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1. Electric field analysis of sub-diffraction suspended dielectric cavities

The suspended circular Bragg gratings are engineered with a tailored radial period to support
resonant operation across the 1250-1500 nm wavelength range. Starting from nonlinear Maxwell’s
equations and assuming a time-harmonic electric field of the form E(r,7) = E(r)e™“".

In the absence of electrostatic interactions—that is, neglecting the free charge density (o = 0)
and the free current density (J; = 0)—the nonlinear Maxwell’s equations can be simplified under

the high-frequency approximation (e.g., in the optical regime) as follows:

V-D=0

V-B=0

OB (S1)
VXE=—-——
x ot
oD
VxH=—
% ot

S1



478 In Eqn. S1, D and H are electric displacement field and magnetic fields of the eigenmodes, respec-
479 tively, and t represents time. The solution form of Maxwell’s equations in cylindrical coordinates

480 is given in Eqn. S2.

9 10 1 9
97 10 19 Mg oD@
o pz pop pz o 902 J J
(52)
oD, 10D oD 10D
( < +——y)cos<,0+(—y—— Z)sin<,0:0
op p Jy op p Oy
481 Under the condition that only second-order nonlinear effects are considered, the components of
482 the electric displacement field can be described as D,, D, and D_, satisfying Eqn. S3.
D, Exx Eyx Eux |[Ex Zj,k X)E??(E]'Ek
D,|=50|ey &y & ||Es|*+80| 2k X;?,{EJE/( (S3)
2
D, Exz &Eyz €&z E, Zj,k )(Z(j/lEjEk
483 Lithium niobate is a negative uniaxial crystal (point group 3m). Its linear dielectric tensor in
484 the crystal axis coordinate system is a diagonal matrix:
&y 0 O
e=[0 &, 0 (S4)
0 0 e
485 The last term in Eqn. S3 corresponds to the second-order nonlinear polarization, which can be
486 expressed as
2 2
P (20) = 80 ) X 1B (@)Ex(w) (S5)
.k

487 where )(l.(jzlz denotes the elements of the second-order nonlinear susceptibility tensor, and E;(w),

488 Eg(w) are the components of the fundamental electric field at frequency w.

E,(w)E;(w)
Ey(w)Ey(w)
P;(cz) din dn diy1 dis dis dis
(2) EZ (w)EZ ((L))
P7 [ =2e0|diy dy dyn du dys da (S6)
(2) 2Ey (w)EZ (C())
P; diz dy diz dis dis dse
2E,(w)E (w)
2Ex(a))Ey(w)
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For lithium niobate (point group 3m), the nonzero d components are:

d31=d3#0, dy3#0, dis=dyu#0 (S7)

Therefore, the nonlinear polarization terms can be further simplified as:

P? = 245K, E,
P = 24,5E,E, (S8)

P = dyy (B2 + E2) + dasE?

The substitution of Eqn. S8 into Eqn. S3 yields the nonlinear polarization component [D, (w),

D,(w), D (w)] as:

D, (w) Exx(W)Ex(w) +2d15Ey (w)E (w)
D, (w) | = €0 gyy(W)Ey(w) + 2d15E, (w)E; (w) (S9)
D.w)]  \ex(@E.(0) + dst (E2(0) + B} () + dyyB2(w)

The second-order nonlinear optical effects are considered as higher-order perturbations in the
electromagnetic field analysis. Therefore, in this work, we assume the second-order nonlinear

susceptibility tensor components d33, d31, and d;5 to be zero.

D, (w) Exx(W)Ex(w)
Dy, (w) | = €0 &yy(w)Ey(w) (S10)
D, (w) ez (w)E;(w)

Substituting Eqn. S10 into Eqn. S2 yields Eqn. S11.

