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Supplementary Fig. 1 | Variability of (a) ORASS5 SSH [m], (b) ORASS5 D20 [m], and (¢) EN4
D20 [m] anomalies across three frequency bands: annual (10—14 months), quasi-biennial (QB)
(14-36 months), and low-frequency (ENSO band) (36—96 months), after removal of the seasonal
cycle. The upper panels show the standard deviation for each band, while the lower panels
display the change in standard deviation between the Early (1960-1991) and Late (1992-2024)
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Supplementary Fig. 2 | Variability of (a) ORASS SST [°C], (b) ERSST [°C], anomalies across
three frequency bands: annual (10—14 months), quasi-biennial (QB) (14—36 months), and low-
frequency (ENSO band) (36—96 months), after removal of the seasonal cycle. The upper panels
show the standard deviation for each band, while the lower panels display the change in standard
deviation between the Early (1960-1991) and Late (1992-2024) periods.
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Supplementary Fig. 4 | Amplitudes of the leading three Complex Empirical Orthogonal
Function (CEOF) modes during the Early (1960-1991) and Late (1992—-2024) periods, derived
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series of phase speed over the SCTR and amplitude of the first CEOF mode. (d) (Top)
Hovmodller plot showing longitudinal propagation of QB-D20 EN4 [m] anomalies averaged
between 5°S—12°S across eight CEOF phases during the Early and Late periods. (Bottom)
Composite lagged propagation of QB-D20 EN4 [m], centred on anomalous peaks (exceeding one
standard deviation) over the SCTR.
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detrended ORASS-SST during Early and Late periods.
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Supplementary Fig. 8 | Early CEOF phase composites of SSH, SST, and surface mixed
layer heat balance. Each column (from left to right) represents the mean field in active CEOF1
phases during the Early Period. The variables shown include 1. QB-SSH anomalies [m], 2.
Detrended SST anomalies [°C], detrended anomalies of mixed layer heat balance terms: 3. SST
tendencies [°C/month], 4. Net surface heat flux plus horizontal heat advection [°C/month],
representing surface mixed layer processes (based on a 0.03 kg/m? density criterion for the mixed
layer), 5. Unresolved subsurface processes, inferred as the residual between total temperature
tendency and surface mixed layer contributions, 6. Vertical processes, including vertical
entrainment and turbulent diffusion terms [°C/month]. The vertical entrainment term is
contributed by the entrainment processes due to mixed layer tendency, mixed layer advection,
and vertical heat advection.
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Supplementary Fig. 10 | Later—Early CEOF phase composites of SSH, SST, and surface
mixed layer heat balance. Each column (from left to right) represents the difference between
the Later and Early periods across the eight phases of the CEOF1 mode. The variables shown
include 1. QB-SSH anomalies [m], 2. Detrended SST anomalies [°C], detrended anomalies of
mixed layer heat balance terms: 3. SST tendencies [°C/month], 4. Net surface heat flux plus
horizontal heat advection [°C/month], representing surface mixed layer processes (based on a
0.03 kg/m? density criterion for the mixed layer), 5. Unresolved subsurface processes—inferred
as the residual between total temperature tendency and surface mixed layer contributions, 6.
Vertical processes, including vertical entrainment and turbulent diffusion term [°C/month]. The
vertical entrainment term is contributed by the entrainment processes due to mixed layer
tendency, mixed layer advection, and vertical heat advection. Dots indicate regions where the

differences are statistically significant (p < 0.05), based on a two-sample z-test.
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Supplementary Fig. 11 | Mean stratification changes between Early and Late periods and
associated changes in the free first-mode baroclinic Rossby wave phase speed calculated
using WKBJ approximation. Stratification of Early and Late periods and their difference in
SCTR latitude 12°S-5°S for (a) ORASS and (b) EN4. Corresponding free first-mode baroclinic

Rossby wave phase speed for (¢) ORASS and (d) EN4.
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Supplementary Fig. 12 | Variability of (a) ORAS5 upper 100-m mean zonal current [m s~'] and
(b) wind stress curl (N m) anomalies across three frequency bands: annual (10-14 months),
quasi-biennial (QB) (14—36 months), and low-frequency (ENSO band) (36—96 months), after
removal of the seasonal cycle. The upper panels show the standard deviation for each band,
while the lower panels display the change in standard deviation between the Early (1960-1991)
and Late (1992-2024) periods. (¢) Phase coherence between QB band ORASS wind stress curl
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and ORASS5 SSH. (d) Phase coherence between QB band ERAS wind stress curl and QB band
EN4 D20. Early, Late and their differences.

1.1 Faster wave propagation and associated mixed layer heat imbalance

In the main article, we demonstrated mean acceleration of the Kelvin—Rossby wave cycle during
the Late period compared with the Early period. However, how this acceleration manifests in the
mixed layer heat budget and contributes to the observed increase in the QB variability of SST
remains unclear, particularly over the western and eastern poles of the equatorial Indian Ocean,
and over the SCTR region. To investigate this, we conducted a monthly ocean surface mixed
layer heat budget analysis using a density difference criterion of 0.03 kg m™ to define the surface
mixed layer. Supplementary Fig. 7 presents phase composites (based on the CEOF1 amplitude
threshold discussed earlier) of QB band SSH and detrended SST anomalies from ERSST and
ORASS across eight distinct phases, for both Early and Late periods. These composites revealed
marked differences in the propagation of QB-SSH anomalies and the corresponding SST
response in the two products. To explore the mechanisms underlying these SST responses, we
showed the detrended anomalies of the heat budget components in Supplementary Figs. 8 and 9,
representing the Early and Late periods, respectively. The methodology for heat budget
calculation is detailed in the Methods section. It is important to note that SST tendencies are
typically reflected in SST anomalies during the subsequent phases, as seen in Supplementary
Figs. 8 and 9. To distinguish between surface and subsurface influences on SST, we categorized
the budget terms into three components: Surface processes, comprising net surface heat flux and
horizontal advection within the mixed layer; unresolved subsurface processes, inferred as the
residual between total temperature tendency and surface mixed layer contributions; vertical
processes, including vertical entrainment and turbulent diffusion. As expected, vertical processes
accounted for approximately 50% of the unresolved subsurface contribution across most phases.
A key finding is that, across nearly all phases, subsurface processes tended to be out of phase
with surface processes, particularly over the SCTR region. This compensatory relationship has
also been reported in previous mixed-layer heat budget studies over the SCTR. In Figure 4, we
present the difference in heat budget terms between the Late and Early periods. A notable feature
is the presence of anomalous mixed layer temperature tendencies during CEOF phases 2—7 in the

Late period, significantly contributed by subsurface processes. In Phase 6, despite negative
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contributions from surface processes, SST tendencies remained anomalously high due to strong
subsurface influences. Notably, Phase 6 corresponds to the transition from down- to upwelling
Rossby waves in the SCTR region. Additionally, during phases 3 and 4, accelerated Rossby
wave propagation and its reflection as Kelvin waves appeared to enhance SST anomalies over
the western and eastern equatorial Indian Ocean, respectively. These results provide compelling
evidence that the observed QB-SST variability is tightly linked to the evolving nature of

underlying tropical wave dynamics.
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