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1. Electric field analysis of sub-diffraction suspended dielectric cavities471

The suspended circular Bragg gratings are engineered with a tailored radial period to support472

resonant operation across the 1250–1500 nm wavelength range. Starting from nonlinear Maxwell’s473

equations and assuming a time-harmonic electric field of the form E(r, 𝑡) = E(r)𝑒−𝑖𝜔𝑡 .474

In the absence of electrostatic interactions—that is, neglecting the free charge density (𝜌 𝑓 = 0)475

and the free current density (J 𝑓 = 0)—the nonlinear Maxwell’s equations can be simplified under476

the high-frequency approximation (e.g., in the optical regime) as follows:477

∇ · D = 0

∇ · B = 0

∇ × E = −𝜕B
𝜕𝑡

∇ × H =
𝜕D
𝜕𝑡

(S1)
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In Eqn. S1, D and H are electric displacement field and magnetic fields of the eigenmodes, respec-478

tively, and 𝑡 represents time. The solution form of Maxwell’s equations in cylindrical coordinates479

is given in Eqn. S2.480 [
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(S2)

Under the condition that only second-order nonlinear effects are considered, the components of481

the electric displacement field can be described as 𝐷𝑥 , 𝐷𝑦, and 𝐷𝑧, satisfying Eqn. S3.482
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Lithium niobate is a negative uniaxial crystal (point group 3𝑚). Its linear dielectric tensor in483

the crystal axis coordinate system is a diagonal matrix:484

𝜺 =

©­­­­«
𝜀𝑥𝑥 0 0

0 𝜀𝑦𝑦 0

0 0 𝜀𝑧𝑧

ª®®®®¬
(S4)

The last term in Eqn. S3 corresponds to the second-order nonlinear polarization, which can be485

expressed as486

P(2)
𝑖

(2𝜔) = 𝜀0
∑︁
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𝜒
(2)
𝑖 𝑗 𝑘

E 𝑗 (𝜔)E𝑘 (𝜔) (S5)

where 𝜒
(2)
𝑖 𝑗 𝑘

denotes the elements of the second-order nonlinear susceptibility tensor, and E 𝑗 (𝜔),487

E𝑘 (𝜔) are the components of the fundamental electric field at frequency 𝜔.488
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For lithium niobate (point group 3𝑚), the nonzero 𝑑 components are:489

𝑑31 = 𝑑32 ≠ 0, 𝑑33 ≠ 0, 𝑑15 = 𝑑24 ≠ 0 (S7)

Therefore, the nonlinear polarization terms can be further simplified as:490

P(2)
𝑥 = 2𝑑15E𝑦E𝑧

P(2)
𝑦 = 2𝑑15E𝑥E𝑧

P(2)
𝑧 = 𝑑31

(
E2
𝑥 + E2

𝑦

)
+ 𝑑33E2

𝑧

(S8)

The substitution of Eqn. S8 into Eqn. S3 yields the nonlinear polarization component [D𝑥 (𝜔),491

D𝑦 (𝜔), D𝑧 (𝜔)] as:492

©­­­­«
D𝑥 (𝜔)

D𝑦 (𝜔)

D𝑧 (𝜔)

ª®®®®¬
= 𝜀0

©­­­­«
𝜀𝑥𝑥 (𝜔)E𝑥 (𝜔) + 2𝑑15E𝑦 (𝜔)E𝑧 (𝜔)

𝜀𝑦𝑦 (𝜔)E𝑦 (𝜔) + 2𝑑15E𝑥 (𝜔)E𝑧 (𝜔)

𝜀𝑧𝑧 (𝜔)E𝑧 (𝜔) + 𝑑31

(
E2
𝑥 (𝜔) + E2

𝑦 (𝜔)
)
+ 𝑑33E2

𝑧 (𝜔)

ª®®®®¬
(S9)

The second-order nonlinear optical effects are considered as higher-order perturbations in the493

electromagnetic field analysis. Therefore, in this work, we assume the second-order nonlinear494

susceptibility tensor components 𝑑33, 𝑑31, and 𝑑15 to be zero.495
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Substituting Eqn. S10 into Eqn. S2 yields Eqn. S11.496
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In the Eqn. S11, the anisotropic permittivity components 𝜀𝑦𝑦 (𝜔) and 𝜀𝑧𝑧 (𝜔) appear explicitly.497

