

User Manual
Profiler Software
(Omics Data Analysis)

Table des matières

Document history.....	2
1- Introduction	3
2- Side bar.....	5
Data Conversion	5
Load MS standard format Files.....	6
Load Tabular Data.....	6
Load Survival Data	8
3- Main Menu.....	9
Home	9
Data Exploration	9
Data Preparation.....	10
Data Visualization	15
Correlations and Similarities.....	18
AI Modeling.....	19
Unsupervised Learning.....	20
Supervised Learning	22
Biomarker Discovery.....	25
Differential Analysis	25
Black Box Model Analysis.....	29
Enrichment	31
Enrichment analysis	31
Survival Analysis.....	32
Group Comparison	32
Multivariate Regression	33
The output consists of the overall survival prediction and descriptive statistics for the new patient, based on the previously trained Cox model.	34
Wizard.....	34
Real-Time Predictions	35
Post-hoc Predictions	36

Document history

Revision	Author(s)	Changes	Effective date
0.0	Y. Zirem, L. Ledoux	Creation	2025/05/13
1.0	L. Ledoux	Updates	2025/06/23

1- Introduction

In the fast-paced world of biomedical research, the complexity of data is increasing rapidly. Researchers are generating vast amounts of omics data, yet the analytical bottleneck remains a significant challenge. Profiler, a cutting-edge software developed by the **PRISM U1192 Lab** at the University of Lille, provides a powerful and user-friendly solution to address this challenge.

The proliferation of omics technologies, including mass spectrometry-based proteomics, RNA sequencing and metabolomics, has revolutionized biomedical research. However, the heterogeneity of omics datasets and the computational expertise required for their analysis continue to pose significant hurdles. Although several tools are available, they are often fragmented, domain-specific, or require programming skills, limiting their accessibility to non-specialist users.

We introduce **Profiler**, a web-based software platform developed to streamline and unify the analysis of multi-omics datasets. Profiler is designed to be both comprehensive and accessible, integrating essential workflows from data conversion to advanced machine learning and survival analysis.

Developed by **Yanis Zirem**, a second-year PhD student (2025), under the supervision of **Prof. Michel Salzet** and **Prof. Isabelle Fournier**, Profiler aims to democratize high-throughput data analysis through a modular and intuitive web-based interface.

Why use Profiler ?

- **Multi-Omics Compatibility:** Seamlessly handle data from mass spectrometry, transcriptomics, metabolomics, and more.
- **Raw Data Conversion:** Effortlessly convert vendor-specific mass spectrometry formats (Bruker, Waters, Thermo Fisher) into open formats like mzML, mzXML, mzDB, or mz5.
- **Preprocessing Made Simple:** Normalize, filter, bin, correct batch effects, and impute missing values with built-in preprocessing tools, no coding required.
- **Smart Data Exploration:** Visualize distributions, correlations, similarities, and feature spectra across classes with ease.
- **Integrated AI & Statistics:** Train over 23 machine learning models, deploy deep learning architectures, and apply classical statistical tests, all in one place.
- **Biomarker Discovery & Explainability:** Use SHAP, LIME, and volcano plots to identify and interpret predictive biomarkers.
- **Survival Analysis Tools:** Perform Kaplan-Meier and Cox regression analysis directly within the platform.
- **Pathway Enrichment Analysis:** Gain insights into biological pathways with integrated enrichment analysis with a hundred databases.
- **Wizard Mode Automation:** Run real-time predictions or conduct post-hoc analyses with just a few clicks.

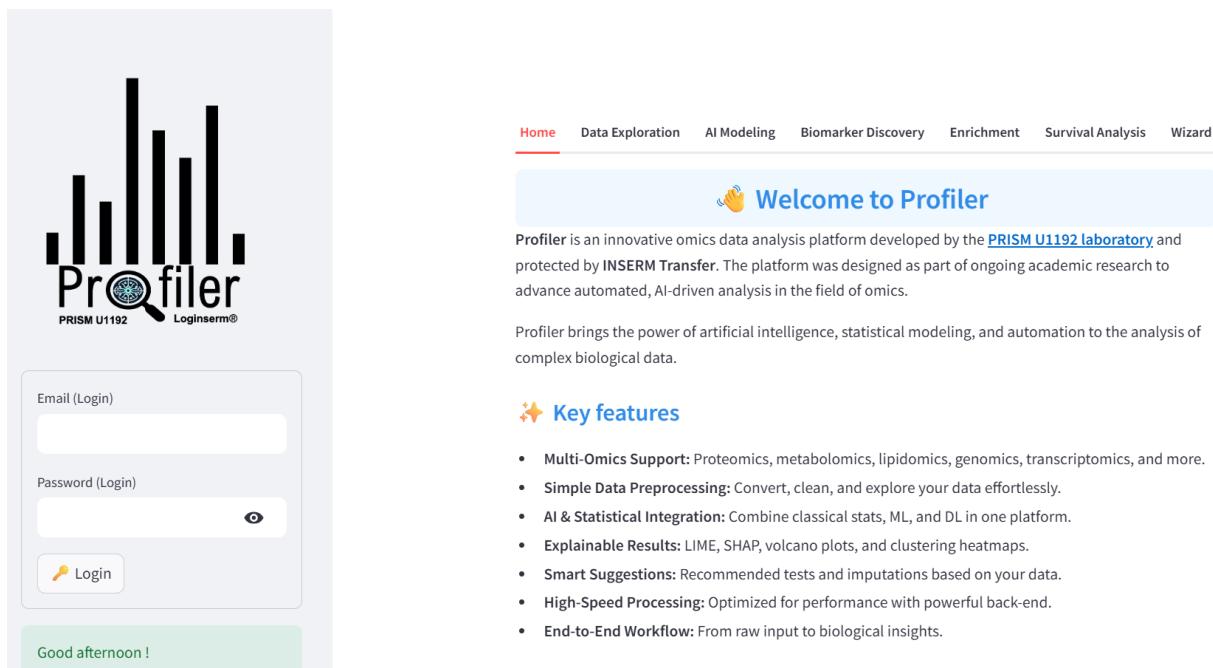
Who is it for ?

