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Experimental section:
1.1 Materials
[bookmark: OLE_LINK1]Aniline, HCl (37 wt.%), ammonium persulfate ((NH4)2S2O8, APS), phytic acid (70 wt.%), and cobalt nitrate hexahydrate (Co(NO3)2.6H2O) were purchased from Sigma-Aldrich. No further purification was required for any of the chemical reagents.

1.2 Synthesis of CoPO-Co2P@NPC electrocatalysts
The synthesis of polyaniline-phytic acid nanorods can be described as follows: Initial, 100 mL of deionized water, 4 mL of phytic acid, and 16 mL of concentrated HCl (37 wt.%) were mixed together with 1 g of aniline monomer. The mixture was stirred vigorously at 10°C for 5 mins. The polymerization reaction was initiated by dropwise adding of initiator solution (2.45 g of (NH4)2S2O8 dissolved in 50 mL of deionized water), the reaction was lasted for 6 h. In order to get the pANI-PA powder, the resultant dark green powder was filtered, washed with ethanol, and dried at 60°C overnight. For comparison, pure pANI was prepared without the use of phytic acid. As can be shown in Figure S1, the as-fabricated pANI-PA product exhibits a uniform nanorod-like shape throughout its whole surface.
A 20 mL ethanol solution was ultrasonically mixed with 0.2 g of as-prepared pANI-PA nanorods for 30 mins. Afterwards, 0.25 mmol of Co(NO3)2.6H2O was dissolved in the aforementioned solution to produce a uniform mixed phase. The mixture was then dried at 60°C for 12 hours. The obtained dark green powder was subjected to pre-annealing at a temperature of 400°C in N2 atmosphere for 2 h, with a heating rate of 2°C/min. The temperature was then raised to 900°C (at a rate of 5°C/min) and maintained for another 5 hours. The carbon composite derived from the pANI-PA was marked as CoPO-Co2P@NPC.
Without the use of Co(NO3)2.6H2O, NPC was synthesized using the same method.

1.3 Material characterization
[bookmark: OLE_LINK2]The X-ray diffraction (XRD) analysis was performed utilizing Cu Ka radiation (k = 0.154178 nm) through a Hitachi SmartLab SE X-ray diffractometer. The catalyst morphologies were acquired by the use of scanning electron microscopy (SEM; Zeiss Gemini SEM300) and transmission electron microscopy (TEM; Thermo Fisher Talos F200S). HRTEM measurements were conducted using the Thermo Fisher Talos F200S instrument, accompanied by EDX analysis. The X-ray photoelectron spectra were acquired using the Thermo VG VG MultiLab 2000 instrument, while the differential scanning calorimetry (DSC) examination was conducted utilizing a TA/DSC analyzer (NETZSCH STA 449F5). The Fourier transform infrared (FT-IR) spectra were acquired using a Tensor 27 FT-IR spectrometer. The Raman spectrum was acquired via a HORIBA Evolution Raman Microscope spectrometer, employing an excitation wavelength of 532 nm.

1.4 Electrochemical measurements
The electrochemical analysis was carried out with the use of a Princeton electrochemical workstation and Pine Instruments Co. Ltd. The electrochemical measurements were performed using a three-electrode system in a 0.1 M potassium hydroxide (KOH) solution. A carbon rod served as the counter electrode, with silver/silver chloride (3 M KCl) serving as the reference. The working electrode was a rotating disc electrode (RDE).
The electrocatalyst ink was made using the following procedure: 4 mg of the as-fabricated catalyst was dispersed in a 15 μL Nafion (5 wt.%) and 300 μL isopropanol solution. The mixture was then ultrasonically mixed for at least an hour to generate a well-dispersed suspension. A small amount (10 μL) of catalyst ink was carefully dropped onto the 5 mm diameter working electrode, with an approximate loading of 0.45 mg cm-2. Cyclic voltammograms (CVs) and linear sweep voltammograms (LSVs) were conducted in the potential range of -1.2 to 0.2 V (against Ag/AgCl) and 0.2 to -1.0 V (versus Ag/AgCl) for the oxygen reduction reaction (ORR). The LSV curves were obtained at different rotational speeds (400, 625, 900, 1225, and 1600 rpm) using a scan rate of 5 mV/s. The measured potential was converted to the reversible hydrogen electrode (RHE) using the Nernst equation: ERHE = EAg/AgCl + 0.197 + 0.059pH. LSV profiles were obtained for the OER reaction with a scan rate of 5 mV/s from 1.2 to 1.8 V versus RHE. The K-L equation (Eqs. 1-2) was employed to calculate the electron transfer number (n) from the RDE measurements: 