These can be equivalently expressed in terms of the refractive indices 𝑛𝑦𝑦 (𝜔) and 𝑛𝑧𝑧 (𝜔) via the498

relation in Eqn. S12.499

𝜀𝑖𝑖 (𝜔) = 𝑛2
𝑖𝑖 (𝜔), 𝑖 = 𝑥, 𝑦, 𝑧 (S12)
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We assume that each component of the electric field can be expressed in a separable form as500

𝐸
(𝜔)
𝑖

(𝜌, 𝜑) = 𝑅𝑖 (𝜌)Φ𝑖 (𝜑) (S13)

where 𝑅𝑖 (𝜌) and Φ𝑖 (𝜑) represent the radial and angular components of the electric field, respec-501

tively. Due to the inherent periodicity of the angular coordinate 𝜑 (with period 2𝜋), the angular502

function Φ𝑖 (𝜑) is chosen as503

Φ𝑖 (𝜑) = 𝑒𝑖𝑚𝑖𝜑, 𝑚𝑖 ∈ Z (S14)

where 𝑚𝑖 is an integer ensuring the single-valuedness and periodicity of the wavefunction. Substi-504

tuting the separated variables into the first equation yields505
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By algebraic manipulation, we obtain the radial differential equation506

d2𝑅𝑖

d𝜌2 + 1
𝜌

d𝑅𝑖

d𝜌
+
[
𝑘2
𝑖 −

𝑚2
𝑖

𝜌2

]
𝑅𝑖 = 0 (S16)

where507

𝑘𝑖 =
𝜔

𝑐
𝑛𝑖𝑖 (𝜔) (S17)

Eqn. S16 is the standard Bessel equation, whose general solution can be expressed as a linear508

combination of Bessel functions:509

𝑅𝑖 (𝜌) = 𝐴𝑖𝐽𝑚𝑖
(𝑘𝑖𝜌) + 𝐵𝑖𝑌𝑚𝑖

(𝑘𝑖𝜌) (S18)

where 𝐽𝑚𝑖
(𝑘𝑖𝜌) is the first kind Bessel function, and 𝑌𝑚𝑖

(𝑘𝑖𝜌) is the second kind Bessel function510

(also known as the Neumann function). The constants 𝐴𝑖 and 𝐵𝑖 are determined by boundary511

conditions.512

Regular case without singularities. In typical cylindrical geometries where the domain includes513

the origin (𝜌 = 0) and no geometric singularity is present, the solution to the radial equation must514

be finite at 𝜌 = 0. Since the second kind Bessel function, 𝑌𝑚𝑖
(𝑘𝑖𝜌), diverges at the origin, the515
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physical requirement of regularity demands that its contribution be excluded. Thus, the general516

solution simplifies to:517

𝑅𝑖 (𝜌) = 𝐴𝑖𝐽𝑚𝑖
(𝑘𝑖𝜌) (S19)

where 𝐴𝑖 is a constant determined by boundary conditions.In this case, the electric field remains518

finite.519

Case with bowtie-shaped singularities. In contrast, when a bowtie-shaped singularity—such as520

a sharp metallic tip or a subwavelength dielectric gap—is present near or at 𝜌 = 0, the center is no521

longer a regular point in the domain. Such geometric features introduce a physical or mathematical522

singularity that invalidates the regularity condition at the origin.523

In this scenario, the solution to the radial equation must retain both Bessel functions:524

𝑅𝑖 (𝜌) = 𝐴𝑖𝐽𝑚𝑖
(𝑘𝑖𝜌) + 𝐵𝑖𝑌𝑚𝑖

(𝑘𝑖𝜌) (S20)

where 𝐵𝑖 takes nonzero values depending on the field behavior near the singularity. The divergent525

nature of 𝑌𝑚𝑖
at the origin is no longer unphysical, but may reflect genuine field enhancement526

arising from the singular structure. Such effects are particularly significant in dielectric nanogaps527

or nonlinear optical hotspots, where geometric singularities lead to localized field amplification.528

The higher-order small terms of the electric field can be neglected, and the eigenmodes E and H529

can be expressed in Eqn. S21.530
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(S21)

