝜔 also oscillates accordingly. The first step in processing the signal is to use a lock-in 

amplifier to obtain the time-varying frequency 𝜔, resulting in a frequency signal 𝑆𝑓. During the experiment, 

we applied periodic modulation to the magnetic field 𝐵𝑧, expressed as 𝐵𝑧 = 𝐵0 ± 𝛿𝐵cos (Ω𝑡), where 𝛿𝐵 

is the modulation amplitude and Ω = 2π ∙ 0.05Hz is the modulation frequency. As depicted in Figure s1b, 

the frequency signal 𝑆𝑓  obtained using a lock-in amplifier is a sine signal with the same period as the 

modulation signal. To ensure the original signal 𝑆𝑡 has sufficient intensity, each data set was processed 

using only the first 100 seconds of the raw signal. Finally, as shown in Figure s1c, the time-domain frequency 

signal 𝑆𝑓 is transformed into the frequency domain via FFT to obtain the spectrum 𝑆𝐹𝐹𝑇: 

ℱ(𝑆𝑓) = 𝑆𝐹𝐹𝑇                                                                 (16) 

In the spectrum signal 𝑆𝐹𝐹𝑇, there's a clear peak at 0.05 Hz, matching the modulation frequency Ω of the 

magnetic field. The peak height represents the signal strength. 

 

Fig. s2 | The background noise 

The average spectrum between 0.5 Hz and 1 Hz indicates the noise level, which aligns well with the 

experimental conditions. As shown in Figure s2, to observe the system's noise enhancement effect, we 

measured the background noise of conventional atomic magnetometer (purple) and EP-enhanced 

magnetometer (orange). In the 0.05-1.2Hz band, the noise tends to flatten overall and shows no obvious 

frequency selectivity when amplified.  



 
Fig. s3 | Noise of the EP-enhanced magnetometer with low input signal amplitudes 

In Figure s3, as the input signal amplitude gradually increases from 0 mV to 0.1 mV, the noise of the EP-

enhanced magnetometer in the 0.08–1.2 Hz band remains flat, consistent with the background noise 

characteristics. A signal peak begins to emerge at 0.05 Hz. To further validate the noise characteristics in the 

0.08–1.2 Hz band, we calculated the noise enhancement of the EP-enhanced magnetometer relative to the 

conventional atomic magnetometer using two frequency bands (0.08–1 Hz and 0.5–1 Hz) at a signal 

amplitude of 0.1 mV. Results from five repeated experiments showed a noise enhancement of 1.33× and 

1.36×, respectively, which indicate stable noise levels in these bands. 

 

Fig. s4 | Noise of the EP-enhanced magnetometer with high input signal amplitudes (0.5mV) 

As the modulation amplitude increases, the noise characteristics in the low-frequency region begin to change. 

In Figure s4, high modulation amplitudes (0.5mV) caused multiple harmonic peaks near the signal due to 

the nonlinear response near the EP. To avoid such interference, we chose the 0.5-1Hz band for noise 

evaluation. 
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