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Figure S1 | Slip, slip duration and rupture velocity distributions of VLF1, VLF2, VLF3. a–c, Slip distribution; d–f, Duration distribution; g–i, Rupture velocity distribution.
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Figure S2 | Slip, slip duration and rupture velocity distributions of EQ1 and EQ2. a–b, Slip distribution; c–d, Duration distribution; e–f, Rupture velocity distribution.
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Figure S3 | Comparison of VLF1 Waveforms. Comparison between observed (red line) and synthetic (blue line) three-component (E, N, Z) seismograms at the 13 F-net stations used for the finite-fault inversion. Both observed and synthetic velocity waveforms are bandpass-filtered between 0.02 and 0.05 Hz.

[image: ]
Figure S4 | Comparison of VLF2 Waveforms. Comparison between observed (red line) and synthetic (blue line) three-component (E, N, Z) seismograms at the 13 F-net stations used for the finite-fault inversion. Both observed and synthetic velocity waveforms are bandpass-filtered between 0.02 and 0.05 Hz.
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Figure S5 | Comparison of VLF3 Waveforms. Comparison between observed (red line) and synthetic (blue line) three-component (E, N, Z) seismograms at the 13 F-net stations used for the finite-fault inversion. Both observed and synthetic velocity waveforms are bandpass-filtered between 0.02 and 0.05 Hz.
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Figure S6 | Comparison of EQ1 Waveforms. Comparison between observed (red line) and synthetic (blue line) three-component (E, N, Z) seismograms at the 15 F-net stations used for the finite-fault inversion. Both observed and synthetic velocity waveforms are bandpass-filtered between 0.02 and 0.05 Hz.


[image: ]
Figure S7 | Comparison of EQ2 Waveforms. Comparison between observed (red line) and synthetic (blue line) three-component (E, N, Z) seismograms at the 20 F-net stations used for the finite-fault inversion. Both observed and synthetic velocity waveforms are bandpass-filtered between 0.02 and 0.05 Hz.
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Figure S8 | Rupture evolution process of VLF1 based on finite fault inversion. The orange circle represents a 4.5-km radius area centered on the epicenter. Time intervals are indicated in the top-left corner of each panel.
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Figure S9 | Rupture evolution process of VLF2 based on finite fault inversion. The orange circle represents a 4.5-km radius area centered on the epicenter. Time intervals are indicated in the top-left corner of each panel.
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Figure S10 | Rupture evolution process of VLF3 based on finite fault inversion. The orange circle represents a 4.5-km radius area centered on the epicenter. Time intervals are indicated in the top-left corner of each panel.
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Figure S11 | Rupture evolution process of EQ1 based on finite fault inversion. The orange circle represents a 4.5-km radius area centered on the epicenter. Time intervals are indicated in the top-left corner of each panel.
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Figure S12 | Rupture evolution process of EQ2 based on finite fault inversion. The orange circle represents a 4.5-km radius area centered on the epicenter. Time intervals are indicated in the top-left corner of each panel.




[image: ]
Figure S13 | Phase diagram of rupture dynamics. Parameter space for rupture modes under fixed seismic velocities (Vs 3.464 km/s, Vp 6 km/s), density (2670 kg/m³), and the fault initial stress (1 MPa). Axes represent inverse breakdown stress drop (vertical) versus inverse weakening rate (horizontal). Colored domains denote rupture regimes, with slow self-arresting ruptures (SSARs) confined to weakening rates  18.2 MPa/m.



	Model parameters
	SSAR
	Sub-Rayleigh

	 (m/s)
	6000
	6000

	 (m/s)
	3464
	3464

	 (kg/m3)
	2670
	2670

	 (MPa)
	1.00
	1.00

	 (MPa)
	0.90
	0.40

	 (m)
	0.14
	0.06

	
	
	

	 (m)
	200
	200

	Nucleation patch diameter (km)
	10
	10

	Unbreakable boundary diameter (km)
	36
	36

	Domain size (grid cells)
	200×200
	200×200


Table S1 | Model parameters. , P-wave velocity; , S-wave velocity; , density; , breakdown stress drop; , dynamic stress drop; , critical slip distance; , S-wave quality factor; , P-wave quality factor; , spatial dimension of a grid cell in the computational model.


	Event
	Strike
	Dip
	Subfault size (km)
	Grid of subfault

	VLF1
	284.75
	14.84
	0.5×0.5
	25×25

	VLF2
	193.88
	2.76
	0.5×0.5
	25×25

	VLF3
	253.58
	10.15
	0.5×0.5
	25×25

	EQ1
	215.00
	38.00
	0.5×0.5
	25×25

	EQ2
	223.00
	11.00
	0.5×0.5
	25×25


Table S2 | Finite-fault inversion configuration parameters.
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