The analytical solution suggests an infinite electric field intensity at the hotspot. Nevertheless,531

due to the impossibility of a zero gap distance in real structures, the field enhancement factor is532

ultimately finite.533

2. Nonlinear coupling wave equation and SHG enhancement534

In the absence of losses and under the slowly varying envelope approximation, the nonlinear coupled535

wave equations in the time-domain electromagnetic field can be expressed as shown in Eqn. S22.536


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(S22)

In Eqn. (S22), 𝛼̃1 and 𝛼̃2 denote the complex slowly varying amplitudes of the coupled waves537

at frequencies 𝜔1 and 𝜔2, respectively, 𝑔 represents the nonlinear coupling coefficient, 𝜔1 and 𝜔2538

are the angular frequencies of the modes, the asterisk ∗ denotes the complex conjugate.539
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Taking into account losses and input excitation, the nonlinear coupled wave equations are given540

in Eqn. S23.541


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(S23)

where 𝜔𝑝 and 𝑠 denote the frequency and the amplitude of the input electric field in the pump fibre,542

with |𝑠 |2 being the input power, 𝜅 𝑗0 and 𝜅 𝑗 𝑒 represent the intrinsic decay rate and external coupling543

rate, respectively. Under the assumption of solely second-order nonlinear effects, the nonlinear544

coupling coefficients 𝛽1 and 𝛽2 are defined as presented in Eqn. S2445.545
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(S24)

In the rotating frame of the pump, 𝛼1 = 𝛼̃1𝑒
𝑖(𝜔𝑝−𝜔1)𝑡 and 𝛼2 = 𝛼̃2𝑒

𝑖(2𝜔𝑝−𝜔2)𝑡 , the coupled wave546

equations can be expressed in Eqn. S25.547
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(S25)

The pump is almost unperturbed by SHG, since the pump light is much stronger than the SH548

signal. Therefore, the last term in Eqn. S25 can be ignored in the following analysis. Considering549

the steady state, i.e., d𝛼̃1
d𝑡 =

d𝛼̃2
d𝑡 = 0, the above coupled mode equations result in the expression of550

generated SH power46,551
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1 (S26)

Here, 𝑄 𝑗 =
𝜔 𝑗

𝜅 𝑗0+𝜅 𝑗𝑒 and 𝑄 𝑗 𝑒 =
𝜔 𝑗

𝜅 𝑗𝑒
denote the loaded quality factor and the external (coupling-552

induced) quality factor, respectively. Under the phase-matching condition, i.e., 𝜔𝑝 = 𝜔1 = 𝜔2/2,553

and assuming critical coupling (𝑄 𝑗 = 𝑄 𝑗 𝑒), the conversion efficiency scales as 𝑃2
𝑃2

1
∝ 𝑄2𝑄

2
1 |𝛽 |

2.554
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From Eqn. S24, we can derive the relationship between the mode volume 𝑉m and the coupling555

coefficients. In this case, any integral over the fields will simply yield the mode volume 𝑉m of the556

nonlinear material. Thus, for the 𝜒(2) effect, we obtain 𝛽𝑖 ∼ 𝑔
𝜒 (2)
√
𝑉m

, where 𝑔 represents the coupling557

coefficient into the cavity. In fact, although the calculated mode volume is very small, the overall558

enhancement factor does not increase significantly because the coupling coefficient between the559

Gaussian beam and the nanocavity is quite small, resulting in a relatively small value of 𝑔.560

3. Fabrication of suspended CBGs and bowtie structures in suspended CBG561

The fabrication process of the suspended CBG structure with an integrated bowtie consists of562

several steps, as illustrated in Fig. S1. Firstly, a 600-nm-thick amorphous silicon is deposited on563

the TFLN wafer via plasma-enhanced chemical vapor deposition (PECVD), followed by spin-564

coating of ZEP520A electron beam resist. The designed patterns are then exposed by electron beam565

lithography and developed by pentyl acetate. Subsequently, the pattern is transferred to the silicon566

layer using inductively coupled plasma reactive ion etching (ICP-RIE). The underlying TFLN is567

further etched via ICP to form the nanostructures. Afterward, the silicon hard mask is removed,568

and selective wet etching of the buried SiO2 layer is performed to release the suspended structure.569