F a2 2
0 19 134 ]E(“’): (w)EE“’)

2
— +— ——|E ——n;
[0p*  pdp  prdg?| ¢

:% (ni(w)Ez(w)) + %% (ngy(w)Ey(w))] cos ¢
% (niy(w)Ey(w)) - %% (ngz(a))EZ(a)))

(S11)

+ sing =0

In the Eqn. S11, the anisotropic permittivity components &,,(w) and &,,(w) appear explicitly.

498 These can be equivalently expressed in terms of the refractive indices nyy(w) and n;(w) via the

499 relation in Eqn. S12.

gil(w) = ni(w), i=xy,2 (S12)
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We assume that each component of the electric field can be expressed in a separable form as

E“ (p,9) = Ri(p) () (S13)

where R;(p) and ®;(¢) represent the radial and angular components of the electric field, respec-
tively. Due to the inherent periodicity of the angular coordinate ¢ (with period 27), the angular

function ®;(¢) is chosen as

D;(¢) = ™Y, m;eZ (S14)

where m; is an integer ensuring the single-valuedness and periodicity of the wavefunction. Substi-
tuting the separated variables into the first equation yields

1 (R, 1dR;)\ m} 2

2 A ) (S15)
Ri\dp? pdp) p>

By algebraic manipulation, we obtain the radial differential equation

d’R;, 1dR; m?
——— 4 kP = LR =0 (S16)
dp?2  pdp p?
where
w
ki = znii(w) (S17)

Eqn. S16 is the standard Bessel equation, whose general solution can be expressed as a linear

combination of Bessel functions:
Ri(p) = AiJp,;(kip) + BYy, (kip) (S18)

where J,,,, (k;p) is the first kind Bessel function, and Y,,, (k;p) is the second kind Bessel function
(also known as the Neumann function). The constants A; and B; are determined by boundary

conditions.

Regular case without singularities. In typical cylindrical geometries where the domain includes
the origin (p = 0) and no geometric singularity is present, the solution to the radial equation must

be finite at p = 0. Since the second kind Bessel function, Y, (k;p), diverges at the origin, the
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physical requirement of regularity demands that its contribution be excluded. Thus, the general

solution simplifies to:

Ri(p) = Aidu, (kip) (S19)

where A; is a constant determined by boundary conditions.In this case, the electric field remains

finite.

Case with bowtie-shaped singularities. In contrast, when a bowtie-shaped singularity—such as
a sharp metallic tip or a subwavelength dielectric gap—is present near or at p = 0, the center is no
longer a regular point in the domain. Such geometric features introduce a physical or mathematical
singularity that invalidates the regularity condition at the origin.

In this scenario, the solution to the radial equation must retain both Bessel functions:
Ri(p) = AiJm;(kip) + BiYp, (kip) (S20)

where B; takes nonzero values depending on the field behavior near the singularity. The divergent
nature of Y,,, at the origin is no longer unphysical, but may reflect genuine field enhancement
arising from the singular structure. Such effects are particularly significant in dielectric nanogaps
or nonlinear optical hotspots, where geometric singularities lead to localized field amplification.
The higher-order small terms of the electric field can be neglected, and the eigenmodes E and H

can be expressed in Eqn. S21.
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%C(kop)_l cos[l¢], L<p<t
%%C(kop)—lcos[l(ﬂ—gp)], r-f<p<n+l

E, =1
C(kop)~' cos [l (%+(,0)], _7T+§ <(p<_g
C(kop)~' cos [l(%—(p)]’ §<‘P<7T—g
“=C(kop) ' sin[lg], f<p<d

< zz (S21)

_%C(kop)‘l sin[l(n-¢)], n-4<p<n+?

E, =
C(kop)~'sin [1 (5 +¢)], rel<p<-t
—C(kop)~'sin [l (%—(p)], §<‘p<ﬂ_§

E. =0

H,=H,=H;=0
The analytical solution suggests an infinite electric field intensity at the hotspot. Nevertheless,
due to the impossibility of a zero gap distance in real structures, the field enhancement factor is

ultimately finite.

