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[bookmark: _Toc202279676]Microstructure analysis
Graphite nodules can absorb energy through elastic deformation under stress, thereby reducing localized stress peaks in the matrix (ferrite/pearlite). The content, size and distribution of graphite nodules are critical to the strength and ductility of ductile iron.  It can be found in Supplementary Fig. 6 that the Alloy #3 possesses graphite nodules with the content of 13.2%, the average diameter of 21.25 μm, and the average number density of 292.8 mm-2, while the ductile cast irons designed by human experts (QT450 in multi-modal dataset, Fig. 2b) possesses graphite nodules with the content of 12.5 ± 1.4%, the diameter of 23.81 ± 2.40 μm, and the average number density of 234.1 ± 34.9 mm-2.  Supplementary Fig. 7 further shows that under similar composition and processing conditions, the Alloy # 3 exhibits graphite nodules with higher content, greater number density, and finer average size compared to human-expert-designed counterparts. Moreover, these characteristics—high volume fraction, elevated number density, and reduced nodule size—fall within the ranges reported in the literatures 1–3 as optimal for enhancing the strength-ductility balance in ductile cast irons. This demonstrates that DAS-AI, when designing the recycled ductile iron, fully accounts for the effects of impurity elements based on strength-ductility requirements, thereby optimizing graphite nodule characteristics for the best balance of strength and ductility. 
Ferrite enveloping spheroidal graphite creates a synergistic effect on dispersing stress more uniformly and preventing localized brittle fracture, thus allowing the material to achieve a balance of strength and ductility 4. When ferrite surrounds spheroidal graphite, it distributes stress uniformly, preventing localized brittle fracture and enabling ductile cast iron to achieve both strength and ductility 5. KAM map clearly shows that Alloy #3 exhibits this characteristic microstructure, where no significant localized stress is observed either within the ferrite matrix or at the ferrite/graphite interface. This effectively reduces the microcracks preferentially forming at the interface between the graphite nodules and the matrix, thereby significantly enhancing the ductility of Alloy #3. However, when the ferrite content reaches to 70% or even higher, the ductile cast iron exhibits a significant increase in ductility but a pronounced decrease in strength. The ferrite phase fraction of the Alloy #3 is 56.2%, while the average ferrite phase fraction of QT-450 in multi-modal dataset is 69.4 ± 6.9%. It indicates that DAS-AI has fully considered the volume fraction of ferrite phase in alloy design to meet the requirements of both strength and ductility. 
Elemental segregation is an inherent characteristic of the cast iron 6. In the recycled ductile cast iron, the higher concentration of impurity elements further leads to the enrichment of solute elements (e.g. C, Si, Cu, Ti, Mn, etc.) at the solid-liquid interface front during solidification 7. This results in more significant compositional differences between the initially solidified regions and the later solidified zones, thereby aggravating pronounced segregation of solute elements 8. Severe elemental segregation tends to form brittle phases that act as crack initiation sites, reducing the ductility of the recycled ductile cast iron 9. Meanwhile, the coexistence of localized hard/brittle phases with soft ferrite phase leads to stress concentration and strength inhomogeneity. Fig. 3d presents the Alloy #3 exhibits almost no elemental segregation of C, Cu, or Ti, with only minimal segregation observed for Si and Mn. This demonstrates that DAS-AI alloy design approach fully accounts for the intrinsic elemental segregation of the recycled ductile cast iron. By optimizing composition and solidification parameters, DAS-AI successfully minimizes elemental segregation-induced degradation without introducing additional processing. 
The precipitation of hard ceramic nanoparticles (e.g., TiC/SiC) strengthens ductile cast iron via dispersion hardening, where these particles act as barriers to dislocation movement—a key mechanism for achieving higher strengths. However, the recycled ductile cast iron contains higher levels of impurity elements (e.g., Cr, V), which are typical strong carbide formers 10. These elements tend to promote the formation of coarse and brittle phases like (Fe,Cr)3C while simultaneously inhibiting the precipitation of TiC/SiC nanoparticles 11. It is clear from Fig. 3d that the Alloy #3 still retains TiC/SiC nanoprecipitates. This suggests that DAS-AI alloy design strategy deliberately incorporates nano-reinforcement mechanisms, successfully promoting TiC/SiC precipitates within the matrix despite elevated impurity concentrations - a critical factor in achieving superior mechanical performance in the recycled ductile cast iron.     
Therefore, the DAS-AI design strategy has led to an alloy containing microstructure features different from those designed by human experts with better mechanical performance and lower cost, as clearly illustrated in Fig. 2d and Fig. 3. Such a multiscale microstructure derived from the recycled ductile iron after complex manufacturing pipeline thus requires a careful DAS-AI aided tailoring to achieve the synergistic effect on solving the strength-ductility trade-off.
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[bookmark: _Toc161944691][bookmark: _Toc202279678]Supplementary Figure 1: Property distribution of multi-modal dataset and AI-generated designs with unconstrained objective.
When the objective is unconstrained, the AI-generated designs (NN-predicted properties) tend to cluster around the original distribution, which is characterized by low tensile strength and high elongation to fracture. This clustering tendency likely arises because the multi-modal data are densely populated in this region, allowing the AI to learn the design rules predominantly from this subset. Consequently, the newly generated designs do not significantly deviate from this area.
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[bookmark: _7di8ux4m9hpf][bookmark: _Toc202279679]Supplementary Figure 2: Graphite phase distribution in the DAS-AI designed Alloy #3 and the counterpart alloys by scanning electron microscope (SEM)-energy dispersive X-ray spectroscopy (EDS) analysis. 
(a), (b) and (c) Low-magnification EDS maps showing the C distribution of the DAS AI-designed alloy and its counterpart alloys with different bulk chemistry and processing, respectively. These results indicate the distribution of the graphite phase in the matrix. 
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[bookmark: _Toc202279680]Supplementary Figure 3: Elemental distribution of the nanoparticles in the DAS-AI designed Alloy #3 by transmission electron microscopy (TEM)-energy dispersive X-ray spectroscopy (EDS) analysis. 
(a) TEM micrograph showing the typical microstructure of Alloy #3. (b-f) The corresponding TEM-EDS maps of the containing elements. The nanoparticles indicated by while arrows are Cu-rich and S-rich phase.
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[bookmark: _Toc202279681]Supplementary Figure 4: Distinct nanoparticle density in counterpart alloys by scanning electron microscopy (SEM)-backscattered electrons (BSE) analysis. 
(a) and (b) High-magnification SEM micrographs showing nanoparticle density of the counterpart alloys with different bulk chemistry and processing, respectively.