4. Experimental setup for reflection measurement570

As shown in Fig. S2, the light source is a picosecond supercontinuum laser with a pulse duration571

of 220 ps (YSL photonics SC-pro, repetition rate: 20 MHz). The supercontinuum is firstly filtered572

by a long-pass filter (>1250 nm). The input light is then tightly focused on the sample by a NIR573

microscope objective (Mitutoyo 50×, NA = 0.65). Reflection light is collected by the same objective574

and reflected by a beam splitter (50:50, 600–1700 nm). A flip mirror is added after the beam splitter575

to guide the beam into two arms. The light is either coupled into a multimode fiber and recorded576

by a spectrometer (Anritsu, MS9740A) or imaged using a camera (EMCCD, iXon Ultra 897).577

5. Experimental setup for SHG enhancement578

As shown in Fig. S3, during the SHG signal measurement, the supercontinuum source is spectrally579

filtered using a tunable high-power filter (YSL Photonics AOTF-PRO2, FWHM 1.9 nm). The580
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output beam then passes through a Glan prism and half-wave plate (@1310 nm) to adjust the581

polarization of the excitation light. Afterward, the beam is directed through two beam splitters (BS)582

and a microscope objective, tightly focused onto the center of the sample. The reflected signal is583

redirected by the same plate beam splitter to a EMCCD camera (iXon Ultra 897) for measuring the584

SHG intensity of the sample, or alternatively, coupled into a spectrometer (Ocean Optics, HR4000)585

via a fiber coupling system to analyze the SHG spectrum.586

6. Design of suspended CBGs and bowtie structures in suspended CBG587

The sample is simulated using the finite-difference time-domain (FDTD) method. To enhance the588

refractive index contrast, suspended supports are designed within the circular Bragg cavity, as589

shown in Fig. S4. The size of the supporting structures is minimized—down to 90 nm—to ensure590

sufficient mechanical stability while preventing the collapse of the sample.591

By tuning the period and duty cycle of the sample, different resonant structures can be engi-592

neered. Using the FDTD method, structures with periods ranging from 720 to 840 nm and duty593

cycles between 0.58 and 0.66 are designed. The resonance wavelength can be shifted by adjusting594

the period (Fig. S5-S8). Considering that the etching angle depends on both the grating period and595

duty cycle, the designed resonances are centered at around 1310 nm.596

7. Discussion of electric field distributions of bowtie with different gap sizes597

The electric field distribution within the bowtie structure is strongly influenced by the gap size. As598

the gap narrows, the electromagnetic coupling between the two dielectric tips intensifies, leading to599

a significant increase in the local field enhancement at the dielectric gap (Fig. S9). This enhanced600

confinement can greatly improve nonlinear optical effects like SHG.601

However, reducing the gap size also presents fabrication challenges and may introduce additional602

losses or scattering due to imperfections. The field confinement becomes more spatially localized603

in smaller gaps, requiring high fabrication precision to fully utilize the enhancement. In our work,604

the fabrication limit of the gap size is 20 nm (Fig. S10).605
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8. Discussion of related work606

Bowtie nanostructure integrated within a suspended circular Bragg cavity has been experimentally607

and theoretically designed, enabling giant SHG enhancement beyond the diffraction limit. The608

information of the fundamental and second harmonic signals is shown in Tables S1 and S2. The609

CBG nanocavity achieves a high normalized conversion efficiency of 0.85 × 10−2 cm2/GW under610

a pump intensity of 1 MW/cm2, with a mode volume as small as 7.58 × 10−4 (𝜆/𝑛)3. An SHG611

enhancement factor of 3,720 is achieved compared to bare TFLN. Efficient SHG under ultralow612

pump intensities is also demonstrated, significantly improving both the device performance and613

operational lifetime, while simultaneously reducing the mode volume.614

In contrast to plasmonic resonances, the bowtie-integrated CBG structure is free from thermal615

losses and supports higher optical powers, significantly extending the upper limit of nonlinear616

conversion efficiency while maintaining an ultrasmall mode volume. Furthermore, compared to617

other all-dielectric nanostructures, our design exhibits a significantly reduced mode volume while618

maintaining a high SHG efficiency. The comparison is shown in Fig. 5H and Table S3. Notably,619

this work represents the first experimental realization of a nonlinear optical response beyond the620

diffraction limit in a all-dielectric nanocavity.621
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LN SiO2 ZEP 520A Si

