

SUPPLEMENTARY INFORMATION:

Collective Behavior in Active Swarms: Dynamics at the Edge of Disorder

Priyanka Iyer, Dmitry A. Fedosov, and Gerhard Gompper

*Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation,
Forschungszentrum Jülich, 52425 Jülich, Germany*

(Dated: July 8, 2025)

I. POLARIZATION ORDER PARAMETER

The ordering in the system is measured by the polarization order parameter

$$P = \frac{1}{N} \left| \sum_j \exp(i\theta_j(t)) \right|_t \quad (1)$$

where $\theta_j(t)$ is the polar angle of the orientation vector $\mathbf{e}_j(t)$ of particle j and the sum is over all particles in the system. One can also define a non-equilibrium susceptibility, which is a measure of the fluctuations in the system as

$$\chi_p = N(\langle P^2 \rangle - \langle P \rangle^2) \quad (2)$$

II. DYNAMIC STRUCTURE FACTOR

To measure the density fluctuations in the flock, we calculate the dynamic structure factor, starting from the microscopic density field $\rho(\mathbf{r}, t)$. The microscopic density field $\rho(\mathbf{r}, t)$ is defined as

$$\rho(\mathbf{r}, t) = \sum_{j=1}^N \delta(\mathbf{r} - \mathbf{r}_j(t)), \quad (3)$$

where $\mathbf{r}_j(t)$ is the position of particle j at time t , and N is the total number of particles.

The spatial Fourier transform of the density field is then given by

$$\rho(\mathbf{q}, t) = \int d\mathbf{r} e^{-i\mathbf{q} \cdot \mathbf{r}} \rho(\mathbf{r}, t) = \sum_{j=1}^N e^{-i\mathbf{q} \cdot \mathbf{r}_j(t)}. \quad (4)$$

The intermediate scattering function $F(\mathbf{q}, t)$ is defined as the autocorrelation of the Fourier-transformed density:

$$F(\mathbf{q}, t) = \frac{1}{N} \langle \rho(\mathbf{q}, t_0 + t) \rho(-\mathbf{q}, t_0) \rangle_{t_0}, \quad (5)$$

and the dynamic structure factor $S(\mathbf{q}, \omega)$ is then obtained via the temporal Fourier transform

$$S(\mathbf{q}, \omega) = \int_{-\infty}^{\infty} dt e^{i\omega t} F(\mathbf{q}, t). \quad (6)$$

In isotropic systems, we can use radially averaged dynamic structure factor and intermediate scattering function by averaging over all wavevectors \mathbf{q} of the same magnitude $q = |\mathbf{q}|$.

The radially averaged intermediate scattering function is defined as

$$F(q, t) = \frac{1}{N_q} \sum_{|\mathbf{q}|=q} F(\mathbf{q}, t), \quad (7)$$

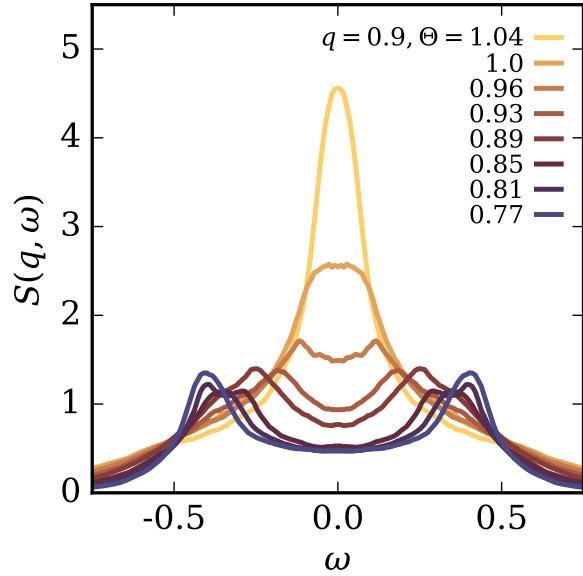


FIG. 1: The dynamic structure factor at a fixed $q = 0.9$ for different Θ . For large Θ , the structure is Lorentzian and therefore the density fluctuations are diffusive. As Θ is increased, a peak at small $v_\rho = \omega/q$ develops. When Θ is further increased, a ‘two-peak’ structure emerges, which signals the existence of two propagating excitations with different velocities. Here $N = 6000$, $K = 80$, and $eta = 1$.