- **Researchers** looking for an all-in-one omics analysis platform.
- **Clinicians** interested in biomarker discovery and prognosis modeling.
- **Students and bioinformaticians** wishing to learn or prototype pipelines.
- **Core facilities** seeking reproducible and shareable workflows.

All features of Profiler are detailed in this User Manual, which includes step-by-step explanations and illustrative screenshots.

Note: To access the entire software, simply create an account (e-mail address + password required), and you'll have unlimited access to the software.

⚠ Note: The session is reset by the 'Session Management' expander when the software becomes slow or when a new dataset needs to be used — all without requiring a logout.



The screenshot shows the Profiler software interface. On the left, there is a login form with fields for 'Email (Login)' and 'Password (Login)', and a 'Login' button. A green banner at the bottom left says 'Good afternoon !'. On the right, there is a navigation bar with links: Home, Data Exploration, AI Modeling, Biomarker Discovery, Enrichment, Survival Analysis, and Wizard. The 'Home' link is underlined. Below the navigation bar, a blue header says 'Welcome to Profiler' with a hand icon. The main content area below the header contains text about Profiler's development by the PRISM U1192 laboratory and its purpose to advance automated, AI-driven analysis in the field of omics. It also highlights Profiler's key features: Multi-Omics Support, Simple Data Preprocessing, AI & Statistical Integration, Explainable Results, Smart Suggestions, High-Speed Processing, and End-to-End Workflow.

Home Data Exploration AI Modeling Biomarker Discovery Enrichment Survival Analysis Wizard

Welcome to Profiler

Profiler is an innovative omics data analysis platform developed by the [PRISM U1192 laboratory](#) and protected by [INSERM Transfer](#). The platform was designed as part of ongoing academic research to advance automated, AI-driven analysis in the field of omics.

Profiler brings the power of artificial intelligence, statistical modeling, and automation to the analysis of complex biological data.

Key features

- Multi-Omics Support: Proteomics, metabolomics, lipidomics, genomics, transcriptomics, and more.
- Simple Data Preprocessing: Convert, clean, and explore your data effortlessly.
- AI & Statistical Integration: Combine classical stats, ML, and DL in one platform.
- Explainable Results: LIME, SHAP, volcano plots, and clustering heatmaps.
- Smart Suggestions: Recommended tests and imputations based on your data.
- High-Speed Processing: Optimized for performance with powerful back-end.
- End-to-End Workflow: From raw input to biological insights.

2- Side bar

Data Conversion

Profiler allows users to convert raw data from various mass spectrometry instruments vendors (Bruker, Waters, and Thermo Fisher) into standardized formats such as mzML, mzXML, mz5, and mzDB.

To perform a conversion, simply drop raw files zipped (1). Then, choose the input file type (2) and the desired output format (6).

Several conversion options are available:

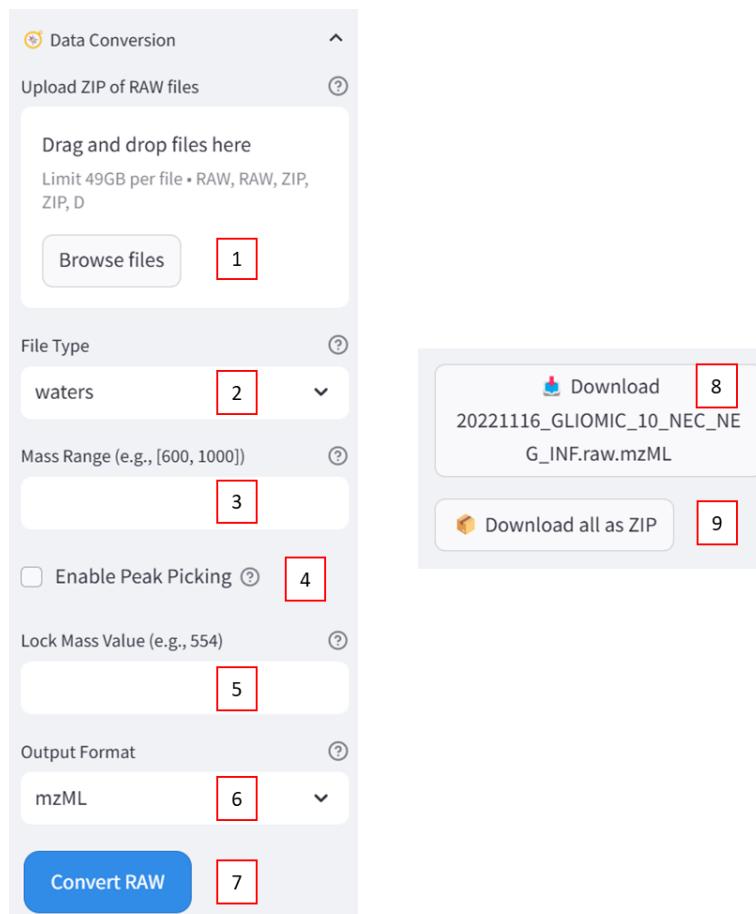
Mass range (3): If you wish to convert only a specific mass range, indicate it in the format [600,1000]. Leave this field blank to convert the entire mass range.

Enable peak picking (4): Check this option if peak picking is required.

Lock mass (5): Specify a lock mass if one was used during the mass spectrometry acquisition to improve mass accuracy during conversion. This option is only available for Waters files as Waters instruments have a lock mass feature integrated into their data acquisition process.

When the Convert RAW button (7) is clicked: If successful, a success message is displayed. If an error occurs, an error message is displayed with the exception details.

The converted files can then be downloaded one by one (8) or all together as ZIP file (9).



