

Supplementary Material

Fabrication and Testing of High-temperature Schottky Diodes

Helei Dong, Liangjie Guo, Chengwei Zhen, Tengteng Dong, He Fu, Xin Tian, Siyu Liang, Rui Feng, Qiulin Tan

¹ Fabrication of Thin-Film Schottky Diode

² Chottky diode devices are prepared using techniques such as ³ photolithography, electron beam evaporation, and magnetron ⁴ sputtering. However, since the substrate may contain inorganic ⁵ contaminants such as dirt or organic contaminants such as bacteria ⁶ or dander, this can lead to the electrode structure being damaged ⁷ during subsequent photolithography processing. Therefore, the ⁸ substrate must be pretreated before preparing the device.

⁹ Place the Al₂O₃ substrate in a clean glass dish and introduce ¹⁰ acetone solvent for physical cleaning. Use an ultrasonic cleaner to ¹¹ clean the glass dish for 5 min at high intensity. After ultrasonic ¹² cleaning the substrate, place it in an ethanol solution again and ¹³ perform the same steps as above. After another ultrasonic cleaning, ¹⁴ rinse the substrate repeatedly with deionized water until it is pure, ¹⁵ and then blow it dry with nitrogen.

¹⁶ Anode Fabrication

¹⁷ In the process of preparing the anode, the surface of the Al₂O₃ ¹⁸ substrate is first mirror-polished to ensure its flatness, and then a ¹⁹ positive photoresist RZJ-304 produced by Suzhou Ruihong is ²⁰ applied by spin coating. This process involves setting specific ²¹ rotational speed parameters—an initial speed of 500 r/min for 5 s, ²² followed by high-speed spin coating at 3000 r/min for 30 s—to ²³ achieve uniform photoresist coating. The spin-coated substrate is ²⁴ preheated at 100 °C for 1 minute to promote the adhesion and ²⁵ curing of the photoresist. The spin-coated substrate is then UV- ²⁶ photolithographed using a mask based on the design shown in ²⁷ Fig.1b. An exposure dose of 80 units is used to ensure accurate ²⁸ pattern transfer. After exposure, the substrate is developed for 20 ²⁹ seconds, rinsed with deionized water (15 seconds per side), and ³⁰ blown dry with nitrogen. It is then post-heated at 120 °C for 1 ³¹ minute to further cure the pattern.