where N_q is the number of wavevectors with magnitude q . As before, the radially averaged dynamic structure factor is then computed as

$$S(q, \omega) = \int_{-\infty}^{\infty} dt e^{i\omega t} F(q, t). \quad (8)$$

III. BOUNDARY LENGTH ESTIMATION

To estimate the boundary length, we first determine the number of edge particles, N_b , by counting those with fewer than n_c neighbours, where n_c is a cutoff parameter. Different choices of n_c yield varying estimates of N_b , as shown in the Fig. 2. Notably, when Ω_f is small, the average inter-particle spacing decreases, making a smaller n_c more suitable for estimating the boundary length. Conversely, for larger Ω_f , a higher n_c may be more appropriate. Since our focus is on the trend with Ω_f rather than an exact estimate of N_b , we average over different cutoff choices, $n_c \in [12, 15]$. The boundary length is then given as $l_b \simeq R_a(N_b)$. The boundary length of a circular, disk-like arrangement of N particles can be estimated by assuming they occupy a disk perimeter l_0 and radius R_0 . Given the inter-agent separation R_a , the radius is approximated as

$$R_0 = R_a \sqrt{N} \quad (9)$$

From this, the flock boundary length is obtained as

$$l_0 = 2\pi R_0 = 2\pi R_a \sqrt{N} \quad (10)$$

To determine the relation between Ω_f and line tension, we consider the Monge parameterization of the flock boundary at a point x as a function $h(x)$, representing the height of the flock boundary above a reference line. Any fluctuations of this boundary incur an energy cost given by

$$E = \int dx \sigma_{\text{eff}} (\nabla h(x))^2 \quad (11)$$

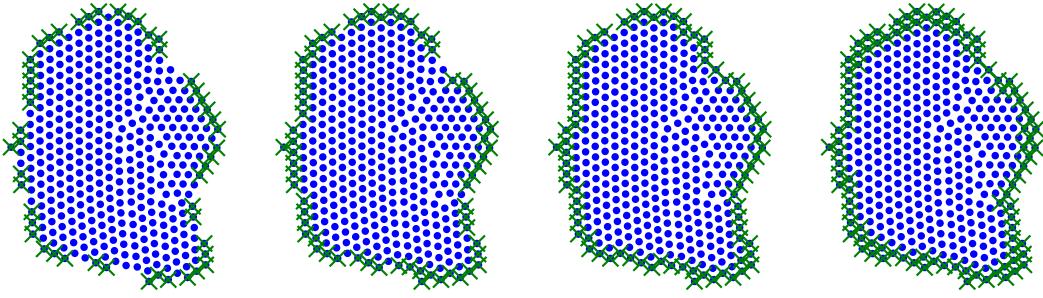


FIG. 2: Flock snapshots showing the boundary particles (marked in green crosses) for different threshold choices, n_c = (a) 12 (b) 13 (c) 14 and (d) 15. For $n_c = 12$, the boundary length is under estimated while for $n_c = 15$, there is an overestimation. The final length is determined by averaging over these choices.

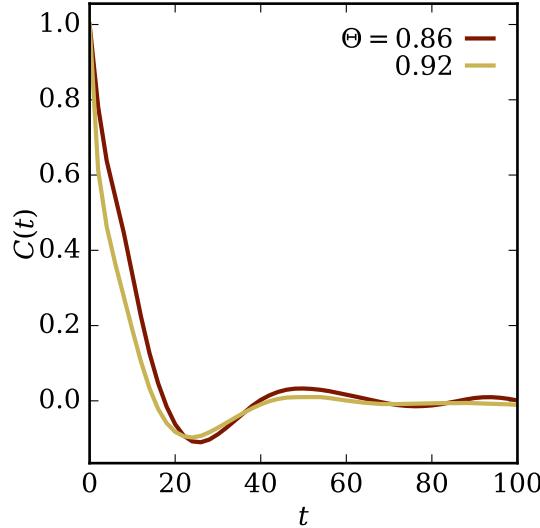


FIG. 3: Velocity auto-correlation $C(t)$ of the flocking showing negative correlations. Here $N = 400$, $\eta = 0.5$, and $K = 40$.

