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I. POLARIZATION ORDER PARAMETER

The ordering in the system is measured by the polarization order parameter
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1
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t

(1)

where θj(t) is the polar angle of the orientation vector ej(t) of particle j and the sum is over all particles in the
system. One can also define a non-equilibrium susceptibility, which is a measure of the fluctuations in the system as

χp = N(⟨P 2⟩ − ⟨P ⟩2) (2)

II. DYNAMIC STRUCTURE FACTOR

To measure the density fluctuations in the flock, we calculate the dynamic structure factor, starting from the
microscopic density field ρ(r, t). The microscopic density field ρ(r, t) is defined as

ρ(r, t) =

N∑
j=1

δ (r− rj(t)) , (3)

where rj(t) is the position of particle j at time t, and N is the total number of particles.
The spatial Fourier transform of the density field is then given by

ρ(q, t) =

∫
dr e−iq·rρ(r, t) =

N∑
j=1

e−iq·rj(t). (4)

The intermediate scattering function F (q, t) is defined as the autocorrelation of the Fourier-transformed density:

F (q, t) =
1

N
⟨ρ(q, t0 + t)ρ(−q, t0)⟩t0 , (5)

and the dynamic structure factor S(q, ω) is then obtained via the temporal Fourier transform

S(q, ω) =

∫ ∞

−∞
dt eiωtF (q, t). (6)

In isotropic systems, we can use radially averaged dynamic structure factor and intermediate scattering function
by averaging over all wavevectors q of the same magnitude q = |q|.

The radially averaged intermediate scattering function is defined as

F (q, t) =
1

Nq

∑
|q|=q

F (q, t), (7)
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FIG. 1: The dynamic structure factor at a fixed q = 0.9 for different Θ. For large Θ, the structure is Lorentzian and
therefore the density fluctuations are diffusive. As Θ is increased, a peak at small vρ = ω/q develops. When Θ is
further increased, a ’two-peak’ structure emerges, which signals the existence of two propagating excitations with
different velocities. Here N = 6000, K = 80, and eta = 1.

where Nq is the number of wavevectors with magnitude q. As before, the radially averaged dynamic structure factor
is then computed as

S(q, ω) =

∫ ∞

−∞
dt eiωtF (q, t). (8)

III. BOUNDARY LENGTH ESTIMATION

To estimate the boundary length, we first determine the number of edge particles, Nb, by counting those with fewer
than nc neighbours, where nc is a cutoff parameter. Different choices of nc yield varying estimates of Nb, as shown in
the Fig. 2. Notably, when Ωf is small, the average inter-particle spacing decreases, making a smaller nc more suitable
for estimating the boundary length. Conversely, for larger Ωf , a higher nc may be more appropriate. Since our focus
is on the trend with Ωf rather than an exact estimate of Nb, we average over different cutoff choices, nc ∈ [12, 15]. The
boundary length is then given as lb ≃ Ra⟨Nb⟩. The boundary length of a circular, disk-like arrangement of N particles
can be estimated by assuming they occupy a disk perimeter l0 and radius R0. Given the inter-agent separation Ra,
the radius is approximated as

R0 = Ra

√
N (9)

From this, the flock boundary length is obtained as

l0 = 2πR0 = 2πRa

√
N (10)

To determine the relation between Ωf and line tension, we consider the Monge parmaterization of the flock boundary
at a point x as a function h(x), representing the height of the flock boundary above a reference line. Any fluctuations
of this boundary incur an energy cost given by

E =

∫
dxσeff (∇h(x))2 (11)
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FIG. 2: Flock snapshots showing the boundary particles (marked in green crosses) for different threshold choices,
nc = (a) 12 (b) 13 (c) 14 and (d) 15. For nc = 12, the boundary length is under estimated while for nc = 15, there is
an overestimation. The final length is determined by averaging over these choices.
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FIG. 3: Velocity auto-correlation C(t) of the flocking showing negative correlations. Here N = 400, η = 0.5, and
K = 40.

where σeff is an effective tension. Employing the Fourier transform h(q) = (2π)−1
∫
dxh(x) exp (iqx), the mode

spectrum for the height fluctuations is obtained as

⟨h(q)h(q′)⟩ = πTeff

σeffq2
δ(q − q′) (12)

where Teff is some measure of temperature in the system (due to noise, collision avoidance etc). In the small-gradient

approximation, the line element of the flock boundary is dl = dr
√
1 + (∇h)2 ≃ (1 + (∇h)2/2)dr.

With the assumption that the flock boundary deviates locally from a circle, the average flock boundary is then
obtained as

⟨lb⟩ = l0 +
Teffπ

2σeffRa
. (13)

where l0 = 2πRa

√
N is the length of the flock boundary for a perfectly circular flock made of N particles maintaining

an average separation Ra.
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FIG. 4: The goodness of fit, measured via the coefficient of determination R2 for different ν and Ωc/K pairs. Here
for a given Ωc/K, we fit the equation Ωc(L)/K = Ωc/K +AL−ν . It can be seen that for ν > 3 and Ωc/K < 0.35,
the fit is degenerate R2 ≃ 0.99

IV. FIT DEGENERACY

For the change of the finite-size critical point Ωa(L), we fit the generalized from

Ωc(L) = Ω∞
c +AL−1/ν (14)

where A is a constant obtained from the fitting procedure. For different choices of Ω∞
c , we find that any value of

ν ≳ 3.0 and Ω∞
c ≲ 0.35 provides a good fit to the data, given the associated error, i.e., a coefficient of determination

R2 > 0.99 (see Fig. 4). Notably, the scaling of the mean polarization ⟨P ⟩ and susceptibility χp for the fitted parameter
sets is also degenerate, suggesting that the standard finite-size scaling analysis of second-order transitions may not
apply. This indicates the possibility that the transition is not of second order.
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FIG. 5: (a,c,e,g,i) Scaled polarization and (b,d,f,h,j) susceptibility curves for different Ωc and ν values. As in Fig. 4,
the scaling is degenerate for ν > 3 and Ωc/K < 0.35
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FIG. 6: Finite-size scaling of Ωc with the assumption of a logarithmic growth for the correlation function. Here, the
fit function has the form Ωc(L)/K = Ωc/K +A/(logL)2 +B/(logL)3. The best fit parameters are Ωc/K = 0.34,
A = 4.3, and B = 7.8.
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FIG. 7: Binder cumulant g = 1− ⟨P 4⟩/3⟨P 2⟩2 for different system sizes. No clear crossing develops, therefore Ωc

cannot be determined via this analysis.
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V. MOVIE CAPTIONS

Movie M1– Flock motion for N = 400 and Θ = 0.12 (K = 40, η = 0.5). The flock has a large persistence length
and shows ballistic motion. Circles show the position of the center of mass with time.

Movie M2– Flock motion for N = 400 and Θ = 0.74 (K = 40, η = 0.5). The flock has a small persistence length
and shows diffusive motion. Circles show the position of the center of mass with time.

Movie M3– Time evolution of the density map ρ(r, t) for N = 6000 and Θ = 0.94 (K = 80, η = 1) exhibiting large
shape and density fluctuations of the flock.

Movie M4– Time evolution of the density map ρ(r, t) for N = 6000 and Θ = 0.81 (K = 80, η = 1) exhibiting a
’breathing mode’, i.e. expansion and contraction of the flock.

Movie M5– Internal flock dynamics of a large system with N = 48000, and Θ = 0.89 (K = 80, η = 1). Here,
several vortices can be seen forming and breaking apart, signalling a possible connection to the BKT transition.