2. Nonlinear coupling wave equation and SHG enhancement

In the absence of losses and under the slowly varying envelope approximation, the nonlinear coupled

wave equations in the time-domain electromagnetic field can be expressed as shown in Eqn. S22.

da;

? — _iﬁI&T&Ze_i(wz_zwl)t

(S22)
d&Z .h ~2 —i(Qwi—
? = lﬂzale l( w1 ‘Uz)t

In Eqn. (S22), &@; and @, denote the complex slowly varying amplitudes of the coupled waves
at frequencies w1 and w;, respectively, g represents the nonlinear coupling coefficient, w| and w;

are the angular frequencies of the modes, the asterisk * denotes the complex conjugate.
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Taking into account losses and input excitation, the nonlinear coupled wave equations are given

in Eqn. S23.

da K10 + K1 Y T

T - 3 a1 + \Kips e WrmO By Gty eI (027200

dc; K20 + K (523)
2 20 2e ~ . ~2 -

el Can +iBs oz% e Cwimw)t

where w), and s denote the frequency and the amplitude of the input electric field in the pump fibre,
with |s|? being the input power, « ;0 and «j, represent the intrinsic decay rate and external coupling
rate, respectively. Under the assumption of solely second-order nonlinear effects, the nonlinear

coupling coefficients 81 and 3, are defined as presented in Eqn. S24%.

L] P Syeexy (BB + EijZkE;i)
Freg (f Bx slE12) ([ dx s|Baf?)?

< (S24)
1 [ &x Sy ex By En

Z(/ d3x e|E;[?) (/ d3xe|E2|2)l/2

In the rotating frame of the pump, | = @ “r~“V" and @y = @e!?@r~“2)"  the coupled wave

equations can be expressed in Eqn. S25.

d +
ditl = [i(wp -wy) — %] a1 + VKies —ifrajar
(S25)
d +
—gtz = [i(pr —wy) — K20 % K2 > KZe] a + iﬁza%

The pump is almost unperturbed by SHG, since the pump light is much stronger than the SH

signal. Therefore, the last term in Eqn. S25 can be ignored in the following analysis. Considering

the steady state, i.e. do, _ Ay

s = a- = 0, the above coupled mode equations result in the expression of

generated SH power?®,

4 212 16 4
p BI202 0! » 6

2w 2 . 2 2
w202 [4Q§ (w—f—l) +1 02 o2 [4Q§ (‘;’—’l’—l) +1

Here, Q; = K]:_i—’w and Q;, = Z—i denote the loaded quality factor and the external (coupling-

induced) quality factor, respectively. Under the phase-matching condition, i.e., w, = W = w7 /2,

. .. . _ . . P 2 2
and assuming critical coupling (Q; = Q/.), the conversion efficiency scales as P—% o« 007181
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From Eqn. S24, we can derive the relationship between the mode volume V;,, and the coupling
coefficients. In this case, any integral over the fields will simply yield the mode volume V,, of the
nonlinear material. Thus, for the y(? effect, we obtain 3; ~ g’&%, where g represents the coupling
coeflicient into the cavity. In fact, although the calculated mode volume is very small, the overall
enhancement factor does not increase significantly because the coupling coefficient between the

Gaussian beam and the nanocavity is quite small, resulting in a relatively small value of g.

3. Fabrication of suspended CBGs and bowtie structures in suspended CBG

The fabrication process of the suspended CBG structure with an integrated bowtie consists of
several steps, as illustrated in Fig. S1. Firstly, a 600-nm-thick amorphous silicon is deposited on
the TFLN wafer via plasma-enhanced chemical vapor deposition (PECVD), followed by spin-
coating of ZEP520A electron beam resist. The designed patterns are then exposed by electron beam
lithography and developed by pentyl acetate. Subsequently, the pattern is transferred to the silicon
layer using inductively coupled plasma reactive ion etching (ICP-RIE). The underlying TFLN is
further etched via ICP to form the nanostructures. Afterward, the silicon hard mask is removed,

and selective wet etching of the buried SiO, layer is performed to release the suspended structure.