[bookmark: _Hlk201875883][image: ]
[bookmark: _Toc202279682]Supplementary Figure 5: Elemental distributions at the near-atomic scale by atom probe tomography (APT) analysis. 
(a) and (b) Three-dimensional reconstruction containing all the elements in the ferrite phase in Alloy #3 and Alloy #3-1, respectively.  (c) and (d) One-dimensional profiles showing the elemental concentrations in Alloy #3 and Alloy #3-1, respectively. The insets are the statistical analysis showing the normalized homogenization parameter μ for all elements. The values of μ are close to 0 (μ ranges from 0 to 1), confirming the random distribution of elements. (e) The averaged value of the minor elements in the Alloy #3 and composition changed Alloy #3-1.
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[bookmark: _Toc202279683]Supplementary Figure 6: Optical image of Alloy #3.
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[bookmark: _Toc202279684]Supplementary Figure 7: Graphite nodule comparison between Alloy #3 and QT450 alloys in multi-modal dataset.
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[bookmark: _Toc143787669][bookmark: _Toc161944694][bookmark: _Toc202279685]Supplementary Figure 8: Measuring the phase fractions of IQ map by color threshold segmentation.
The original image quality (IQ) map (left) undergoes color threshold segmentation where pixel values are converted as follows: RGB (90-180, 51-255, 51-255) → (0,0,255) [blue: ferrite phase]; RGB (0-89, 51-255, 51-255) → (0,255,0) [green: pearlite phase]; RGB (0-180, 0-50, 0-50) → (0,0,0) [black: graphite spheres]. The resulting segmented image (right) shows ferrite, pearlite, and graphite phases represented by blue, green, and black regions, respectively, which are subsequently used to calculate the phase fractions.
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[bookmark: _Toc202279686]Supplementary Figure 9: Morphology of Fe3C in the pearlite of Alloy #3 and interlamellar spacing. 
The interlamellar spacing was measured via a Nano Measurer 1.2 software.
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[bookmark: _Toc199728751][bookmark: _Toc202279687]Supplementary Figure 10: Model architecture of 1D-CNN for tensile property predictions.
This figure details the model architectures of 1D convolutional neural networks used for ultimate tensile strength and elongation to fracture predictions of ductile irons. The hyperparameters and model architectures were determined by trial and error.
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[bookmark: _Toc199728752][bookmark: _Toc202279688]Supplementary Figure 11: Model performance of 1D-CNNs through the iterations.
The 1D-CNNs in this figure are trained on multi-modal dataset, (a, b) MAPE in iteration: Panels (a) and (b) illustrate the MAPE for the ultimate tensile strength and elongation to fracture predictions respectively. The dots indicate the MAPE between experimental results and the model predictions. Five statistically independent (orthogonal) models are utilized for these predictions. (c, d) R2 in iteration: Panels (c) and (d) present the R2 values for the ultimate tensile strength and elongation to fracture, respectively. The dots depict the R2 values comparing experimental results to predictions, demonstrating a rapid increase in R2, reminiscent of a natural learning curve. (e, f) Regression plots for ultimate tensile strength predictions: Panels (e) and (f) display regression plots for the 1st and last rounds of iteration, respectively. (g, h) Regression plots for elongation to fracture predictions: Panels (g) and (h) showcase regression plots for the 1st and last rounds of iteration, respectively. All R2 and MAPE values are calculated using the validation dataset.
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[bookmark: _Toc202279690]Supplementary Table 1: Chemical compositions and processing parameters of alloys with and without impurities.
	No.
	Chemical compositions (%)