             (1)

               (2)
J: the measured current density; Jk: kinetic current density; JL: diffusion-limiting current density; ω: angular velocity (rpm); F: Faraday constant (96500 C mol-1); n: electron transfer number; ν: viscosity of the electrolyte (1.0×10-2 cm2 s-1); Do: diffusion coefficient of O2 in 0.1 M KOH (1.9×10-5 cm2 s-1); Co: bulk concentration of O2 (1.2×10-6mol cm-3).
1.6 Assembly of rechargeable Zn-air batteries (ZABs):
A polished zinc plate (with a purity surpassing 99.99%) is used as the anode in both the liquid Zn-air and the flexible Zn-air batteries. The cathode was a carbon cloth that has been thoughtfully loaded with an electrocatalyst, with a mass loading of 1 mg cm−2. The electrolyte was a solution of 6 M potassium hydroxide (KOH). In addition, the air electrode was constructed by mixing 50 wt.% of Pt/C and 50 wt.% of RuO2 as reference. A metal-air battery has been constructed and its galvano-static discharge and polarization curves were examined at a current density of 5 5 mA cm−2, throughout the voltage range of 1.6 to 0 V. 

[image: 3]
Figure S1 The SEM images of NPC 

Table S1 The structure parameters of catalysts
	Electrocatalyst
	SBET a (m2/g)
	Vt b (cc/g)

	NPC
	654.7
	0.69

	CoPO-Co2P@NPC
	260.3
	0.25


a SBET: BET specific surface area; b Vt: pore volume at P/Po = 0.995.



[image: ]
Figure S2 The BJH pore size distribution plots of NPC and CoPO-Co2P@NPC.


Table S2 Comparison of ORR catalytic activity of the catalysts in this work with the recently reported catalysts in alkaline solutiona.
	Electrocatalysts
	E1/2 (vs. RHE)
	Eonset (vs. RHE)
	Tafel slope (mV dec-1)
	Ref

	[bookmark: OLE_LINK3]CoPO-Co2P@NPC
	0.80
	0.99
	81.65
	This work

	20% Pt/C
	0.78
	1.15
	109.27
	This work

	Co2P@NCNTs-15
	0.82
	0.90
	undefined
	1

	Co-NCNTs//CCM
	0.79
	0.86
	80
	2

	Co2P/CoP@NPC
	0.77
	undefined
	undefined
	3

	CoNi-SAs/NC
	0.76
	0.88
	undefined
	4

	Co2P@CNF  
	0.803
	0.91
	77.1
	5


a All the potentials values above are converted to vs. RHE for comparison. In 0.1 M KOH electrolyte (pH=13), E(vs. RHE) = E(vs. Ag/AgCl) + 0.197 V + 0.0591pH.


Table S3 Comparison of OER catalytic activity of the catalysts in this work with the recently reported catalysts in alkaline solution.
	Electrocatalysts
	EOER at 10 mA cm-2 (vs. RHE)
	Tafel slope (mV dec-1)
	Ref

	CoPO-Co2P@NPC
	1.73
	145.13
	This work

	RuO2
	1.56
	127.70
	This work

	Co-NCNTs//CCM
	1.64
	131
	2

	Co2P@NPC
	1.61
	87
	3

	C-Co2P
	1.64
	86.8
	6

	Co2P
	1.58
	61.9
	7

	[bookmark: OLE_LINK4]Co2P@Co3O4
	1.57
	60
	8



Table S4 Performances of recently reported Zn-air batteries based on bi-functional catalysts.
	Electrocatalysts
	Open-circuit voltage (V)
	Peak power density (mW cm-2)
	Durability
	Ref

	CoPO-Co2P@NPC
	1.43
	265
	Over 450 hours@5 mA/cm2
	This work

	Pt/C||RuO2
	1.42
	211
	270 hours@5 mA/cm2
	This work

	Co2P@NCNTs-15
	1.30
	159.7
	100 hours@10 mA/cm2
	1

	Co2P@NPC
	1.43
	157
	140 hours@10 mA/cm2
	3

	Co2P-PCA-800
	1.44
	58
	32 hours@10 mA cm-2
	9

	7% Cu-Co2P/CNFs
	1.36
	230
	80 hours@5 mA cm-2
	10

	CoO/CoxP
	1.40
	122.73
	200 hours@5 mA cm-2
	11

	7.1%Cu-Co2P@2D-NPC
	1.40
	236.1
	160 hours@10 mA cm-2
	12
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