(a)
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(b)
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(g)

6 μm

Figure S1: Fabrication flowchart of the sample. (a) Deposition of 600-nm amorphous silicon on

TFLN via PECVD, followed by spin coating of ZEP520A photoresist. (b) Electron beam exposure

and development. (c) ICP-RIE etching of silicon mask. (d) RIE etching of LN. (e) Removal of

silicon. (f) Selective etching of silicon dioxide. (g) Optical microscope image of the sample.
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supercontinuum laser

Glan polarizer

long-pass filter

BS

objective

sample

aperture

lens
fiber coupling

spectrometer

Figure S2: Experimental setup for reflection measurement. The supercontinuum laser (YSL

photonics SC-pro, 430–2400 nm) passes a Glan polarizer for polarization control. Then, it is

filtered by a long-pass filter (>1250 nm), to avoid the intense seed at 1064 nm. The input light is

then tightly focused on the sample by a NIR microscope objective (Mitutoyo, 50×, NA=0.65). The

reflection signal is collected by the same objective and reflected by a beam splitter (50:50, 600–1700

nm). The reflection signal is coupled into a single-mode optical fiber (the coupling efficiency is

30%) and recorded by a spectrometer (Anritsu, MS9740A).
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Figure S3: Experimental setup for SHG enhancement. During the SHG signal measurement,

the supercontinuum source is spectrally filtered using a tunable high-power filter (YSL Photonics

AOTF-PRO2, FWHM 1.9 nm). The output beam then passes through a Glan prism and half-wave

plate (@1310 nm) to adjust the polarization of the excitation light. Afterward, the beam is directed

through two beam splitters (BS) and a microscope objective, tightly focused onto the center of the

sample. The reflected signal is redirected by the same plate beam splitter to a EMCCD camera

(iXon Ultra 897) for measuring the SHG intensity of the sample, or alternatively, coupled into a

spectrometer (Ocean Optics, HR4000) via a fiber coupling system to analyze the SHG spectrum.
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Figure S4: Influence of the width of the suspended supports on the resonance. (a and b)

Schematics of the suspended supports in the CBG, illustrating that smaller angles correspond

to reduced support size. (c and d) Reflection spectra under z-polarized and y-polarized pump

excitation. A decrease in angle leads to an increased 𝑄 factor.
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Figure S5: Experimental reflection spectra of suspended CBGs with different 𝑃 values under (a)

z-polarized and (b) y-polarized illumination.
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Figure S6: (a) Simulated reflection spectra of the suspended CBG under z-polarized illumination

and (b) the corresponding Purcell factors.
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Figure S7: Experimental reflection spectra of bowtie in suspended CBG with different 𝑃’s under

(a) z-polarized and (b) y-polarized illumination.
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Figure S8: (a) Simulated reflection spectra of the bowtie in suspended CBG under z-polarized

illumination and (b) the corresponding Purcell factors.
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Figure S9: Simulated electric field distributions of the bowtie in suspended CBG structures with

gap sizes of (a) 0 nm, (b) 10 nm, (c) 20 nm, and (d) 30 nm.
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Figure S10: The fabricated sample is designed with a minimum gap of 20 nm. Due to the inclined

etching angle, the actual separation at the tip of the sloped sidewalls is effectively reduced to 0 nm.
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Table S1: Experimental parameters and input power levels. The table lists the laser excitation

parameters, including wavelength, repetition rate, and pulse width, as well as the calculated spot

diameter and peak power.

Parameter Wavelength Rep. rate Pulse length Avg. power NA Spot diameter Peak power

(nm) (MHz) (ps) (mW) – (𝜇m) (mW)

Symbol 𝜆 𝜈 𝜏 𝑃FH – 𝛿 𝑃̂FH

Formula N/A N/A N/A N/A N/A
1.22𝜆
NA

𝑃FH
𝜈𝜏

Value 1310 20 220 0.21 0.65 2.46 47.7

Table S2: SHG conversion efficiency The table lists SHG related parameters in our experiment

including SHG power, peak power, conversion efficiency, peak SHG efficiency, and normalized

efficiency.