	
	C
	Si
	Mn
	Cu
	P
	S
	Cr
	Sn
	Mg
	Sb
	Ni
	Mo
	Ti
	Al
	V
	Nb
	W
	Co
	Zr
	B
	Ca
	As
	Pb
	Bi
	Zn
	Ce
	La
	Se
	Te
	N

	1*
	Virgin
	3.57
	2.252
	0.394
	0.86
	0.0204
	0.001
	0.052
	0.061
	0.054
	0.00286
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/

	
	Recycled
	3.58
	2.253
	0.391
	0.87
	0.0202
	0.0099
	0.051
	0.063
	0.053
	0.00284
	0.012
	0.0112
	0.01
	0.014
	0.015
	0.002
	0.003
	0.006
	0.002
	0.0007
	0.0024
	0.003
	0.002
	0.003
	0.001
	0.005
	0.004
	0.001
	0.001
	0.006

	2*
	Virgin
	3.59
	2.309
	0.148
	0.30
	0.0128
	0.0076
	0.025
	0.021
	0.045
	0.00277
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/

	
	Recycled
	3.61
	2.307
	0.143
	0.30
	0.0127
	0.0072
	0.024
	0.002
	0.046
	0.00281
	0.007
	0.001
	0.012
	0.015
	0.015
	0.002
	0.003
	0.004
	0.001
	0.0004
	0.0011
	0.001
	0.0012
	0.002
	0.002
	0.004
	0.003
	0.001
	0.001
	0.008

	3*
	Virgin
	3.60
	2.653
	0.287
	0.028
	0.0229
	0.0091
	0.018
	0.001
	0.041
	0.00267
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/

	
	Recycled
	3.61
	2.654
	0.286
	0.028
	0.0227
	0.0093
	0.019
	0.001
	0.042
	0.00268
	0.008
	0.001
	0.016
	0.019
	0.008
	0.002
	0.003
	0.005
	0.002
	0.0004
	0.0022
	0.001
	0.001
	0.002
	0.001
	0.004
	0.003
	0.001
	0.001
	0.005