4. Experimental setup for reflection measurement

As shown in Fig. S2, the light source is a picosecond supercontinuum laser with a pulse duration
of 220 ps (YSL photonics SC-pro, repetition rate: 20 MHz). The supercontinuum is firstly filtered
by a long-pass filter (>1250 nm). The input light is then tightly focused on the sample by a NIR
microscope objective (Mitutoyo 50x, NA = 0.65). Reflection light is collected by the same objective
and reflected by a beam splitter (50:50, 600—1700 nm). A flip mirror is added after the beam splitter
to guide the beam into two arms. The light is either coupled into a multimode fiber and recorded

by a spectrometer (Anritsu, MS9740A) or imaged using a camera (EMCCD, iXon Ultra 897).

5. Experimental setup for SHG enhancement

As shown in Fig. S3, during the SHG signal measurement, the supercontinuum source is spectrally

filtered using a tunable high-power filter (YSL Photonics AOTF-PRO2, FWHM 1.9 nm). The
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output beam then passes through a Glan prism and half-wave plate (@1310 nm) to adjust the
polarization of the excitation light. Afterward, the beam is directed through two beam splitters (BS)
and a microscope objective, tightly focused onto the center of the sample. The reflected signal is
redirected by the same plate beam splitter to a EMCCD camera (iXon Ultra 897) for measuring the
SHG intensity of the sample, or alternatively, coupled into a spectrometer (Ocean Optics, HR4000)

via a fiber coupling system to analyze the SHG spectrum.

6. Design of suspended CBGs and bowtie structures in suspended CBG

The sample is simulated using the finite-difference time-domain (FDTD) method. To enhance the
refractive index contrast, suspended supports are designed within the circular Bragg cavity, as
shown in Fig. S4. The size of the supporting structures is minimized—down to 90 nm—to ensure
sufficient mechanical stability while preventing the collapse of the sample.

By tuning the period and duty cycle of the sample, different resonant structures can be engi-
neered. Using the FDTD method, structures with periods ranging from 720 to 840 nm and duty
cycles between 0.58 and 0.66 are designed. The resonance wavelength can be shifted by adjusting
the period (Fig. S5-S8). Considering that the etching angle depends on both the grating period and

duty cycle, the designed resonances are centered at around 1310 nm.

7. Discussion of electric field distributions of bowtie with different gap sizes

The electric field distribution within the bowtie structure is strongly influenced by the gap size. As
the gap narrows, the electromagnetic coupling between the two dielectric tips intensifies, leading to
a significant increase in the local field enhancement at the dielectric gap (Fig. S9). This enhanced
confinement can greatly improve nonlinear optical effects like SHG.

However, reducing the gap size also presents fabrication challenges and may introduce additional
losses or scattering due to imperfections. The field confinement becomes more spatially localized
in smaller gaps, requiring high fabrication precision to fully utilize the enhancement. In our work,

the fabrication limit of the gap size is 20 nm (Fig. S10).
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8. Discussion of related work

Bowtie nanostructure integrated within a suspended circular Bragg cavity has been experimentally
and theoretically designed, enabling giant SHG enhancement beyond the diffraction limit. The
information of the fundamental and second harmonic signals is shown in Tables S1 and S2. The
CBG nanocavity achieves a high normalized conversion efficiency of 0.85 x 1072 cm?/GW under
a pump intensity of 1 MW/cm?, with a mode volume as small as 7.58 x 10™* (1/n). An SHG
enhancement factor of 3,720 is achieved compared to bare TFLN. Efficient SHG under ultralow
pump intensities is also demonstrated, significantly improving both the device performance and
operational lifetime, while simultaneously reducing the mode volume.