The screenshot shows the 'Data Conversion' interface. On the left, there is a 'Drag and drop files here' area with a 'Browse files' button and a red box labeled '1' over the '1' button. Below it is a 'File Type' dropdown set to 'waters' with a red box labeled '2' over the '2' button. A 'Mass Range (e.g., [600, 1000])' input field is shown with a red box labeled '3' over the '3' button. A checkbox for 'Enable Peak Picking' is present with a red box labeled '4' over the '4' button. A 'Lock Mass Value (e.g., 554)' input field is shown with a red box labeled '5' over the '5' button. An 'Output Format' dropdown is set to 'mzML' with a red box labeled '6' over the '6' button. At the bottom is a 'Convert RAW' button with a red box labeled '7' over the '7' button. On the right, there is a 'Download' button with a red box labeled '8' over the '8' button, followed by the file name '20221116_GLIOMIC_10_NECK_NE_G_INF.raw.mzML'. Below it is a 'Download all as ZIP' button with a red box labeled '9' over the '9' button.

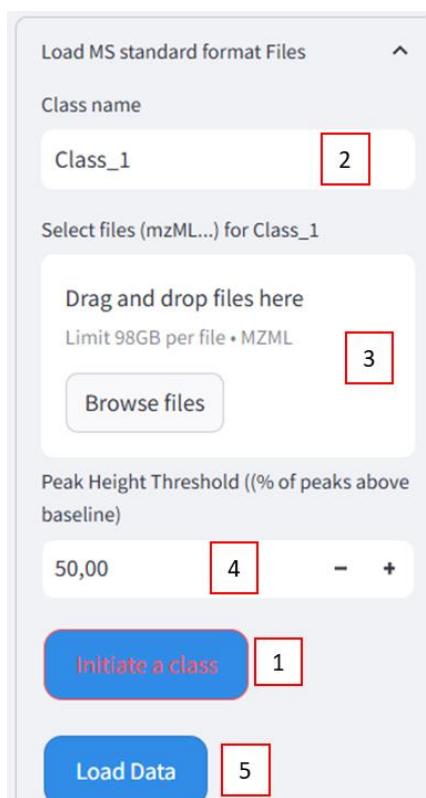
Load MS standard format Files

This second expander is used to load previously converted MS data so that it's possible to:

- Start data analysis.
- Create a CSV file which can then be loaded into the third “Load Structured Data” section.

First, a Class (1) needs to be initiated for each category to be included in the dataset. For each class, simply enter its name (2) and browse all the corresponding files to be associated with it (3).

To apply a peak height threshold (4) (chromatogram peak selection according to the baseline), just choose the % according to your data (% of peak above baseline).



Once all files have been assigned to their respective classes, click on the “Load data” button to import the data (5).

Note: If the aim is to create a csv file to keep and reuse at will, just pre-process the data, with or without normalization. This will produce an excel file of all the initial data to be saved as a csv easily.

Load Tabular Data

The purpose of this third expander is to import pre-structured files (metabolomics, proteomics and transcriptomics):

- either previously created with the software and saved in CSV format (Scenario 1).

- either obtained from other software in CSV, XLSX, TXT and TSV formats, such as directly processed outputs from software like MaxQuant, DIA-NN and Perseus (Scenario 2).
- or obtained from other software in the same formats but not from this software (Scenario 3).

Scenario 1

When the csv file has been created using Profiler, the structure will already be fully adapted for loading using this section. Simply load the file directly (1).

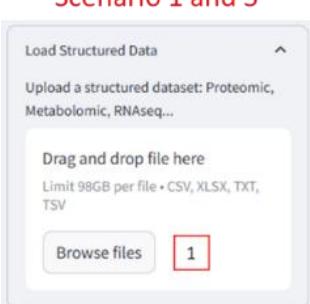
Scenarios 2 and 3

To be loaded, a file (in any format accepted) must contain a first column named “Class” and the features (such as names of genes, proteins, ions ...) in the following columns. In addition, the required format is precised (blue square).

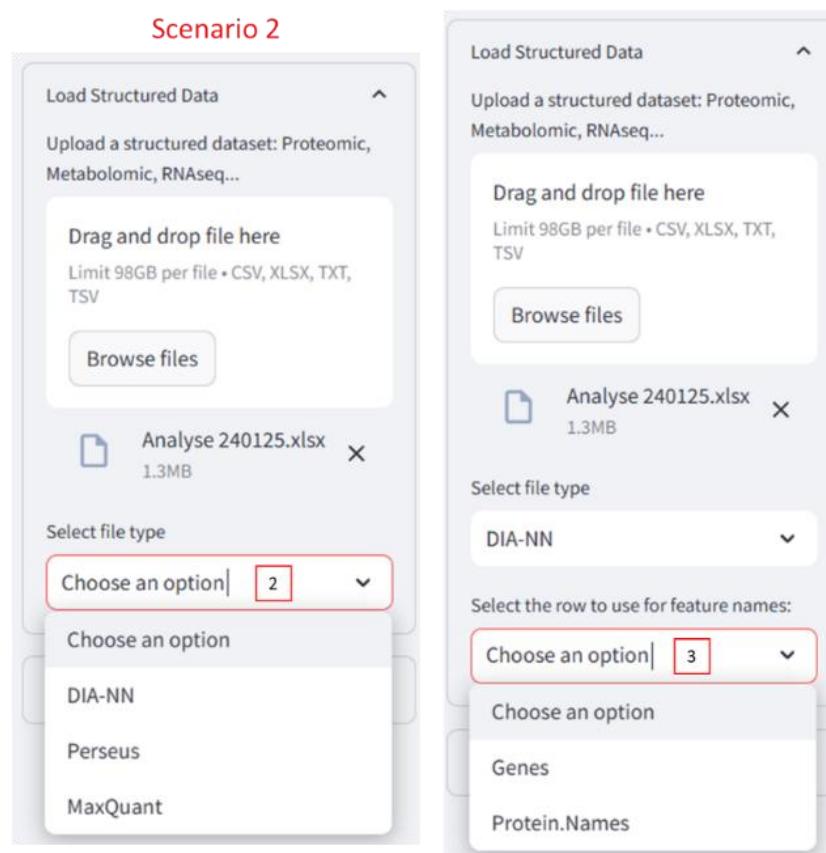
If there is no “Class” column, a dialog box will be displayed and then there are two scenarios:

- either the file is from MaxQuant, DIA-NN and Perseus and it possible to select the type of file (between these three options) and the file will be structured automatically to enable the importation (2). In addition, another dialog box will allow you to keep either the gene names or the protein names as features (3).
- Or the file is from any of these softwares. In this case, the file needs to be structured manually, adding the “Class” column and putting features in columns too. After Once structured, the file can be loaded in the usual way, as explained in Scenario 1.