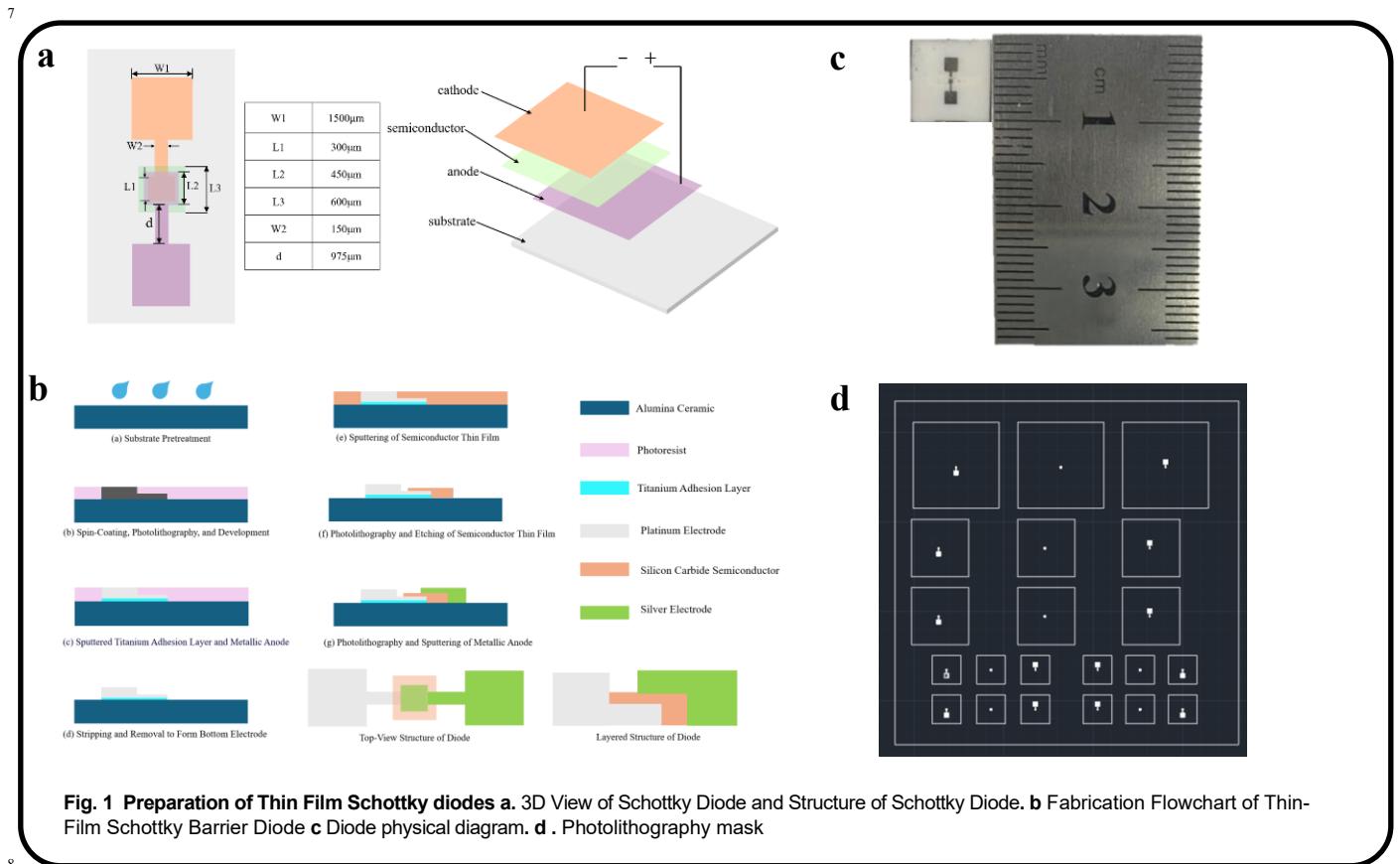
³² After that, the bottom electrode of the diode is prepared on the ³³ substrate by electron beam evaporation. To enhance the adhesion ³⁴ strength between the bottom electrode and the Al₂O₃ substrate, a ³⁵ 15 nm thick titanium (Ti) layer is first evaporated on the substrate, ³⁶ taking advantage of its good adhesion to Al₂O₃. Then, a 50 nm ³⁷ thick platinum (Pt) layer is evaporated on top as the anode ³⁸ electrode material. After the electrode is prepared, a stripping ³⁹ process is carried out to remove the photoresist from the ⁴⁰ unilluminated part. This involves dipping the substrate in acetone ⁴¹ for 3 minutes, followed by 30 seconds of oscillation using an ⁴² ultrasonic oscillator, and then an additional 3 minutes of static ⁴³ immersion. Finally, the substrate is rinsed with deionized water ⁴⁴ and blown dry with a nitrogen gun, and placed on a clean filter

⁴⁵ paper for subsequent use. This process ensures the accurate ⁴⁶ preparation of the anode electrode pattern, laying the foundation ⁴⁷ for further electronic device manufacturing.

⁴⁸ Fabrication of the semiconductor layer

⁴⁹ The substrate should be prepared for the anode by sputtering a ⁵⁰ SiC semiconductor layer, as outlined in Step 1. It is imperative ⁵¹ that this process be conducted under low vacuum conditions at ⁵² 0.44 Pa. Subsequently, a uniform coating must be applied, the ⁵³ mask template must be aligned according to the design, and a ⁵⁴ second photolithography must be performed. Subsequent to the ⁵⁵ development and drying of the photolithographed substrate, it is ⁵⁶ imperative to adhere to the parameters delineated in Step 1. The ⁵⁷ culmination of this process entails the etching and peeling of the ⁵⁸ substrate to achieve the desired semiconductor shape. A series of ⁵⁹ etching tests were conducted to ascertain the optimal conditions ⁶⁰ for the etching process. The tests involved the use of concentrated ⁶¹ hydrochloric acid (concentration 36%-38%) and deionized water ⁶² at a ratio of 50:1, with an etching rate of 50 nm and a duration of ⁶³ 100 s.