	4*
	Virgin
	3.55
	2.679
	0.284
	0.065
	0.0186
	0.011
	0.044
	0.006
	0.057
	0.0001
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/

	
	Recycled
	3.54
	2.677
	0.287
	0.066
	0.0184
	0.0109
	0.045
	0.007
	0.056
	0.0001
	0.012
	0.0058
	0.021
	0.014
	0.003
	0.002
	0.003
	0.004
	0.002
	0.0017
	0.0022
	0.002
	0.0011
	0.001
	0.002
	0.005
	0.004
	0.001
	0.001
	0.008

	5*
	Virgin
	3.47
	2.659
	0.278
	0.07
	0.0171
	0.0111
	0.042
	0.016
	0.054
	0.0001
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/
	/

	
	Recycled
	3.47
	2.662
	0.281
	0.07
	0.0173
	0.0109
	0.044
	0.018
	0.057
	0.0001
	0.013
	0.0069
	0.015
	0.015
	0.003
	0.002
	0.003
	0.003
	0.001
	0.0011
	0.0043
	0.003
	0.001
	0.001
	0.001
	0.005
	0.005
	0.001
	0.001
	0.007



	No.
	Processing parameters and properties

	
	Tap Temperature (°C)
	Pouring start temperature
(℃)
	Nodularization time (min)
	Inoculation time (min)
	Pouring time
	Ultimate tensile strength (MPa)
	Elongation to fracture (%)

	1*
	Virgin
	1472
	1379
	28
	32
	7′56″
	774.8 ± 1.9
	5.56 ± 0.07

	
	Recycled
	1473
	1378
	28
	32
	7′58″
	754.2 ± 4.0
	5.37 ± 0.08

	2*
	Virgin
	1442
	1375
	31
	36
	7′51″
	688.6 ± 3.9
	7.68 ± 0.36

	
	Recycled
	1442
	1374
	31
	36
	7′53″
	659.9 ± 2.4
	10.71 ± 0.28

	3*
	Virgin
	1452
	1370
	26
	32
	7′35″
	647.0 ± 2.7
	8.73 ± 0.16

	
	Recycled
	1450
	1369
	26
	32
	7′45″
	628.2 ± 1.9
	10.06 ± 0.24

	4*
	Virgin
	1448
	1367
	30
	36
	7′39″
	640.8 ± 3.0
	12.20 ± 0.16

	
	Recycled
	1447
	1366
	30
	36
	7′41″
	620.6 ± 2.7
	13.71 ± 0.11

	5*
	Virgin
	1483
	1411
	30
	36
	7′05″
	541.4 ± 3.8
	11.94 ± 0.14

	
	Recycled
	1485
	1412
	30
	36
	7′10″
	523.4 ± 4.8
	15.84 ± 0.15



	No.
	Processing parameters

	
	Moisture content
(%)
	Compactibility
(%)
	Permeability
	Compressive strength (kPa)
	Shear strength (kPa)
	Sand temperature (℃)
	Hot wet tensile strength (kPa)
	Gas evolution
	Clay content
(%)
	AFS fineness number
	Loss on ignition

	1*
	Virgin
	3.39
	31
	129
	164
	45
	30.2
	3.28
	14.4
	11.51
	61.24
	3.7

	
	Recycled
	3.38
	31
	128
	164
	45
	30.2
	3.28
	14.4
	11.52
	61.25
	3.7

	2*
	Virgin
	2.97
	32
	126
	181
	33
	40.5
	6.05
	14.7
	9.93
	55.17
	3.8

	
	Recycled
	2.98
	32
	126
	182
	33
	40.4
	6.01
	14.6
	9.92
	55.14
	3.8

	3*
	Virgin
	3.08
	31
	130
	169
	35
	35.2
	4.25
	13.8
	10.27
	59.71
	4.3

	
	Recycled
	3.07
	31
	129
	169
	35
	35.2
	4.26
	13.8
	10.26
	59.72
	4.3

	4*
	Virgin
	2.84
	30
	170
	182
	44
	18.2
	4.03
	12.3
	9.87
	54.18
	4.2

	
	Recycled
	2.85
	29
	170
	183
	45
	18.2
	4.02
	12.3
	9.85
	54.16
	4.2

	5*
	Virgin
	2.84
	30
	171
	182
	45
	18.1
	4.01
	12.3
	9.84
	54.19
	4.2

	
	Recycled
	2.85
	29
	170
	183
	45
	18.2
	4.02
	12.3
	9.85
	54.16
	4.2




[bookmark: _Toc202279691]Supplementary Table 2: Chemical compositions and processing parameters of AI-designed alloys.
	No.
	Chemical compositions (%)

