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Figure S1. Solubility study. This figure shows that Efavirenz was significantly soluble in medium chain triglycerides oil (MCT oil) compared to water, supporting its high hydrophobicity property.


Table S1. Hydrogels formulations with their corresponding swelling ratio
	Input variables (%)
	Response (g/g)

	Run
	Iota-carrageenan
	Chitosan
	Acrylic acid
	Acrylamide
	MBA
	Swelling Ratio

	
	A
	B
	C
	D
	E
	

	1.0
	4.72
	4.79
	49.05
	40.44
	1.0
	36.96

	2.0
	5.82
	5.64
	41.49
	44.05
	3.0
	60.44

	3.0
	6.0
	4.3
	40.0
	47.85
	1.85
	207.0

	4.0
	3.26
	3.0
	50.98
	40.0
	2.76
	105.33

	5.0
	4.72
	4.79
	49.05
	40.44
	1.0
	46.05

	6.0
	3.0
	3.13
	43.59
	49.28
	1.0
	66.0

	7.0
	4.47
	4.18
	40.51
	47.84
	3.0
	15.94

	8.0
	3.0
	3.0
	40.0
	53.0
	1.0
	342.51

	9.0
	4.52
	3.0
	43.74
	46.56
	2.19
	59.7

	10.0
	5.74
	3.56
	46.89
	41.07
	2.75
	434.43

	11.0
	3.09
	3.0
	46.82
	45.93
	1.15
	20.64

	12.0
	3.41
	3.0
	47.79
	42.8
	3.0
	31.92

	13.0
	4.81
	3.0
	40.0
	51.19
	1.0
	22.19

	14.0
	3.0
	3.0
	40.98
	50.03
	3.0
	272.12

	15.0
	3.0
	4.54
	40.0
	50.41
	2.05
	6.0

	16.0
	3.0
	6.0
	40.0
	50.0
	1.0
	109.5

	17.0
	3.0
	4.25
	45.34
	44.41
	3.0
	18.6

	18.0
	3.0
	3.39
	50.08
	42.53
	1.0
	276.48

	19.0
	3.74
	5.6
	47.87
	40.0
	2.79
	35.53

	20.0
	3.0
	4.87
	46.29
	44.75
	1.1
	29.33

	21.0
	4.52
	3.0
	43.74
	46.56
	2.19
	43.0

	22.0
	4.47
	4.18
	40.51
	47.84
	3.0
	348.16

	23.0
	3.0
	3.33
	52.68
	40.0
	1.0
	2.84

	24.0
	4.3
	6.0
	43.56
	44.43
	1.7
	86.5

	25.0
	4.3
	6.0
	43.56
	44.43
	1.7
	73.52

	26.0
	3.0
	4.54
	40.0
	50.41
	2.05
	5.1

	27.0
	6.0
	5.09
	44.04
	41.88
	3.0
	88.0

	28.0
	3.0
	5.96
	47.74
	42.31
	1.0
	33.44

	29.0
	6.0
	6.0
	46.37
	40.0
	1.63
	58.66

	30.0
	6.0
	3.56
	44.84
	44.6
	1.0
	324.68

	31.0
	3.0
	6.0
	50.0
	40.0
	1.0
	7.21

	32.0
	6.0
	6.0
	40.33
	46.68
	1.0
	32.9

	33.0
	5.83
	3.0
	50.14
	40.0
	1.03
	194.4

	34.0
	3.14
	6.0
	40.45
	47.41
	3.0
	6.05

	35.0
	6.0
	3.0
	40.0
	48.0
	3.0
	144.52
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	Model
	Sequential p‑value
	Lack of Fit p‑value
	Adjusted R²
	Predicted R²
	PRESS
	

	Linear
	0,0451
	0,3168
	0,1643
	-0,0344
	61,47
	Suggested

	Quadratic
	0,7921
	0,2329
	0,0374
	-0,8826
	111,88
	

	Special Cubic
	0,4275
	0,1962
	0,0943
	-8,4271
	560,25
	

	Cubic
	0,1962
	-
	0,444
	-
	*
	Aliased


The sequential p-value tests whether adding terms significantly improves the model (p < 0.05 indicates improvement), while the lack of fit p-value assesses model adequacy (p > 0.05 suggests a good fit). Adjusted R² accounts for the number of predictors, and predicted R² measures the model’s ability to predict new data. PRESS (Predicted Residual Error Sum of Squares) reflects predictive performance, with lower values indicating better models. An aliased model results from insufficient data to estimate all terms reliably.
Based on the analysis of variance (Table S2), the linear model was selected as the best fit for predicting the swelling behavior. It showed a significant sequential p-value (0.0451), an acceptable lack of fit p-value (0.3168), and the lowest PRESS value (61.47) compared to higher-order models. Although the adjusted and predicted R² values were modest, they were superior to those obtained with quadratic or cubic models. Low R² values are common in swelling studies due to the inherent variability of hydrogel materials. The reliability of the model is supported by the low PRESS value, indicating good predictive performance.

Potential mechanism of formation of the hydrogel
At higher temperature, ammonium persulfate (APS) generates free radicals, which interact with either the hydroxyl or the amide groups of polysaccharides (chitosan and iota-carrageenan). This interaction results in the formation of free radical sites on the backbone of these polymers as illustrated in Figure 32. The addition of acrylamide (AAm), acrylic acid (AA), and N’N’-methylene bisacrylamide (MBA) (compounds with unsaturated carbon chains) to the activated polysaccharides result into a random reaction with their free radical sites as described in the suggested scheme of the free radical copolymerization reaction sketched in Figure 33. Since N’N’-methylene bisacrylamide is a bifunctional compound, it is likely to be responsible of the formation of polymer-polymer network, which would result in the enhancement of the viscosity of the reactional mixture. The addition of acetone at the end of the reaction allows dehydration of the produced hydrogel and remove the compounds that didn’t react in the formation of the hydrogel [1,2].
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[bookmark: _Toc107012938][bookmark: _Toc107317821]Figure S2. Formation of free radical sites on chitosan (a) and iota-carrageenan (b) backbones under ammonium persulfate (APS) initiation.
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Figure S4. Standard error plot. This contour plot of the standard error at different points in the design space shows small values of the standard error that ranged from 0.2 to 0.35, which is an indication that the means of the samples are a reliable reflection of the true population means.
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Figure S5. Thermal gravimetric analysis of hydrogels. (a) Decomposition profiles of CS/iCar‑p(Aam‑co‑AA) hydrogel, EFV‑LNCs‑CS/iCar‑p(Aam‑co‑AA) hydrogel composite, CS and iCar, showing weight loss as a function of temperature; (b) First-order derivatives of their weight loss
[bookmark: _Toc107317851]

Table S3. Automatically generated hydrogel composition batches for model optimization and confirmation
	Number
	i-Car
%
	CS
%
	AA
%
	AAm
%
	MBA
%
	SC
%
	Desirability
	

	1
	6.00
	3.00
	40.00
	50.00
	1.00
	44445.79
	0.86
	Selected

	2
	6.00
	3.00
	50.00
	40.00
	1.00
	35928.51
	0.82
	

	3
	5.44
	3.00
	40.00
	50.56
	1.00
	34202.18
	0.81
	

	4
	5.44
	3.00
	50.56
	40.00
	1.00
	27319.05
	0.76
	

	5
	4.40
	3.99
	44.31
	44.31
	3.00
	12553.68
	0.61
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