⁶⁴ Following the preparation of the platinum (Pt) electrode, it is ⁶⁵ essential to promptly deposit the a-IGZO semiconductor layer. ⁶⁶ The primary composition of the Pt layer deposited by electron ⁶⁷ beam evaporation is nanoparticles, and Pt is the second most ⁶⁸ reactive metal after silver (Ag) in air. Prolonged exposure to air ⁶⁹ may cause oxidation of the Pt layer, which could affect the ⁷⁰ formation of the Schottky barrier between Pt and SiC and ⁷¹ adversely impact device performance.


⁷² Cathode Fabrication

⁷³ The cathode preparation process commences with the initial ⁷⁴ step, which encompasses photolithography and development, ⁷⁵ followed by subsequent thermal treatment. Subsequently, silver ⁷⁶ (Ag) is deposited as the top cathode electrode on the prepared ⁷⁷ semiconductor layer using magnetron sputtering technology. The ⁷⁸ power output is set to 100 watts, with a duration of two minutes, ⁷⁹ in order to form a 32-nanometer cathode film. Given the stability ⁸⁰ concerns associated with the semiconductor layer, which is ⁸¹ susceptible to chemical reactions and may compromise device ⁸² performance, it is imperative that cathode deposition be executed ⁸³ expeditiously following the completion of the preparation process. ⁸⁴ Furthermore, it is imperative to regulate the sputtering thickness ⁸⁵ of the cathode to below 100 nm. This is to avert the consequences ⁸⁶ of protracted sputtering, which can result in the infiltration of ⁸⁷ nano-aluminum particles into the semiconductor layer. Such ⁸⁸ infiltration can precipitate short circuits and device failure.

⁸⁹ The prepared diodes are illustrated in Fig.1c. Throughout the

1 entire preparation process, it is imperative to maintain
2 environmental cleanliness and ensure constant temperature and
3 humidity conditions. These are general requirements in

4 microelectromechanical systems (MEMS) semiconductor
5 processes and are critical for ensuring the successful preparation
6 and stable performance of the devices

Fig. 1 Preparation of Thin Film Schottky diodes **a.** 3D View of Schottky Diode and Structure of Schottky Diode. **b.** Fabrication Flowchart of Thin-Film Schottky Barrier Diode **c** Diode physical diagram. **d** . Photolithography mask

8
9

10 Experimental results and discussion

11 In order to verify the performance and nonlinear characteristics
12 of the Schottky diode at high temperatures, the diode is tested at
13 temperature using a device temperature test system consisting of
14 a Keithley 4200A-SCS parameter analyzer, a Lakeshore Model
15 CRX-6.5K high and low temperature probe station, a Lakeshore
16 336 temperature controller, a pump and a refrigeration cycle. As
17 shown in Fig.2a, When the probe contacts the object to be tested,
18 the temperature sensor on the probe can accurately measure the
19 temperature, enabling real-time measurement. The internal
20 temperature measurement error does not exceed 0.5°C within a
21 range of room temperature to 600°C.

22 In a high-temperature test environment, the oxidation protection
23 of metal components and test probes is particularly critical.
24 Therefore, vacuum refrigeration technology is introduced to
25 ensure that the sample chamber is always maintained in a high
26 vacuum during the test. The conversion of the mechanical pump
27 to a molecular pump can improve the vacuum rate, and then the
28 test chamber is subjected to a cold cycle treatment, which can
29 ensure the temperature balance of the test system during testing at
30 different temperatures, and ensure that the system is not damaged
31 due to excessive temperature differences.