	
	C
	Si
	Mn
	Cu
	P
	S
	Cr
	Sn
	Mg
	Sb
	Ni
	Mo
	Ti
	Al
	V
	Nb
	W
	Co
	Zr
	B
	Ca
	As
	Pb
	Bi
	Zn
	Ce
	La
	Se
	Te
	N

	1
	3.83
	1.817
	0.64
	0.21
	0.0127
	0.0072
	0.024
	0.002
	0.046
	0.00281
	0.007
	0.001
	0.012
	0.015
	0.015
	0.002
	0.003
	0.004
	0.001
	0.0004
	0.0011
	0.001
	0.0012
	0.002
	0.002
	0.004
	0.003
	0.001
	0.001
	0.008

	2
	3.51
	2.889
	0.50
	0.15
	0.0183
	0.012
	0.068
	0.025
	0.054
	0.00222
	0.011
	0.0111
	0.02
	0.02
	0.007
	0.002
	0.003
	0.004
	0.001
	0.0025
	0.002
	0.003
	0.001
	0.001
	0.005
	0.007
	0.003
	0.001
	0.001
	0.006

	3
	3.46
	2.884
	0.49
	0.16
	0.0192
	0.0132
	0.054
	0.027
	0.044
	0.00182
	0.009
	0.0113
	0.024
	0.01
	0.003
	0.002
	0.003
	0.003
	0.001
	0.0007
	0.0026
	0.003
	0.001
	0.001
	0.001
	0.004
	0.004
	0.001
	0.001
	0.011

	4
	3.29
	2.935
	0.67
	0.18
	0.0183
	0.0096
	0.042
	0.023
	0.045
	0.00217
	0.009
	0.0052
	0.024
	0.022
	0.013
	0.002
	0.003
	0.004
	0.002
	0.0024
	0.0025
	0.002
	0.001
	0.002
	0.001
	0.006
	0.003
	0.001
	0.001
	0.001

	5
	3.57
	2.71
	0.55
	0.10
	0.0153
	0.0072
	0.038
	0.009
	0.05
	1E-04
	0.013
	0.001
	0.023
	0.017
	0.015
	0.002
	0.003
	0.004
	0.002
	0.002
	0.0018
	0.003
	0.0018
	0.002
	0.002
	0.006
	0.004
	0.001
	0.001
	0.008

	6
	3.28
	1.92
	0.58
	0.12
	0.015
	0.0088
	0.042
	0.011
	0.045
	1E-04
	0.012
	0.0053
	0.016
	0.017
	0.008
	0.002
	0.003
	0.004
	0.002
	0.0018
	0.0024
	0.002
	0.0011
	0.001
	0.002
	0.005
	0.004
	0.001
	0.001
	0.001

	7
	2.5
	2.86
	0.61
	0.13
	0.0143
	0.0083
	0.042
	0.008
	0.047
	0.00068
	0.017
	0.0037
	0.017
	0.017
	0.01
	0.002
	0.003
	0.004
	0.002
	0.0017
	0.0023
	0.003
	0.0011
	0.002
	0.003
	0.005
	0.004
	0.001
	0.001
	0.008

	8
	3.53
	2.95
	0.37
	0.21
	0.0147
	0.0068
	0.036
	0.009
	0.05
	1E-04
	0.014
	0.001
	0.024
	0.014
	0.014
	0.002
	0.003
	0.003
	0.003
	0.003
	0.0016
	0.003
	0.0019
	0.0031
	0.0023
	0.0071
	0.0039
	0.001
	0.001
	0.009