Scenario 1 and 3

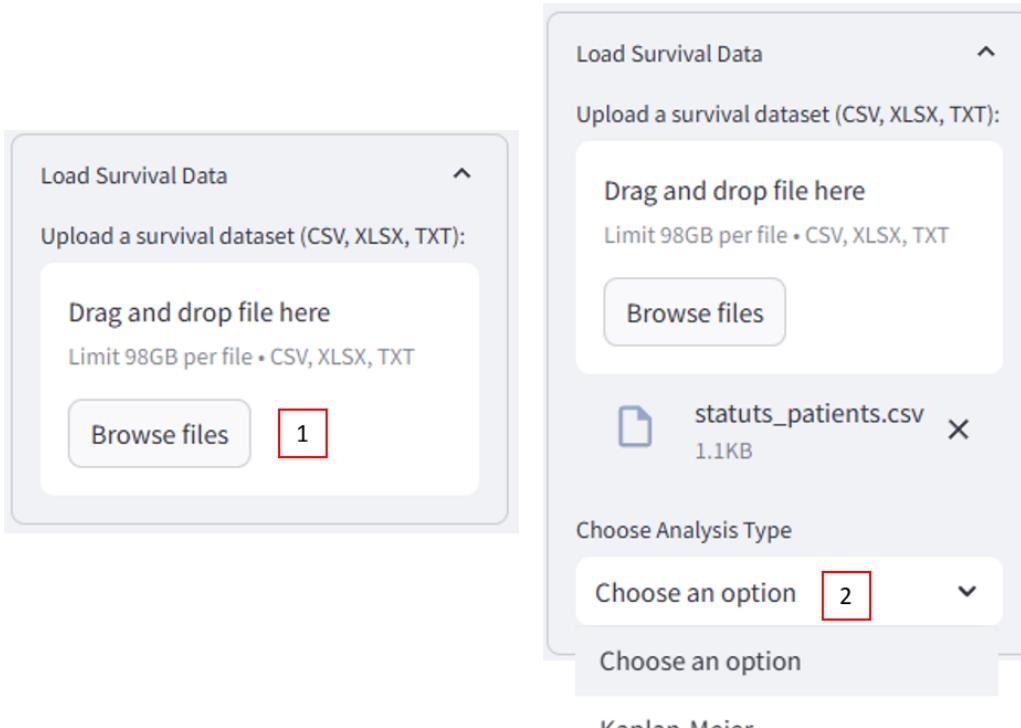


Scenario 2



Load Survival Data

This fourth expander allows users to upload datasets (**1**) to perform survival analyses (either Cox model or Kaplan Meier (**2**)).



Load Survival Data

Upload a survival dataset (CSV, XLSX, TXT):

Drag and drop file here
Limit 98GB per file • CSV, XLSX, TXT

Browse files

1

Choose Analysis Type

Choose an option 2

Choose an option

Kaplan-Meier

Cox Model

statuss_patients.csv 1.1KB

This file should be well structured. Indeed, there are two possibilities:

- All required columns (Overall survival, State) are present, data is loaded successfully.
- Some columns are missing; an error message appears.

The two required columns are:

- "Overall survival" column, corresponds to the duration a patient remains alive from a defined starting point.
- "State" column, corresponds to the survival status: 0 indicates the patient is alive, while 1 represents the event of death.

In addition, the required format is specified (blue square).

3- Main Menu

The main interface offers seven Tabs; Home, Data Exploration, AI modeling, Biomarker Discovery, Enrichment, Survival Analysis and Wizard.

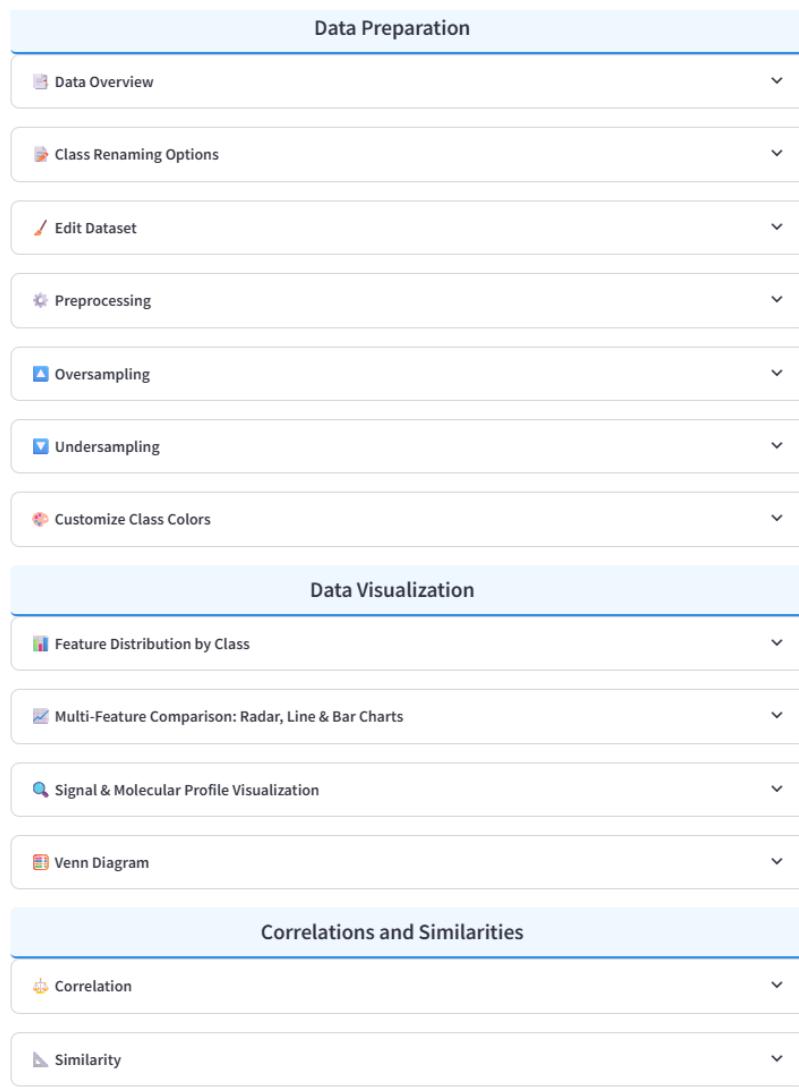
[Home](#) [Data Exploration](#) [AI Modeling](#) [Biomarker Discovery](#) [Enrichment](#) [Survival Analysis](#) [Wizard](#)