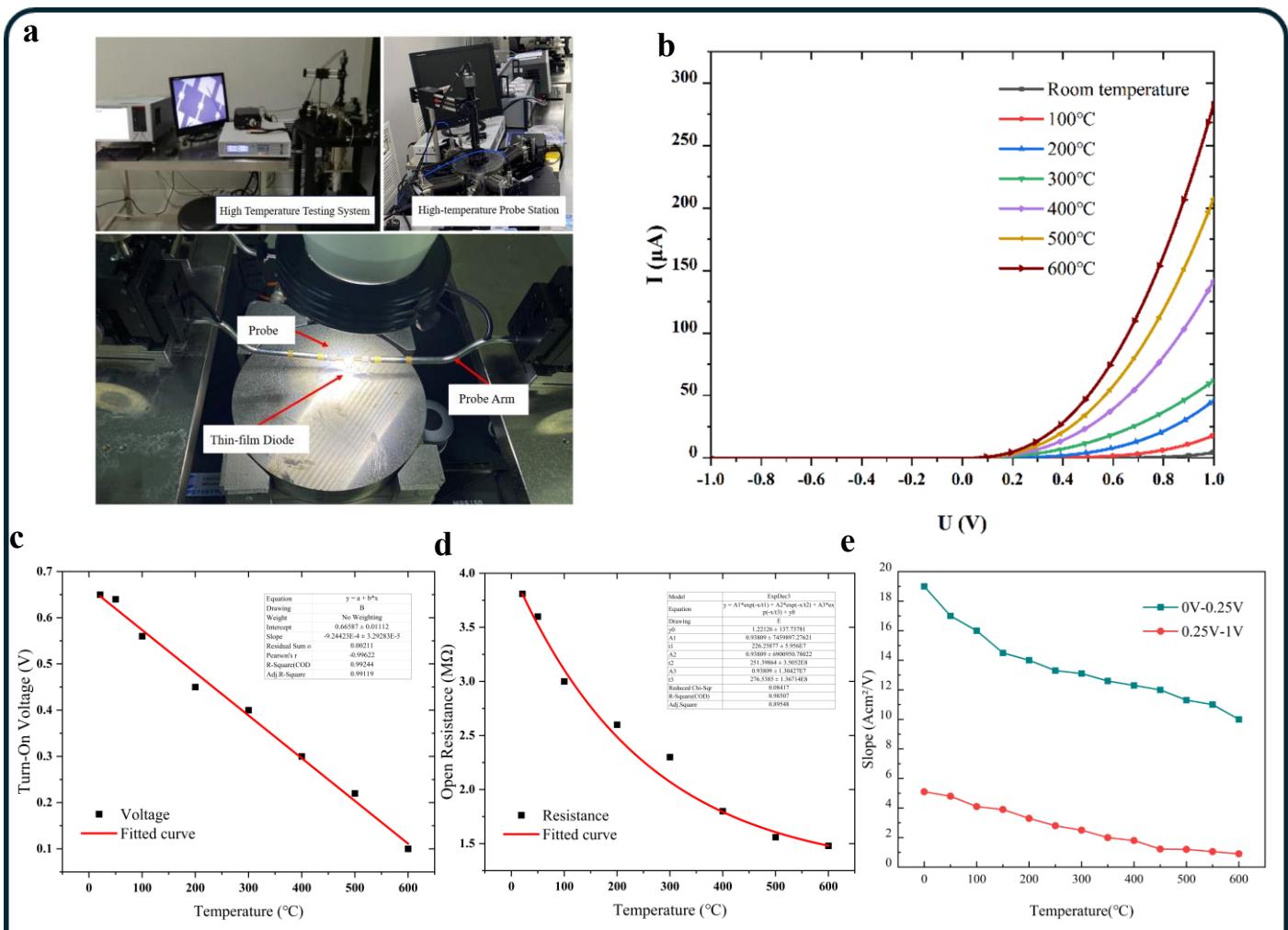
32 The data from the parameter analyzer Keithley 4200A-SCS
33 was recorded every 50 °C based on a set temperature step of
34 21 °C. The recorded data is plotted in Fig.2b, which shows a set

35 of I-V characteristic curves of the diode in the temperature range
36 of 21-600 °C.

