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Observation of quantum phase transition and tunable giant Griffiths phase in twisted trilayer graphene
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1. Quantum anomalous metal phase

Fig. S1a shows the scanning electron microscope (SEM) image of the superconducting channel, highlighting the high aspect ratio of the channel. Fig. S1b shows the saturation of the sheet resistance  at low  at finite magnetic fields (). The apparent saturation has been a topic of much debate due to the sensitivity of the finite resistance state to the various external measurement conditions. Measurements in superconducting NbSe2 flakes suggests that the magnetoresistance in the anomalous metal phase is strongly sensitive to the circuit impedance due to dissipative coupling1. We verify this by changing the impedance in the circuit, which is series resistor that converts ac voltage (lock-in amplifier) to a constant current source with  and . For the two configurations depicted in Fig. S1c, the ac excitation current is the same () but the circuit impedance is varied. As evident, we do not observe any change between the two configurations in magnetoresistance . Fig. S1d shows the comparison of  as a function of  with and without external RC filters with cut-off frequency  Hz at dB attenuation. This suggests that the observed metallic state is not manifested due to coupling of the vortex lattice to external RF radiation2,3. Fig. S1e and S1f show the attenuation () as a function of the excitation frequency  for the internal and externals filters, respectively. 
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Fig S1: (a) SEM image of the device. (b)  Sheet resistance  vs inverse temperature for different   values at . (c) Sheet resistance  vs  for two different series resistors. (d)  Comparison of  vs  with and without external RC filters at . Attenuation vs excitation frequency for (e) internal RLC filters and (f) external RC filters. 

2. Quantum Interference effects and Weak localization

Fig. S2a shows the sheet resistance  as a function of for different temperatures. The aperiodic but repeatable oscillations in  are signatures of universal conductance fluctuations (UCF) due to quantum interference effects around impurity scattering 4. The oscillations gradually diminish at higher temperature since the phase coherence length  decrease at high .  Another manifestation of quantum interference effects can be observed through weak localization (WL) where the (averaged within doping window shows a sharp decrease at low  (Fig. S1b).
The magnetoresistance correction from the weak localization can be expressed as 5,6

 
Where is the electronic charge, ,  is the phase breaking magnetic field, and  and  are characteristic magnetic field scales for inter valley and intra valley scattering. The phase coherence length can be extracted from  as . A fit to the Eq. S1 suggests  nm at  mK, which is in the order of the sample dimensions (m). In contrast, Fig. S2c shows a positive magnetoresistance at and K, which is a signature of weak antilocalization (WAL). A similar dependent transition from WL to WAL has been previously seen in graphene and can be attributed to the different scattering scenarios7.  The fitted  nm at K, which is substantially reduced from its value at low .
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Fig S2: (a) Sheet resistance  vs  for different . (b) Change in  (averaged over a doping window ) as a function of  at  mK. (c) Change in  as a function of  at a fixed  and K.  The solid lines in (b) and (c) are a fit to theoretic model of the weak localization in graphene. 


3. Global phase breaking boundary from bias-current dependent transport
To identify the global phase breaking boundary in  phase space, we identify the corresponding value of the temperature  for which the sharp central peak (between  nA) disappears. The procedure is then repeated for several different magnetic fields in the vicinity of the phase transition.
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Fig S3: (a) –(g) Dynamic resistance  vs bias current  for different  at and  and  mT, respectively. The curves are offset for better clarity.   

4. Nonequilibrium effects in the weakly localized state
Increasing  increases the bias energy where  is the total resistance of the channel. For example, at  nA, the bias energy is eV compared to the thermal energy at base temperature (~ 60 mK), 5.8eV. Such conditions () broadens the energy of the incoming and outgoing interfering paths thus enhances the dephasing. This suppresses the localization of the wavefunction and reduces the total resistance. Previous experiments in graphene8 suggests that under the dephasing in nonequilibrium condition, the change in resistance () should follow a logarithmic decrease, . In contrast, the expected change resistance in should follow for local Joule heating. Our experimental transport data (Fig. S4a and Fig. S4b) corroborates the former, indicating a novel dephasing mechanism from the nonequilibrium measurement conditions.  
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Fig S4: (a)  as function of the bias current  at mK,  and mT. (b) The change in  as a function of  in linear-log scale. The red and blue squares represent the change in dynamic resistance  for positive and negative  values, respectively. The black and the green dashed lines show the  and  dependence as reference, respectively.  

5.  Infinite random fixed point and finite temperature scaling (FTS)

In this section, we first derive the activated dynamical scaling form for the infinite randomness fixed point used in Fig. 3b based on the conventional (for a non-Griffiths continuous phase transition) scaling form used in Fig. 3c within a temperature window and then explain the numerical details to implement this finite temperature scaling using nonlinear least-square minimalizations.

For a typical continuous phase transition induced by the tuning parameter , the correlation length  diverges algebraically at the critical point  as  . In the finite system, the IR cutoff restricts the correlation length to be at most the system size , and therefore leads to a typical finite size scaling of , where  is a universal function independent of the system parameters. In a dynamical system, the dynamical exponent  is defined as , and therefore leads to a temporal version of the scaling form of . 
In the finite temperature field theory, we can intuitively relate the temperature  with the inverse of the time , due to the Wick’s rotation in the Euclidean metrics. Therefore, we can define the following temporal scaling form . With the tuning parameter being the out-of-place magnetic field , we obtain the scaling of the resistance  as used in Fig. 3c.

In the Griffiths phase, the spacetime becomes extremely asymmetric, and the temporal varies much slower than the spatial dimension, therefore, we relate the dynamical exponent  with the a so-called activated exponent  as . Substituting the dynamical exponent  into the previous scaling form and, we obtain the following scaling form

Here, given the estimate of , the second term is much larger than the first term in Eq. (1), and therefore, we can safely ignore the first term and which, at the same time, also reduces the fitting parameters by one, , namely, the final activated dynamical scaling form used in Fig. 3b is


With the scaling form Eq. (1) or (2), we perform the finite temperature scaling to the experimental data with a magnet field and resistance  ,  under a specific temperature  , in order to extract the critical field , and critical exponent .
Based on the finite temperature scaling ansatz in Eq.1, we can define the following loss function,

where N is the total number of data points with different , and  is the linear interpolation between   and  (with  being sorted in ascending order), i.e.,

We minimize the loss function Eq.2 using the Levenberg-Marquardt algorithm9 10 provided by the Python package  lmfit11 to find the best fit of  and .
The error bars of the critical point  and the critical exponent  are estimated by first choosing a threshold of  times the minimal loss function as an operational definition, and then plotting the contour of the loss function Eq.2 as the function of different choices of  and  near the best fit values, and finally taking the extents of the -contour in the parameter space of  on both dimensions as the error bars.

Finally, we present some typical -contour (yellow curves) in Fig. S5
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Fig.S5: Typical examples of finite temperature scaling following Eq. (1) on the top row, and the spatial profile of the loss function in Eq. (3) with -contours on the bottom row (yellow curves). The optimal set of parameters is at labeled by the red cross. Different columns are for different ranges of temperature (in mK) windows as shown in the legend on the top row.
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