In contrast to plasmonic resonances, the bowtie-integrated CBG structure is free from thermal
losses and supports higher optical powers, significantly extending the upper limit of nonlinear
conversion efficiency while maintaining an ultrasmall mode volume. Furthermore, compared to
other all-dielectric nanostructures, our design exhibits a significantly reduced mode volume while
maintaining a high SHG efficiency. The comparison is shown in Fig. SH and Table S3. Notably,
this work represents the first experimental realization of a nonlinear optical response beyond the

diffraction limit in a all-dielectric nanocavity.
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Figure S1: Fabrication flowchart of the sample. (a) Deposition of 600-nm amorphous silicon on
TFLN via PECVD, followed by spin coating of ZEP520A photoresist. (b) Electron beam exposure
and development. (¢) ICP-RIE etching of silicon mask. (d) RIE etching of LN. (e) Removal of

silicon. (f) Selective etching of silicon dioxide. (g) Optical microscope image of the sample.

S11



¢ fiber coupling
/\ lens
sample\
aperture
A::rometer

N s

long-pass filter

objective

Glan polarizer

supercontinuum laser

Figure S2: Experimental setup for reflection measurement. The supercontinuum laser (YSL
photonics SC-pro, 430-2400 nm) passes a Glan polarizer for polarization control. Then, it is
filtered by a long-pass filter (>1250 nm), to avoid the intense seed at 1064 nm. The input light is
then tightly focused on the sample by a NIR microscope objective (Mitutoyo, 50x, NA=0.65). The
reflection signal is collected by the same objective and reflected by a beam splitter (50:50, 600—1700
nm). The reflection signal is coupled into a single-mode optical fiber (the coupling efficiency is

30%) and recorded by a spectrometer (Anritsu, MS9740A).
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Figure S3: Experimental setup for SHG enhancement. During the SHG signal measurement,
the supercontinuum source is spectrally filtered using a tunable high-power filter (YSL Photonics
AOTF-PRO2, FWHM 1.9 nm). The output beam then passes through a Glan prism and half-wave
plate (@1310 nm) to adjust the polarization of the excitation light. Afterward, the beam is directed
through two beam splitters (BS) and a microscope objective, tightly focused onto the center of the
sample. The reflected signal is redirected by the same plate beam splitter to a EMCCD camera
(iXon Ultra 897) for measuring the SHG intensity of the sample, or alternatively, coupled into a

spectrometer (Ocean Optics, HR4000) via a fiber coupling system to analyze the SHG spectrum.
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Figure S4: Influence of the width of the suspended supports on the resonance. (a and b)

Schematics of the suspended supports in the CBG, illustrating that smaller angles correspond

to reduced support size. (¢ and d) Reflection spectra under z-polarized and y-polarized pump

excitation. A decrease in angle leads to an increased Q factor.
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Figure SS: Experimental reflection spectra of suspended CBGs with different P values under (a)

z-polarized and (b) y-polarized illumination.
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Figure S6: (a) Simulated reflection spectra of the suspended CBG under z-polarized illumination

and (b) the corresponding Purcell factors.
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Figure S7: Experimental reflection spectra of bowtie in suspended CBG with different P’s under

(a) z-polarized and (b) y-polarized illumination.
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Figure S8: (a) Simulated reflection spectra of the bowtie in suspended CBG under z-polarized

illumination and (b) the corresponding Purcell factors.

S18



(a)

0
y (Um)

E
:)i7
05 0 05 O

Y (um)

E (
CI)i10
05 05 O

b)

@

Y (um)
d
(d) E
7
0.5
So
N
0.5
05 0 05 O
Y (um)

Figure S9: Simulated electric field distributions of the bowtie in suspended CBG structures with

gap sizes of (a) 0 nm, (b) 10 nm, (¢) 20 nm, and (d) 30 nm.
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Figure S10: The fabricated sample is designed with a minimum gap of 20 nm. Due to the inclined

etching angle, the actual separation at the tip of the sloped sidewalls is effectively reduced to O nm.
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Table S1: Experimental parameters and input power levels. The table lists the laser excitation

parameters, including wavelength, repetition rate, and pulse width, as well as the calculated spot

diameter and peak power.