	9
	3.45
	1.57
	0.51
	0.24
	0.0156
	0.0074
	0.04
	0.008
	0.049
	0.00012
	0.015
	0.0012
	0.024
	0.018
	0.016
	0.002
	0.003
	0.0038
	0.0022
	0.0021
	0.0019
	0.0031
	0.0017
	0.0022
	0.0021
	0.0061
	0.0041
	0.001
	0.001
	0.009

	10
	3.73
	3.00
	0.87
	0.22
	0.0143
	0.0081
	0.044
	0.008
	0.05
	0.00024
	0.013
	0.0017
	0.019
	0.017
	0.005
	0.002
	0.003
	0.0039
	0.0017
	0.0019
	0.0023
	0.0022
	0.0012
	0.0013
	0.0032
	0.0052
	0.0042
	0.001
	0.001
	0.012

	11 (#3)
	3.31
	2.77
	0.30
	0.27
	0.0141
	0.0081
	0.042
	0.009
	0.047
	0.00072
	0.018
	0.0034
	0.017
	0.016
	0.012
	0.002
	0.003
	0.004
	0.0021
	0.0016
	0.0024
	0.0033
	0.0013
	0.0021
	0.0029
	0.0052
	0.0041
	0.001
	0.001
	0.009

	12
	3.37
	2.94
	0.41
	0.03
	0.0156
	0.0072
	0.039
	0.008
	0.048
	0.00014
	0.014
	0.0013
	0.026
	0.017
	0.016
	0.002
	0.003
	0.0043
	0.002
	0.0018
	0.0019
	0.0034
	0.0018
	0.0022
	0.0028
	0.0067
	0.0044
	0.001
	0.001
	0.008

	13
	3.45
	2.99
	0.47
	0.86
	0.0152
	0.0071
	0.041
	0.008
	0.049
	0.00015
	0.015
	0.0014
	0.027
	0.018
	0.017
	0.002
	0.003
	0.0041
	0.002
	0.0019
	0.0021
	0.0036
	0.0019
	0.0021
	0.0029
	0.0069
	0.0042
	0.001
	0.001
	0.009

	14
	3.49
	3.01
	0.48
	0.19
	0.0149
	0.0069
	0.037
	0.009
	0.051
	0.00013
	0.014
	0.0012
	0.025
	0.015
	0.013
	0.002
	0.003
	0.0036
	0.003
	0.0027
	0.0018
	0.0034
	0.0019
	0.0032
	0.0024
	0.0073
	0.0041
	0.001
	0.001
	0.009

	15 (#2)
	3.93
	1.76
	0.78
	0.27
	0.0184
	0.013
	0.069
	0.026
	0.055
	0.00226
	0.012
	0.0113
	0.023
	0.021
	0.008
	0.002
	0.003
	0.0043
	0.001
	0.0024
	0.0019
	0.0032
	0.0016
	0.0015
	0.0052
	0.0071
	0.0034
	0.001
	0.001
	0.007

	16
	3.69
	2.95
	0.62
	0.25
	0.0182
	0.011
	0.071
	0.025
	0.053
	0.00224
	0.013
	0.0112
	0.021
	0.023
	0.007
	0.002
	0.003
	0.0042
	0.001
	0.0026
	0.0022
	0.0031
	0.0015
	0.0014
	0.0051
	0.0073
	0.0033
	0.001
	0.001
	0.006

	17 (#1)
	3.63
	2.97
	0.58
	0.92
	0.0181
	0.012
	0.067
	0.027
	0.057
	0.00221
	0.011
	0.0115
	0.022
	0.022
	0.006
	0.002
	0.003
	0.0045
	0.002
	0.0028
	0.0021
	0.0035
	0.0014
	0.0013
	0.0053
	0.0072
	0.0032
	0.001
	0.001
	0.008



	No.
	Processing parameters

	
	Tap Temperature (°C)
	Pouring start temperature 
(℃)
	Nodularization time (min)
	Inoculation time (min)
	Pouring time 
(″)