where σ_{eff} is an effective tension. Employing the Fourier transform $h(q) = (2\pi)^{-1} \int dx h(x) \exp(iqx)$, the mode spectrum for the height fluctuations is obtained as

$$\langle h(q)h(q') \rangle = \frac{\pi T_{\text{eff}}}{\sigma_{\text{eff}} q^2} \delta(q - q') \quad (12)$$

where T_{eff} is some measure of temperature in the system (due to noise, collision avoidance etc). In the small-gradient approximation, the line element of the flock boundary is $dl = dr \sqrt{1 + (\nabla h)^2} \simeq (1 + (\nabla h)^2/2)dr$.

With the assumption that the flock boundary deviates locally from a circle, the average flock boundary is then obtained as

$$\langle l_b \rangle = l_0 + \frac{T_{\text{eff}}\pi}{2\sigma_{\text{eff}} R_a}. \quad (13)$$

where $l_0 = 2\pi R_a \sqrt{N}$ is the length of the flock boundary for a perfectly circular flock made of N particles maintaining an average separation R_a .

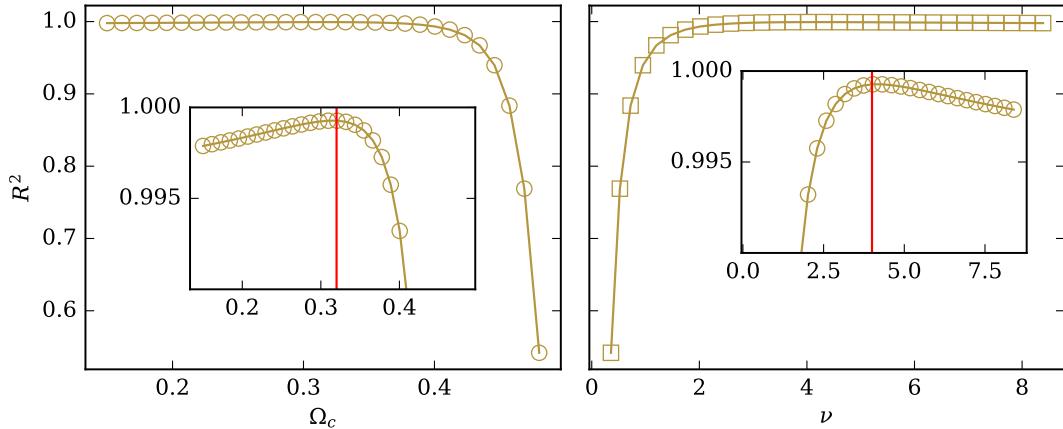


FIG. 4: The goodness of fit, measured via the coefficient of determination R^2 for different ν and Ω_c/K pairs. Here for a given Ω_c/K , we fit the equation $\Omega_c(L)/K = \Omega_c/K + AL^{-\nu}$. It can be seen that for $\nu > 3$ and $\Omega_c/K < 0.35$, the fit is degenerate $R^2 \simeq 0.99$

IV. FIT DEGENERACY

For the change of the finite-size critical point $\Omega_a(L)$, we fit the generalized form

$$\Omega_c(L) = \Omega_c^\infty + AL^{-1/\nu} \quad (14)$$

where A is a constant obtained from the fitting procedure. For different choices of Ω_c^∞ , we find that any value of $\nu \gtrsim 3.0$ and $\Omega_c^\infty \lesssim 0.35$ provides a good fit to the data, given the associated error, i.e., a coefficient of determination $R^2 > 0.99$ (see Fig. 4). Notably, the scaling of the mean polarization $\langle P \rangle$ and susceptibility χ_p for the fitted parameter sets is also degenerate, suggesting that the standard finite-size scaling analysis of second-order transitions may not apply. This indicates the possibility that the transition is not of second order.

