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I. POLARIZATION ORDER PARAMETER
The ordering in the system is measured by the polarization order parameter

P= |3 explit; (1) (1)

t

where 6;(t) is the polar angle of the orientation vector e;(t) of particle j and the sum is over all particles in the
system. One can also define a non-equilibrium susceptibility, which is a measure of the fluctuations in the system as

Xp = N((P?) = (P)?) (2)

II. DYNAMIC STRUCTURE FACTOR

To measure the density fluctuations in the flock, we calculate the dynamic structure factor, starting from the
microscopic density field p(r,t). The microscopic density field p(r,t) is defined as

N
p(rat) = Za(rirj(t))v (3)

Jj=1

where r;(t) is the position of particle j at time ¢, and N is the total number of particles.
The spatial Fourier transform of the density field is then given by

N
pla,t) = / dre " p(r,t) =Y etars®), (4)
j=1

The intermediate scattering function F(q,t) is defined as the autocorrelation of the Fourier-transformed density:

Fla,t) = - {pla o+ Dp(—a, o)), @

and the dynamic structure factor S(q,w) is then obtained via the temporal Fourier transform

S(q,w) = [ T dte vt R (qut). (6)

In isotropic systems, we can use radially averaged dynamic structure factor and intermediate scattering function
by averaging over all wavevectors q of the same magnitude ¢ = |q].
The radially averaged intermediate scattering function is defined as

Flat) =5 Y Flao), @

7 1ql=q
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FIG. 1: The dynamic structure factor at a fixed ¢ = 0.9 for different ©. For large O, the structure is Lorentzian and
therefore the density fluctuations are diffusive. As © is increased, a peak at small v, = w/q develops. When © is
further increased, a 'two-peak’ structure emerges, which signals the existence of two propagating excitations with
different velocities. Here N = 6000, K = 80, and eta = 1.

where N, is the number of wavevectors with magnitude q. As before, the radially averaged dynamic structure factor
is then computed as

S(g,w) = /_ T et (g, 1), (8)

III. BOUNDARY LENGTH ESTIMATION

To estimate the boundary length, we first determine the number of edge particles, Ny, by counting those with fewer
than n. neighbours, where n. is a cutoff parameter. Different choices of n. yield varying estimates of Ny, as shown in
the Fig. 2. Notably, when €2 is small, the average inter-particle spacing decreases, making a smaller n. more suitable
for estimating the boundary length. Conversely, for larger ¢, a higher n. may be more appropriate. Since our focus
is on the trend with Q¢ rather than an exact estimate of N, we average over different cutoff choices, n. € [12,15]. The
boundary length is then given as I, ~ R,(Np). The boundary length of a circular, disk-like arrangement of N particles
can be estimated by assuming they occupy a disk perimeter [y and radius Ry. Given the inter-agent separation R,,
the radius is approximated as

Ry = R,VN 9)
From this, the flock boundary length is obtained as
lo = 2nRy = 27 R,V N (10)

To determine the relation between 2 and line tension, we consider the Monge parmaterization of the flock boundary
at a point x as a function h(x), representing the height of the flock boundary above a reference line. Any fluctuations
of this boundary incur an energy cost given by

jops /dxaeff (Vh(z))? (11)



FIG. 2: Flock snapshots showing the boundary particles (marked in green crosses) for different threshold choices,
ne = (a) 12 (b) 13 (¢) 14 and (d) 15. For n, = 12, the boundary length is under estimated while for n, = 15, there is
an overestimation. The final length is determined by averaging over these choices.
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FIG. 3: Velocity auto-correlation C(t) of the flocking showing negative correlations. Here N = 400, n = 0.5, and
K = 40.

where oo is an effective tension. Employing the Fourier transform h(q) = (2m)~! [dz h(x) exp (igx), the mode
spectrum for the height fluctuations is obtained as

1o

O'effqz

(h(g)h(d)) = 6(g—d") (12)

where Ty is some measure of temperature in the system (due to noise, collision avoidance etc). In the small-gradient
approximation, the line element of the flock boundary is dl = dr\/1 + (Vh)2 ~ (1 + (Vh)?/2)dr.

With the assumption that the flock boundary deviates locally from a circle, the average flock boundary is then
obtained as

Teﬂ?'ﬂ'

. 13
204, (13)

(ly) =1lo +

where [y = 2r R,V N is the length of the flock boundary for a perfectly circular flock made of N particles maintaining
an average separation R,.
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FIG. 4: The goodness of fit, measured via the coefficient of determination R? for different v and €./K pairs. Here
for a given ./K, we fit the equation Q.(L)/K = Q./K + AL~Y. It can be seen that for v > 3 and Q./K < 0.35,
the fit is degenerate R? ~ 0.99

IV. FIT DEGENERACY

For the change of the finite-size critical point Q,(L), we fit the generalized from
Qu(L) = QX + ALY (14)

where A is a constant obtained from the fitting procedure. For different choices of Q2°, we find that any value of
v 2 3.0 and Q2° < 0.35 provides a good fit to the data, given the associated error, i.e., a coefficient of determination
R? > 0.99 (see Fig. 4). Notably, the scaling of the mean polarization (P) and susceptibility x,, for the fitted parameter
sets is also degenerate, suggesting that the standard finite-size scaling analysis of second-order transitions may not

apply. This indicates the possibility that the transition is not of second order.
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FIG. 5: (a,c,e,g,i) Scaled polarization and (b,d,fh,j) susceptibility curves for different 2, and v values. As in Fig. 4,
the scaling is degenerate for v > 3 and Q./K < 0.35
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FIG. 6: Finite-size scaling of 2. with the assumption of a logarithmic growth for the correlation function. Here, the
fit function has the form Q.(L)/K = Q./K + A/(log L)? + B/(log L)3. The best fit parameters are ./K = 0.34,
A =43, and B="17.8.

FIG. 7: Binder cumulant g = 1 — (P*)/3(P?)? for different system sizes. No clear crossing develops, therefore (2.
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cannot be determined via this analysis.



V. MOVIE CAPTIONS

Mowie M1- Flock motion for N = 400 and © = 0.12 (K = 40, n = 0.5). The flock has a large persistence length
and shows ballistic motion. Circles show the position of the center of mass with time.

Mowvie M2- Flock motion for N = 400 and © = 0.74 (K = 40, n = 0.5). The flock has a small persistence length
and shows diffusive motion. Circles show the position of the center of mass with time.

Mowie M3— Time evolution of the density map p(r,t) for N = 6000 and © = 0.94 (K = 80, n = 1) exhibiting large
shape and density fluctuations of the flock.

Mowie M4— Time evolution of the density map p(r,t) for N = 6000 and © = 0.81 (K = 80, n = 1) exhibiting a
‘breathing mode’; i.e. expansion and contraction of the flock.

Mowvie M5- Internal flock dynamics of a large system with N = 48000, and © = 0.89 (K = 80, n = 1). Here,
several vortices can be seen forming and breaking apart, signalling a possible connection to the BKT transition.