Home

This first tab provides an overview of the software, including guidance on how to cite it, access to available resources such as this documentation and test data, and information on how to request support in case of errors during usage.

Data Exploration

This second tab is divided into 3 sub-categories: data preparation, data visualization and correlations and similarities.



Data Preparation

- Data Overview
- Class Renaming Options
- Edit Dataset
- Preprocessing
- Oversampling
- Undersampling
- Customize Class Colors

Data Visualization

- Feature Distribution by Class
- Multi-Feature Comparison: Radar, Line & Bar Charts
- Signal & Molecular Profile Visualization
- Venn Diagram

Correlations and Similarities

- Correlation
- Similarity

Data Preparation

This sub-category is itself divided into seven expanders, which will be explained one by one throughout this tutorial.

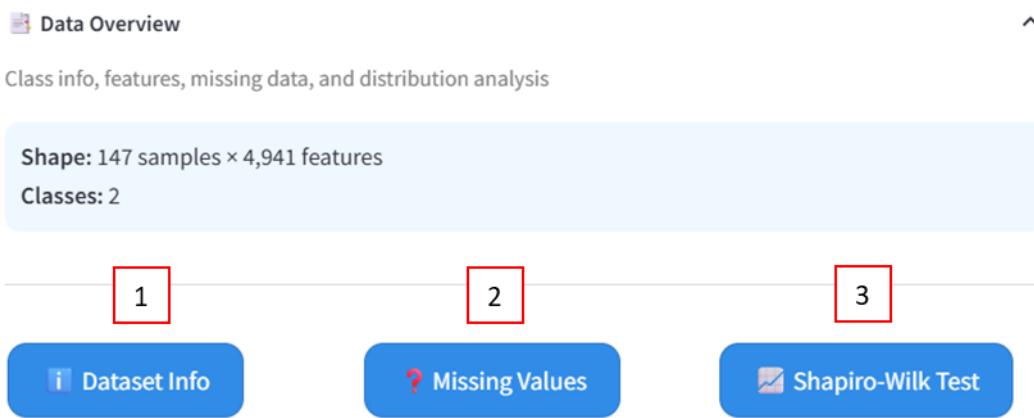
Data overview

This section provides an overview of the dataset, including the total number of classes and features (1). When clicking on Dataset Info, it displays the number of replicates per class in a structured format, allowing to easily verify class distribution. A pie chart visualization provides a clear view of the proportion of each class in the dataset. Additionally, an interpretation is included to assess whether the classes are balanced or imbalanced, along with recommendations in case of imbalance.

It allows to assess data completeness by viewing the number of missing values (NaN) in the entire dataset and for each individual feature (2). Both counts and percentages are automatically calculated, helping to determine whether imputation or additional preprocessing steps are necessary.

The final button (3) allows to perform a feature-wise normality assessment using the Shapiro-Wilk test. Upon clicking, a summary is generated showing the number of features that follow a normal distribution and the average p-value. If the majority of features are not normally distributed, a recommendation for appropriate imputation methods (e.g., median imputation) is provided.

Based on the normality results, a list of recommended statistical tests, parametric or non-parametric, is displayed. Additional guidance is included to explain when normality assumptions can be relaxed, such as through the application of the Central Limit Theorem.



Data Overview

Class info, features, missing data, and distribution analysis

Shape: 147 samples × 4,941 features
Classes: 2

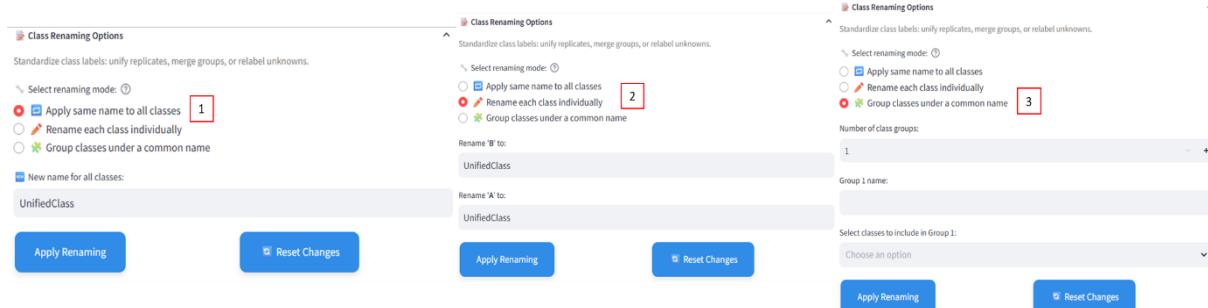
1 2 3

 Dataset Info Missing Values Shapiro-Wilk Test

Class renaming options

This second expander allow different changes:

- Unify replicates by selecting the following method « apply the same name to all classes » and writing the new name for all classes (1).
- Invert or change labels by selecting the following method « Rename each class individually » and putting the new name for each class (2).
- Group classes for a common name (3) by choosing the number of groups to rename and putting the common name for each new group.