	1
	1462
	1374
	35
	29
	413

	2
	1435
	1395
	34
	32
	415

	3
	1432
	1398
	35
	32
	418

	4
	1428
	1372
	34
	31
	412

	5
	1422
	1400
	29
	30
	390

	6
	1442
	1340
	27
	43
	470

	7
	1434
	1406
	36
	30
	390

	8
	1422
	1408
	40
	30
	414

	9
	1419
	1405
	40
	30
	435

	10
	1421
	1406
	40
	30
	498

	11 (#3)
	1427
	1394
	38
	32
	482

	12
	1420
	1397
	37
	30
	502

	13
	1425
	1422
	38
	31
	495

	14
	1422
	1420
	38
	30
	497

	15 (#2)
	1419
	1409
	39
	31
	443

	16
	1417
	1401
	35
	30
	454

	17 (#1)
	1420
	1416
	40
	31
	425



	No.
	Processing parameters

	
	Moisture content
(%)
	Compactibility
(%)
	Permeability
	Compressive strength (kPa)
	Shear strength (kPa)
	Sand temperature (℃)
	Hot wet tensile strength (kPa)
	Gas evolution
	Clay content
(%)
	AFS fineness number
	Loss on ignition

	1
	2.94
	32
	126
	182
	33
	40.4
	6.01
	14.6
	9.92
	55.14
	3.8

	2
	2.99
	31
	132
	165
	38
	43.8
	4.76
	14.4
	11.76
	57.52
	4.6

	3
	2.98
	30
	135
	208
	52
	38
	5.65
	15.2
	10.36
	56.62
	4.1

	4
	2.97
	32
	117
	174
	43
	40.5
	5.15
	15.7
	11.24
	59.98
	3.5

	5
	2.99
	31
	168
	183
	38
	43.8
	3.95
	13.73
	10.06
	53.9
	2.8

	6
	2.98
	30
	173
	167
	52
	38
	4.53
	13.7
	11.02
	53.54
	4

	7
	2.97
	32
	189
	143
	43
	40.5
	5.37
	12.75
	10.88
	63.45
	3.2

	8
	2.98
	30
	167
	184
	52
	38
	3.97
	13.7
	10.01
	53.42
	2.7

	9
	2.97
	32
	169
	181
	43
	40.5
	3.92
	13.72
	10.07
	53.61
	2.8

	10
	2.99
	31
	190
	147
	38
	43.8
	5.4
	12.77
	10.89
	63.52
	3.1

	11 (#3)
	2.98
	30
	191
	142
	52
	38
	5.38
	12.74
	10.87
	63.47
	3.2

	12
	2.97
	32
	170
	187
	43
	40.5
	3.97
	13.72
	10.08
	53.91
	2.8

	13
	2.98
	30
	171
	188
	52
	38
	3.96
	13.73
	10.09
	53.92
	2.8

	14
	2.97
	32
	168
	185
	43
	40.5
	3.98
	13.72
	10.04
	53.52
	2.7

	15 (#2)
	2.99
	31
	132
	167
	38
	43.8
	4.72
	14.37
	11.72
	57.42
	4.7

	16
	2.98
	30
	134
	164
	52
	38
	4.78
	14.38
	11.78
	57.56
	4.6

	17 (#1)
	2.97
	32
	133
	166
	43
	40.5
	4.75
	14.41
	11.77
	57.54
	4.5



	No.
	Microstructure and properties

	
	Nodularity rate
	Pearlite fraction 
(%)
	Ultimate tensile strength 
(MPa)
	Elongation to fracture 
(%)

	1
	3
	71
	663.2
	11.95

	2
	3
	87
	784.5
	8.75

	3
	3
	87
	763.4
	8.02

	4
	3
	64
	718.3
	10.2

	5
	3
	75
	680
	12.67

	6
	3
	75
	558.3
	15.6

	7
	3
	65
	587.5
	13.68

	8
	3
	85
	635.1
	15.85

	9
	3
	80
	633.3
	15.86

	10
	3
	75
	615.3
	16.16

	11 (#3)
	3
	60
	593.0
	19.48

	12
	3
	45
	551.3
	21.53

	13
	3
	90
	651.3
	15.91

	14
	3
	90
	629.9
	18.006

	15 (#2)
	3
	85
	689
	13.43

	16
	3
	85
	685.9
	13.47

	17 (#1)
	3
	95
	782
	8.75


[bookmark: _Hlk201875363]