Parameter Wavelength Rep. rate Pulse length Avg. power NA  Spot diameter Peak power

(nm) (MHz) (ps) (mW) - (pm) (mW)
Symbol A v T Pru - 0 Pry
Formula N/A N/A N/A N/A N/A % @
NA vT
Value 1310 20 220 0.21 0.65 2.46 47.7

Table S2: SHG conversion efficiency The table lists SHG related parameters in our experiment

including SHG power, peak power, conversion efficiency, peak SHG efficiency, and normalized
efficiency.

Parameter SHG Power SHG Peak Power Max. conv. eff. Peak SHG eff. Normalized SHG eff.

(nW) (W) - (W1 (cm3/GW)
Symbol Psu Psy 1SHG YSHG Mnorm
A A § 2
P P P -5
Formula N - Epp —sH “SH SH USHGA—(Z)
VT PFH PIZJH PFH
Value 1.8 4.09 x 1077 8.6x107° 1.78 x 104 0.85 x 1072
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Table S3: Comparison of nonlinear optical performance across nanophotonic platforms. This

table compares the Q factor, mode volume, SHG efficiency, and normalized SHG efficiency of

various reported nanophotonic resonators.

Type Q factor Mode volume Wavelength SHG efficiency Norm. SHG efficiency Reference

- (a/n)? (nm) - (cm?/GW)
This work ~370  7.58x107* 1310 8.6x 1070 0.85x 1072 N/A
Plasmonic ~20 6.45x 107° 1550 6.4x107° 7.88 x 107° Nat. Nanotechnol. 10, 412 (2015)!°
Plasmonic ~10 1.63 x 1077 850 0.87 x 107° 9.92x 1078 Nat. Commun. 12, 4326 (2021)'*
Plasmonic ~30 6x107° 1560 1.3 %1077 1.23x 1077 Opt. Express 32, 13140 (2024)1
Plasmonic ~10 1.3x 1077 1560 N/A N/A Nano Lett. 15, 4102 (2015)!!
Plasmonic ~5 5x 1072 650 3.7x 10712 2.8x 1071 Light Sci. Appl. 7, 49 (2018)'°
Plasmonic N/A 5% 107 800-1300  1.13x107° 1.29x 1077 Nat. Commun. 12, 6425 (2021)'7
Plasmonic ~10 1.4x 1077 725-800 2x107° 1.8x 1078 ACS Photonics 10, 1529 (2023)'8
BIC ~4000 0.5-2 1200 4x107 4x1073 Nano Lett. 20, 8745 (2020)%
BIC ~188 ~0.07 1570 1.18 x 1073 1.6x 1074 Science 367, 288 (2020)**
PhC ~100 ~100 742 2.8x1073 6.7x 107 Adv. Funct. Mater. 33, 2308484 (2023)"¢
PhC ~100 ~100 843 1x1073 47x107* Adv. Opt. Mater. 13, 2402686 (2023)%°
PhC 8000 ~1.18 1510 5.21 x107° N/A Nanophotonics 13, 4029 (2024)?!
PhC 5600 ~0.3 1500 3x 1071 4.4x107° Nano Lett. 24, 11327 (2024)?
Anapole ~10 ~7 1440 1.18 x 1078 6.1 x 10710 Adv. Mater. 37, 2418257 (2024)3!
Anapole ~5 ~1.17 ~800 1.9x 1073 1.9x 1073 Nano Lett. 18, 3695 (2018)*
Mie ~20 ~0.15 1400 3.4x 10710 1.87 x 10712 Nat. Commun. 12, 5597 (2021)%
Mie ~10 ~1.58 900 5% 1078 3.77 x 1077 Laser Photonics Rev. 16, 2100604 (2022)°
Mie ~10 ~10 820 2x107° 9.75 x 1077 Laser Photonics Rev. 15, 2000521 (2021)%
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