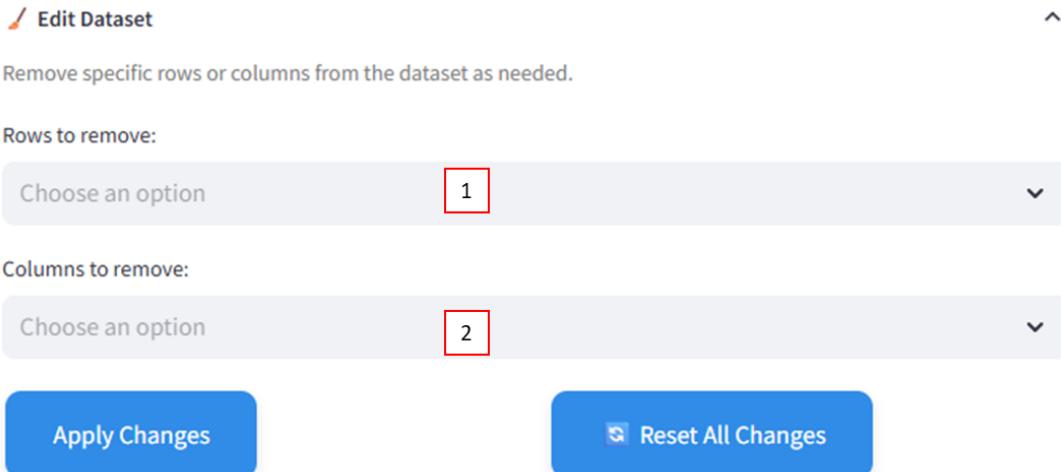


⚠ Note: A “Reset” button allows you to return to the original data if an error is made.

Edit dataset

This third expander is only used to remove a row (1) or a row (2) from the dataset if required.

Just select the one to be removed and press the « apply changes » button. An updated preview of the data is displayed.



⚠ Note: A “Reset” button allows you to return to the original data if an error is made.

Preprocessing

The fourth expander is dedicated to data preprocessing, including binning, mass range delimitation, normalization, and missing value imputation.

Several normalization methods (1) are available, such as TIC (Total Ion Count), RMS (Root Mean Square), BasePeak, QNorm, Log Normalization, Log10 and Log2.

Note: To assist in the selection of an appropriate normalization method for datasets, a brief explanation of each approach is provided.

- **TIC (Total Ion Current):** The intensity of each feature (ion) is scaled by the total intensity of all features in the sample. This makes the data relative to the total signal, adjusting for differences in overall signal intensity. It is useful when differences in total intensity across samples need to be corrected. For example, if one sample has a higher total intensity, TIC ensures that the intensities of individual peaks are made comparable across all samples.
- **RMS (Root Mean Square):** The data is normalized by the root mean square (RMS) of each sample or spectrum. The RMS is calculated by taking the square root of the

average of the squared values in a sample. This method is useful when the data needs to be standardized in a way that accounts for both the magnitude and the spread of values in each sample, making them comparable even when overall intensity varies.

- **BasePeak normalization:** Each intensity value is normalized by dividing it by the highest intensity value in that sample. The "BasePeak" is identified as the highest intensity peak for a sample, so all other peaks are scaled relative to it.
- **Log2 normalization:** A base-2 logarithm ($\log_2(1 + x)$) is used. This approach is useful when data exhibits a strong multiplicative relationship, such as doubling or halving of quantities. It is often applied when changes are analyzed in terms of "fold changes"—for example, how many times a value increases or decreases.
- **Log transformation:** Log normalization takes the natural logarithm of the data. The formula is $\log(1 + x)$. It makes patterns in the data more apparent and reduces the impact of outliers.
- **Log10 transformation:** is similar to log normalization but uses the base-10 logarithm ($\log_{10}(1 + x)$). It's particularly useful for transforming exponential data.
- **QNorm (Quantile Normalization):** Values in each sample are ranked and then adjusted to share the same rank-based distribution. This method is widely used in genomics to ensure that the distribution of values across different datasets is made consistent.

 Preprocessing ^

Binning, Range Delimitation, Normalization, and Missing Value Handling

Normalization Type

None 1 ? ▼

Apply batch effect correction (neuroCombat)? 2 ?

Shrink mass range or apply Binning? 3 ?

Bin Width (Da)

0,10 4 - + ?

Min Mass Range

600 5 - + ?

Max Mass Range

1000 6 - + ?

Select Missing Value Imputation Method

None 7 ? ▼

Preprocess Data

NeuroCombat can be used to remove batch effects based on 'class' (2).

Note: NeuroCombat is a specialized tool used for correcting batch effects in datasets. Is an adaptation of the Combat algorithm, which was originally developed for genomic data. This method models the batch effect as a location and scale adjustment, effectively removing the unwanted variation while preserving the biological variability of interest. When enabled, NeuroCombat will adjust the data based on the specified 'Class' variable, ensuring that subsequent analyses are not confounded by batch effects.

It also possible to adjust the mass range and/or apply binning to reduce data dimensionality by ticking « Shrink mass range or apply binning » (3). Smaller values for the bin width give finer resolution but more extensive computationally (4). For mass range delimitation, precise the min mass range (5) and the max mass range (6).

Additionally, the type of imputation method for handling missing values can be selected (7). The available methods are the following: Mean, median, mode and KNN imputation in addition to delete the missing values.

Note: To assist in the selection of an appropriate imputation method for datasets, a brief explanation of each approach is provided.

