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WISER as an extension of models using eigen-information as fixed-effect covariates to correct for population structure:
Similar to  (see Section 2.2), the spectral decomposition of  can be expressed as , where  is the diagonal matrix of positive eigenvalues, and 𝑈 is the orthogonal matrix of eigenvectors associated to the genetic covariance matrix. According to [6], the EVG model which accounts for population structure correction is defined as follows:



where represents the first  eigenvectors, with the highest eigenvalues, of the orthogonal matrix  of eigenvectors associated to the genetic covariance matrix , and  their corresponding fixed effects. To align the notations of this model with those of the WISER approach, particularly with respect to the spectral decomposition of , we assume . In this case, the EVG model can be rewritten as:



where the matrix  is the column concatenation of the  eigenvectors (i.e., eigenvector matrix of ,  and  As implicitly stated in Section 2.2, WISER also assumes that , but within its framework, the vector  is replaced by , for which no distributional assumption is made. This ensures that the estimation of  is not a linear or non-linear combination of omic effects and remains separated of these.
Let represent the vector subspace generated by the column vectors of . Let  and  be the orthogonal projectors onto  and  respectively, where is the orthogonal complement of  (i.e., ). Using the following linear transformation based on , we have:


   


where ,  and . Note that  , therefore we have . The last property can also be verified directly as follows:



In the absence of assumptions regarding , as is the case within the WISER framework, the OLS estimate for  in the  model is given by:





Note that  is symmetric and idempotent, therefore we have = =  From the expression for , one can notice that the vectors of the design matrix  for fixed effects are orthogonally projected onto   (i.e., ), which represents the orthogonal complement of . This projection serves to eliminate the genetic covariance structure captured by the eigenvectors from , under the assumption that all principal axes of variation are considered, which, however, is typically not the case in practice, where only a fraction of the genetic covariance is accounted for. Furthermore, within the WISER framework, the projector  can be interpreted as a pseudo-whitening matrix  associated with its OLS estimate of . Indeed, we recall that the OLS estimate of  related to WISER is expressed as follows:



By substituting  with  , we see that:




  

Therefore,  can be viewed as a specific case of the OLS estimate of  within the WISER framework, where a pseudo-whitening matrix  is used in the absence of assumptions regarding .
We can show that  does not verify the whitening property. Indeed, for the vector  we have: 






Thus, applying to whiten  results in a null covariance matrix, rather than an isotropic covariance matrix (i.e., proportional to the identity matrix), with zero variances along the diagonal. Consequently, using ​ to account for population structure does not properly whiten the fixed-effect variables in the experimental design. Nevertheless,  can be considered a pseudo-whitening matrix, as it serves as a rough approximation to a true whitening matrix. In fact, a true whitening matrix  can be derived from  by adjusting the term  as follows:



where the diagonal matrix  corresponds to the inverse of the singular values (i.e., square roots of the eigenvalues) of . We can verify the whitening property for  as follows:
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Therefore,  can indeed be regarded as a pseudo-whitening matrix, as it requires an adjustment with  to be converted into the true whitening matrix . 
The equality between the OLS estimates of the fixed effects in the EVG and PC models can be demonstrated as follows. According to [6], the PC model, which corrects for population structure, is defined as follows:



In this model,  represents the regression coefficients associated with the PCs, and each column of the matrix  corresponds to the PC coordinates of individuals along an axis directed by an eigenvector of . We assume that all PCs are included in  to ensure that the OLS estimates of the fixed effects are identical for both the PC and EVG models. In [6], the matrix of PC coordinates is computed as , where corresponds to  as the estimated genetic covariance between individuals, and in terms of dimensionality (i.e., both and  ​have the same number of rows and columns, equal to the number of individuals). This computational approach deviates from the standard method for computing PC coordinates. Nevertheless, in the context where PC coordinates are generated by projecting genotype data onto the axes defined by the eigenvectors of , each column of  must reside within the subspace ​. Consequently, we have . Therefore, applying a linear transformation based on  to the PC model, as implemented in the EVG model, results in  .