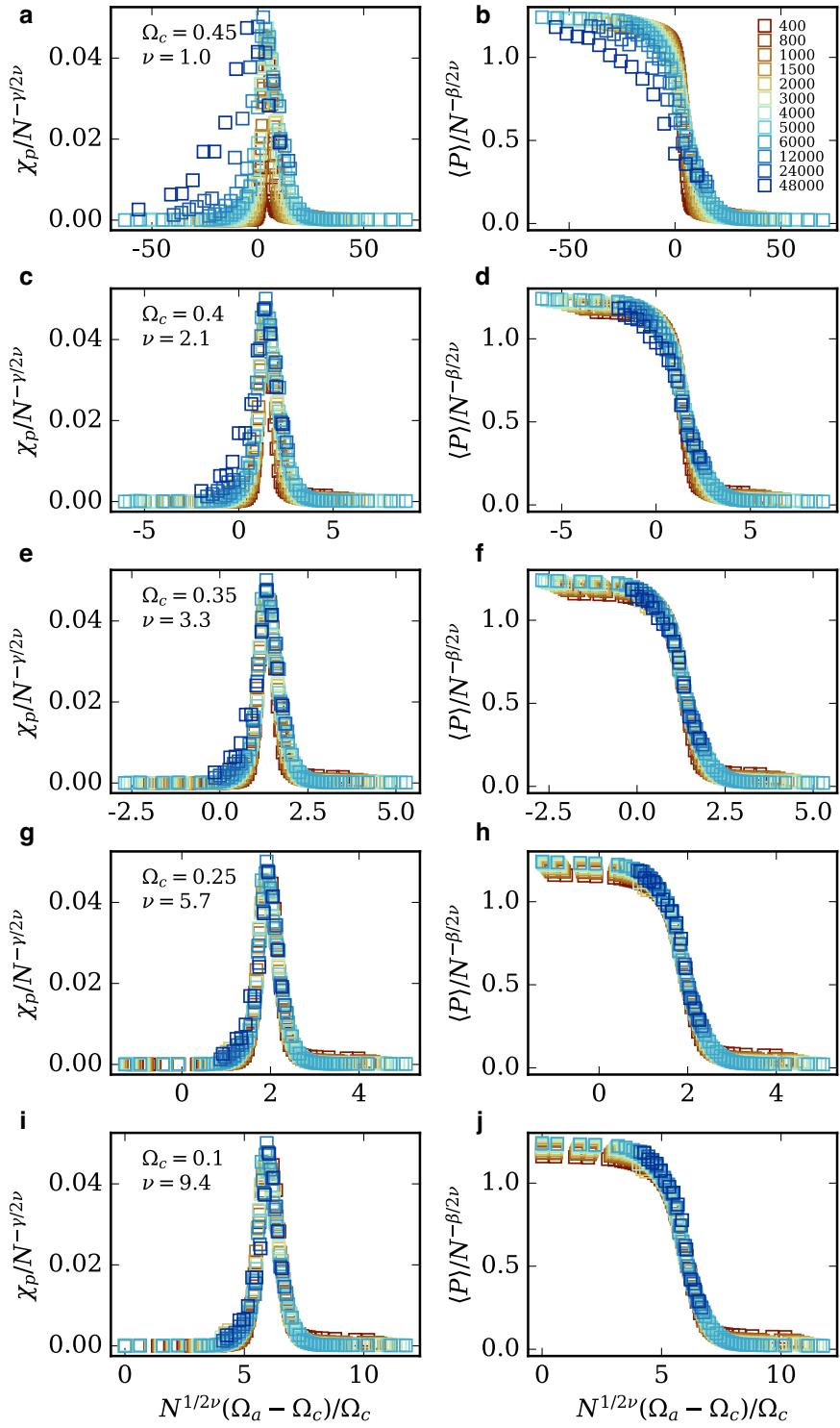


FIG. 5: (a,c,e,g,i) Scaled polarization and (b,d,f,h,j) susceptibility curves for different Ω_c and ν values. As in Fig. 4, the scaling is degenerate for $\nu > 3$ and $\Omega_c/K < 0.35$