- **Mean Imputation:** This method replaces missing values with the mean of the observed values for that variable. It is simple and preserves the mean of the data. It is suitable when the variable (feature) follow normal distribution.
- **Median Imputation:** Similar to mean imputation, this method replaces missing values with the median of the observed values. It is more robust to outliers compared to mean imputation. It is suitable for data that not follow normal distribution.
- **Mode Imputation:** This method replaces missing values with the mode (most frequent value) of the observed values. It is typically used for categorical data.
- **Delete Missing Values:** This method removes any columns (features) with missing values. While it ensures that the analysis is performed on complete data, it can lead to a significant loss of information if missing values are widespread.
- **KNN Imputation:** K-Nearest Neighbors (KNN) imputation replaces missing values with the mean or weighted mean of the k-nearest neighbors. This method considers the similarity between observations and can provide more accurate imputations compared to simple mean or median imputation.

After clicking the « Preprocess Data » button, a progress bar will appear, providing feedback on the preprocessing stages.

Oversampling

This fifth expander aims to oversample the dataset. Indeed, two techniques are available to increase the data in minority classes (data augmentation): SMOTE and ADASYN.

Oversampling

Class balancing strategies: Increase Sample Classes to Match Majority (data augmentation)

Oversampling Technique

SMOTE

Apply Oversampling

Note: In the context of biological data, such as comparing healthy (control) and cancer data, techniques like SMOTE (Synthetic Minority Over-sampling Technique) and ADASYN (Adaptive Synthetic Sampling) are employed to address imbalanced datasets in machine learning called also data augmentation techniques.

SMOTE works by generating synthetic examples of the minority class, rather than simply duplicating existing ones. It does this by selecting a sample from the minority class and creating new samples along the lines connecting this sample to its nearest neighbors. This approach helps balance the dataset, making it easier for machine learning models to learn from both minority and majority classes.

ADASYN, on the other hand, is an extension of SMOTE but with a focus on the difficulty of classification. It generates synthetic samples for the minority class, similar to SMOTE, but places more emphasis on minority instances that are harder to classify. Specifically, ADASYN generates more synthetic samples for the minority class that are near the decision boundary, where the model might struggle the most. This targeted approach helps improve the classification performance by focusing on the most challenging cases.

In **summary**, SMOTE treats all minority class samples equally, whereas ADASYN prioritizes samples that are harder to classify, making it particularly useful in scenarios where the boundary between different samples is complex.

Undersampling

Conversely, this sixth expander aims to reduce the data in majority classes to match minority. Two techniques are also available: RandomUnderSampler and NearMiss.

Undersampling

Class balancing strategies: Reduce Sample Classes to Match Minority

Undersampling Technique

RandomUnderSampler

Apply Undersampling

Note: Unlike SMOTE and ADASYN, which generate synthetic samples to augment the minority class, RandomUnderSampler and NearMiss work by decreasing the number of samples in the majority class. This approach can be particularly useful when the majority

class is significantly larger than the minority class, leading to a biased machine learning model. **RandomUnderSampler** reduces the number of samples in the majority class by randomly selecting a subset of these samples. The size of this subset is chosen to match the number of samples in the minority class. **NearMiss** is a more sophisticated under-sampling technique that selects samples from the majority class based on their proximity to samples in the minority class.

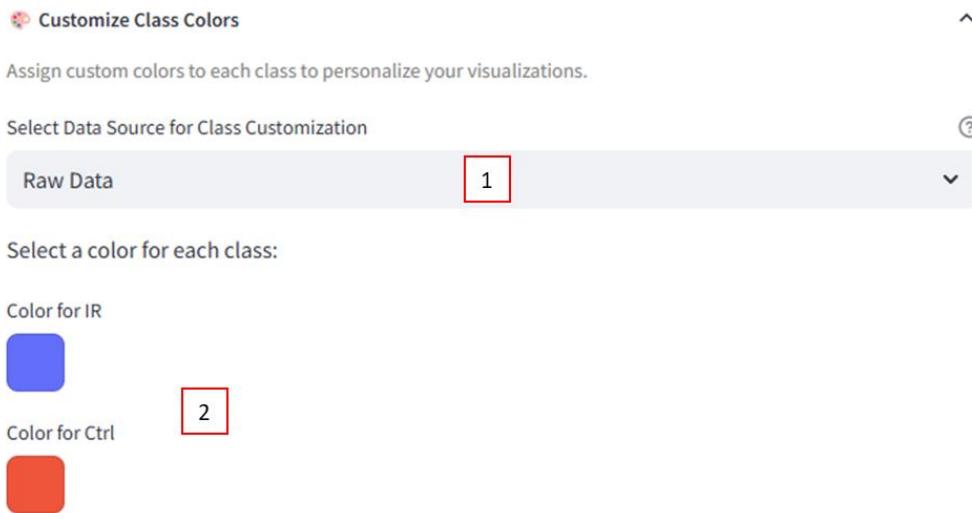
These last two expanders are both designed to balance the classes, thus improving classification model performances.

Customize Class Colors

The last expander is used to customize the class colors.

A data source (1); raw data, preprocessed data, oversampled data, or undersampled data; must be selected, and a color assigned to each class present in the dataset (2).

These choices will be retained and applied consistently across all analyses performed within the software.



Data Visualization

This sub-category is itself divided into four expanders, which will be explained one by one throughout this tutorial. Its purpose is to generate visualizations such as bar charts of class distributions, average spectra/features and individual spectra/features and Venn diagrams for feature comparisons.

Feature distribution by class

This first expander aims to visualize the features distribution and explore the dataset to gain insights into its characteristics and distribution.

For that, just select a data source (1) (either raw data, preprocessed data, oversampled or undersampled data) and also the feature to explore (2). A specific feature (either the Class or any features in the dataset) should be picked to have its distribution visualized across different classes.

Finally, define how the values should be aggregated for the feature histogram (e.g., total sum, average, or count per class) (3).

Feature Distribution by Class

Explore the distribution of a single feature across classes for detailed insights.