Parameter SHG Power SHG Peak Power Max. conv. eff. Peak SHG eff. Normalized SHG eff.

(nW) (W) – (W−1) (cm2/GW)

Symbol 𝑃SH 𝑃̂SH 𝜂SHG 𝛾SHG 𝜂norm

Formula 𝑁 · 𝐸ph
𝑃̂SH
𝜈𝜏

𝑃SH
𝑃FH

𝑃̂SH

𝑃̂2
FH

𝜂SHG · 𝜋
(
𝛿
2
)2

𝑃̂FH

Value 1.8 4.09 × 10−7 8.6 × 10−6 1.78 × 10−4 0.85 × 10−2
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Table S3: Comparison of nonlinear optical performance across nanophotonic platforms. This

table compares the Q factor, mode volume, SHG efficiency, and normalized SHG efficiency of

various reported nanophotonic resonators.

Type 𝑄 factor Mode volume Wavelength SHG efficiency Norm. SHG efficiency Reference

– (𝜆/𝑛)3 (nm) – (cm2/GW)

This work ∼370 7.58 × 10−4 1310 8.6 × 10−6 0.85 × 10−2 N/A

Plasmonic ∼20 6.45 × 10−6 1550 6.4 × 10−9 7.88 × 10−9 Nat. Nanotechnol. 10, 412 (2015)10

Plasmonic ∼10 1.63 × 10−7 850 0.87 × 10−6 9.92 × 10−8 Nat. Commun. 12, 4326 (2021)14

Plasmonic ∼30 6 × 10−6 1560 1.3 × 10−7 1.23 × 10−7 Opt. Express 32, 13140 (2024)15

Plasmonic ∼10 1.3 × 10−7 1560 N/A N/A Nano Lett. 15, 4102 (2015)11

Plasmonic ∼5 5 × 10−2 650 3.7 × 10−12 2.8 × 10−13 Light Sci. Appl. 7, 49 (2018)16

Plasmonic N/A 5 × 10−4 800–1300 1.13 × 10−6 1.29 × 10−7 Nat. Commun. 12, 6425 (2021)17

Plasmonic ∼10 1.4 × 10−7 725–800 2 × 10−9 1.8 × 10−8 ACS Photonics 10, 1529 (2023)18

BIC ∼4000 0.5–2 1200 4 × 10−5 4 × 10−3 Nano Lett. 20, 8745 (2020)23

BIC ∼188 ∼0.07 1570 1.18 × 10−5 1.6 × 10−4 Science 367, 288 (2020)24

PhC ∼100 ∼100 742 2.8 × 10−3 6.7 × 10−4 Adv. Funct. Mater. 33, 2308484 (2023)19

PhC ∼100 ∼100 843 1 × 10−3 4.7 × 10−4 Adv. Opt. Mater. 13, 2402686 (2023)20

PhC 8000 ∼1.18 1510 5.21 × 10−9 N/A Nanophotonics 13, 4029 (2024)21

PhC 5600 ∼0.3 1500 3 × 10−11 4.4 × 10−9 Nano Lett. 24, 11327 (2024)22

Anapole ∼10 ∼7 1440 1.18 × 10−8 6.1 × 10−10 Adv. Mater. 37, 2418257 (2024)31

Anapole ∼5 ∼1.17 ∼800 1.9 × 10−5 1.9 × 10−5 Nano Lett. 18, 3695 (2018)29

Mie ∼20 ∼0.15 1400 3.4 × 10−10 1.87 × 10−12 Nat. Commun. 12, 5597 (2021)25

Mie ∼10 ∼1.58 900 5 × 10−8 3.77 × 10−9 Laser Photonics Rev. 16, 2100604 (2022)26

Mie ∼10 ∼10 820 2 × 10−6 9.75 × 10−7 Laser Photonics Rev. 15, 2000521 (2021)27

Metasurface ∼75 ∼1.38 940 2 × 10−4 8.3 × 10−5 Nano Lett. 22, 9652 (2022)40

GMR ∼4000 ∼110 1550 3 × 10−8 2.03 × 10−5 Phys. Rev. Lett. 127, 153901 (2021)28

CBG/EBG ∼260 ∼1.12 1310 2.32 × 10−5 1.21 × 10−2 Nano Lett. 24, 11676 (2024)42
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