[bookmark: _Toc202279692]Supplementary Table 3: Raw materials and cost for DA1130 wheel hub produced using commercial recycled ductile iron.
	No.
	Raw material
	Price for raw material 
(CNY t -1)
	Percentage 
(%)
	Cost for final product (CNY t -1)
	Total cost for final product
(CNY t -1)

	1
	Scrap steel
	3230
	~70
	2237.08
	4528.34

	2
	Pig iron Q10
	3410
	~30
	1011.28
	

	3
	Barium-Silicon inoculant for stream addition 0.2-0.7
	9380
	~0.14
	12.97
	

	4
	Barium-Silicon inoculant 3-8mm
	8670
	~0.38
	32.57
	

	5
	Inoculation cored wire Φ13
	9730
	~1.18
	114.44
	

	6
	Nodularizing cored wire Φ13
	11020
	~1.11
	121.91
	

	7
	SiC 1-5mm
	8580
	~0.41
	35.62
	

	8
	Ferrosilicon 10-50mm
	7520
	~1.26
	94.71
	

	9
	High-Carbon Ferromanganese 10-30mm
	6680
	~0.29
	19.44
	

	10
	Carbon raiser 1-5mm
	6770
	~2.80
	189.58
	

	11
	Other materials
	-
	-
	658.75
	



[bookmark: _Toc202279693]Supplementary Table 4: Raw materials and cost for DA1130 wheel hub produced by this work.
	No.
	Raw material
	Price for raw material 
(CNY t -1)
	Percentage 
(%)
	Cost for final product (CNY t -1)
	Total cost for final product
(CNY t -1)

	1
	Scrap steel
	3230
	~30
	969.03
	4160.68

	2
	Recycled ductile cast iron
	3070
	~50
	1533.19
	

	3
	Recycled iron chips
	3070
	~20
	613.27
	

	4
	Barium-Silicon inoculant for stream addition 0.2-0.7
	9380
	~0.10
	9.38
	

	5
	Barium-Silicon inoculant 3-8mm
	8670
	~0.35
	30.35
	

	6
	Inoculation cored wire Φ13
	9730
	~1.10
	107.08
	

	7
	Nodularizing cored wire Φ13
	11020
	~1.10
	121.19
	

	8
	High-Carbon Ferromanganese 10-30mm
	6680
	~0.05
	3.34
	

	9
	Carbon raiser 1-5mm
	6770
	~1.70
	115.09
	

	10
	Other materials
	-
	-
	658.75
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image10.png
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import Earlystopping
from tensorflow import keras

# Input: (None, 40, 1)
X_train, y_train # 80% data points
X_test, y_test # 20% data points

# Model architecture

model = sequential([
1ayers.ConviD(128,kernel_size=3,strides=1,padding="same', activation='elu’,

input_shape=(n_dim,1)),

layers.LayerNornalization(),
layers.ConviD(64,kernel_size=3,strides=1,paddin
layers.Dropout(6.1),
1ayers.ConviD(32,kernel_size=3,strides=1,paddin
layers.Dropout(0.1),
layers.ConviD(16,kernel_size=3,strides=1,paddin
layers.ConviD(8, kernel_size=3,stride
layers.Flatten(),
Dense(64, activatio
Dense(1, activation=

='same’, activation='elu'),

‘same', activation='elu'),

same’, activation='elu'),
same’, activation="elu'),

ew'),
linear')

n

# Model compiling and training
optimizer = keras.optimizers.Adam(learning_rate=0.001)
model.compile(optinizer=optinizer, loss='mse', metrics=["mean_squared_error"])
es = EarlysStopping(monitor='val loss', mode='nin', patience=1000)
model.fit(X_train, y_train, validation_data=(X_test, y_test),

batch_size=50, epochs=5000, callbacks=[es])
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