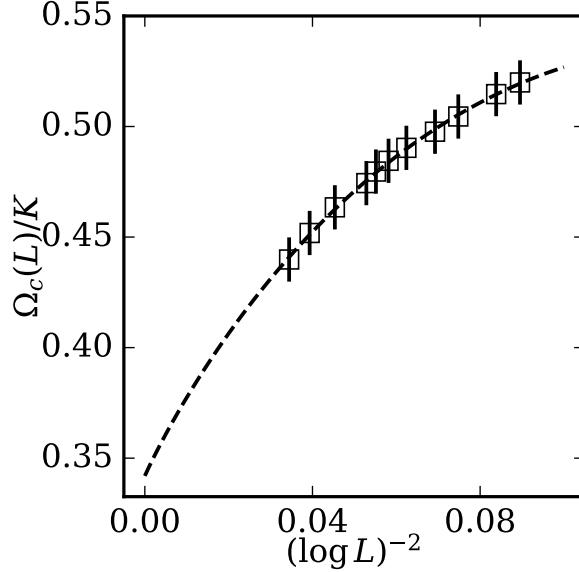


FIG. 6: Finite-size scaling of Ω_c with the assumption of a logarithmic growth for the correlation function. Here, the fit function has the form $\Omega_c(L)/K = \Omega_c/K + A/(\log L)^2 + B/(\log L)^3$. The best fit parameters are $\Omega_c/K = 0.34$, $A = 4.3$, and $B = 7.8$.

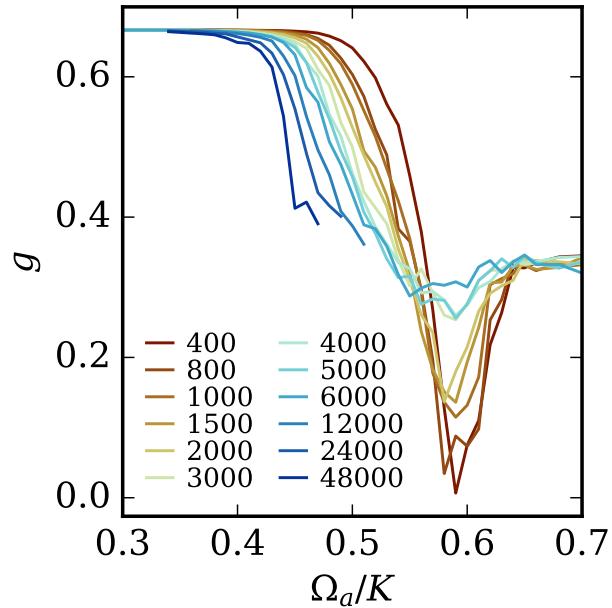


FIG. 7: Binder cumulant $g = 1 - \langle P^4 \rangle / 3 \langle P^2 \rangle^2$ for different system sizes. No clear crossing develops, therefore Ω_c cannot be determined via this analysis.

V. MOVIE CAPTIONS

Movie M1– Flock motion for $N = 400$ and $\Theta = 0.12$ ($K = 40$, $\eta = 0.5$). The flock has a large persistence length and shows ballistic motion. Circles show the position of the center of mass with time.

Movie M2– Flock motion for $N = 400$ and $\Theta = 0.74$ ($K = 40$, $\eta = 0.5$). The flock has a small persistence length and shows diffusive motion. Circles show the position of the center of mass with time.

Movie M3– Time evolution of the density map $\rho(\mathbf{r}, t)$ for $N = 6000$ and $\Theta = 0.94$ ($K = 80$, $\eta = 1$) exhibiting large shape and density fluctuations of the flock.

Movie M4– Time evolution of the density map $\rho(\mathbf{r}, t)$ for $N = 6000$ and $\Theta = 0.81$ ($K = 80$, $\eta = 1$) exhibiting a 'breathing mode', i.e. expansion and contraction of the flock.

Movie M5– Internal flock dynamics of a large system with $N = 48000$, and $\Theta = 0.89$ ($K = 80$, $\eta = 1$). Here, several vortices can be seen forming and breaking apart, signalling a possible connection to the BKT transition.