37 As can be seen from Fig.2b, the current-voltage curve exhibits
38 a nonlinear characteristic, and as the temperature increases, the
39 curve gradually shifts from right to left. Plot the measured voltage
40 versus temperature curve, as shown in Fig.2c. When the
41 temperature rises to 600 degrees Celsius, the Schottky diode
42 voltage gradually decreases with increasing temperature,
43 gradually decreasing from 0.65V to 0.1V. and the voltage
44 attenuation rate is calculated to be 0.92mV/°C. The resistance
45 change curve obtained by plotting and calculating is shown in
46 Fig.2d. The resistance decreases from 3.61kΩ to 1.53kΩ, and the
47 average resistance attenuation rate is calculated to be 3.43Ω/°C.

48 According to the slope of the current change, the voltage has a
49 smaller slope at 0-0.25 V and a larger slope at 0.25-1. In order to
50 facilitate data comparison, the measured current-voltage curve
51 from room temperature to 600°C is converted into a junction
52 current-voltage (J-V) characteristic curve. According to the
53 formula for junction current density¹:

$$54 \quad J = A * T^2 \exp\left(\frac{-q\phi_{BO}}{kT}\right) \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right] \quad (1)$$


55 When the forward voltage is low (approximately 0–0.25 V), as
56 the temperature increases, the slope of the I-V curve in the low-
57 voltage range gradually decreases. The term q/nkT in Equation 1
58 represents the slope of the curve, and as T increases, this term
59 decreases. By performing segmented linear fitting on the curves

1 in Fig 2b, the temperature-dependent slope curves of the two sets
 2 of curves are fitted within the forward voltage ranges of 0–0.25 V
 3 and 0.74–1 V. The temperature-dependent slope curves of the 21–
 4 600°C range are shown in Fig 2e.

5 The slope of the I-V curve in the forward voltage range of 0–
 6 0.25V is significantly higher than that in the range of 0.74–1V. As
 7 the forward voltage increases, the I-V curve of the diode tends to
 8 the ideal diode characteristic when the voltage is in the 0.74–1V
 9 range, and the fit of the curve improves accordingly with
 10 increasing temperature. This is because the equivalent resistance
 11 of the diode decreases at high temperatures, thereby reducing the
 12 impact of resistance on the performance of the entire device.
 13 Although increasing temperature causes the resistivity of the
 14 metal cathode and anode to increase, the resistance of the
 15 semiconductor layer tends to decrease. In this experiment, the
 16 diode's equivalent resistance decreases, which indicates that the
 33

17 effect of temperature on the resistivity of the semiconductor layer
 18 is more significant than its effect on the metal electrodes. When
 19 the forward voltage exceeds the diode's turn-on voltage, the slope
 20 of the curve decreases significantly compared to the first half, and
 21 the slope can be regarded as the reciprocal of the equivalent
 22 resistance, which means that the diode's equivalent resistance
 23 increases in the second half, and the resistance plays a major role
 24 in reducing the current at this time.

25 Verification shows that as the temperature of the diode increases,
 26 the I-V characteristic curve becomes nonlinear and shifts to the
 27 right. The diode's ideality factor gradually decreases with
 28 increasing temperature, while the barrier height gradually
 29 increases with increasing temperature. This characteristic meets
 30 the performance requirements for operation at high temperatures,
 31 confirming the correctness of the diode operating at high
 32 temperatures.

Fig. 2 Test and Analysis **a.** Thin-film diode high-temperature characteristic test system. **b** Schottky Diode I-V Characteristic Curves **c** Schottky diode turn-on voltage. **d** Schottky diode turn-on resistance. **e** Diode current density at different voltages.