Select Data Source for Feature Visualization

Raw Data

1

Select Feature for Exploration

Class

2

Select Aggregation Function

sum

3

Show Feature Distribution

Multi-Feature Comparison: Radar, Line & Bar Charts

In addition, multiple features across classes can be compared using various visualization types such as bar, line, and radar charts (3), with the aim of gaining deeper insights into the dataset. When the bar chart is selected, colors can be assigned to each feature considered for comparison (5).

Multi-Feature Comparison: Radar, Line & Bar Charts

Visualize and compare multiple features across different classes using dynamic chart types such as radar, line, and bar plots. Ideal for uncovering patterns and class-specific trends..

Select Data Source for Multi-Feature Comparison

Raw Data

1

Select Features for Comparison

RBM47

UBA6

2

Select Visualization Type

Bar Chart

3

Select Aggregation Function

sum

4

Color for RBM47

5

Color for UBA6

Show Multi-Feature Comparison

⚠ **Note:** Don't forget to choose the desired features to compare (2) and the way how the values should be aggregated (4).

⚠ **Note:** As before, don't forget to choose the desired data source (1).

Signal & Molecular Profile Visualization

The purpose of this third expander is to display either the average profile (or spectrum) of all samples within a selected class (2) or the individual profile (3) of a specific sample by choosing its index. Multiple classes can also be selected simultaneously to overlay their average spectra for comparison.

Signal & Molecular Profile Visualization

^

Visualize individual and average signal profiles, whether spectral data or molecular intensity patterns (e.g., spectra, proteins, genes), grouped by class for in-depth exploration.

Select Data Source

?

Raw Data

1

▼

Select Class for Mean Profile

?

IR

Ctrl

2

Show Average Profile by Class

Select Profile Indices to Display

?

Index 0 (Class IR)

3

Show Individual Profiles

⚠ **Note:** As before, don't forget to choose the desired data source (1).

Venn Diagram

The fourth and final expander in this subcategory is designed to visualize the relationships and intersections among up to six different classes.

An informative message (2) will appear once the data source is selected (1), indicating the number of classes detected in the dataset. By clicking the "Show Venn Diagram" button, the diagram will be displayed. Additionally, by selecting option (3), the features that are unique to each class or shared among multiple classes can be visualized.

Venn Diagram

^

Venn diagram to visualize the relationships and intersections among up to six different classes

Select Data Source

?

Raw Data

1

▼

Detected 2 unique classes.

2

Show Venn Diagram

Show Common and Exclusive Features [?](#)

3

Correlations and Similarities

This sub-category is itself divided into two expanders, which will be explained individually throughout this tutorial.

Correlation

This first expander is designed to compute correlations between the average feature vectors of each class, using either the Pearson or Spearman method (3).

- Pearson correlation should be used when the data is normally distributed. It measures the linear relationship between two continuous variables.
- Spearman correlation is more appropriate when the data is non-parametric or does not follow a normal distribution. It assesses the strength and direction of a monotonic relationship based on rank values.

Correlation

^

Compute correlations between the average feature vectors of each class using Pearson or Spearman methods.

Select Data Source for Correlation

?

Raw Data

1

▼

 Raw* data contain missing values. Please go to the [Preprocessing](#) section to impute or delete NaNs.

2

Correlation Method

?

Pearson

3

▼

 Note: If the dataset contains missing values, an error message will be displayed, indicating that preprocessing steps such as imputing or removing NaNs are required before proceeding (2).

 Note: As before, don't forget to choose the desired data source (1).

In the result, each cell shows the correlation coefficient between two classes, based on the average of all numeric features.

Similarity

This second expander is designed to compare class profiles either using Cosine similarity (continuous angle-base comparison) or Cohen's Kappa (categorical agreement after feature discretization) (2).

- Cosine similarity measures the angle between feature vectors of each class (1 = identical direction, 0 = orthogonal).
- Cohen's Kappa evaluates the agreement in categorized feature profiles. 1 = perfect agreement, 0 = random, <0 = disagreement. Discretization splits each class feature vector into 3 categories based on intensity ranks, like transforming raw values into 'Low', 'Medium', and 'High' expressions. This allows Kappa to measure agreement on patterns, not exact numbers.

▲ Similarity

Compare class profiles either using **Cosine Similarity** (continuous angle-based comparison) or **Cohen's Kappa** (categorical agreement after feature discretization).

Select Data Source for Similarity (?)

Preprocessed 1 ▼

Similarity Method (?)

Cosine Similarity 2 ▼

⚠ **Note:** As before, don't forget to choose the desired data source (1).

AI Modeling

This third tab is divided into 2 sub-categories: unsupervised and supervised learning.

Unsupervised Learning

 Dimensionality Reduction ▼

 k-means Clustering and Silhouette Analysis ▼

Supervised Learning

 Train Machine Learning Models ▼

 Train Deep Learning Models ▼

 Save Model ▼

Unsupervised Learning

This section focuses on dimensionality reduction and clustering techniques to explore and visualize the structure of the dataset in an unsupervised way.

Dimensionality reduction

This first expander is intended for dimensionality reduction and/or cluster visualization using three methods: PCA, UMAP, and t-SNE.

The method can be selected in section (1). The appropriate data source must be defined in section (2).

The desired number of components is specified in section (3). A 2D plot is generated when two components are selected, while three or more components result in a 3D visualization.

A higher number of components generally leads to greater data compression.

Dimensionality Reduction

Reduce Dimensionality and Visualize Clusters Using PCA, UMAP or t-SNE

Visualization by Data Reduction

None 1 ▼

Data Source for Reduction

Raw data 2 ▼

Number of Components

2 3 - +

Feature Intensity

None 4 ▼

For PCA specifically, the explained variance for each component is displayed, along with the contribution of each ion to the corresponding components.

A specific feature can optionally be selected to highlight its intensity in the visualization (4).

k-means clustering and Silhouette analysis

This second expander is intended for assessing group formation and heterogeneity within the dataset.

First, define the appropriate data source in section (1).

Next, select a method to normalize the features prior to clustering—options include StandardScaler, RobustScaler, and MinMaxScaler (2).

Note: To assist in the selection of an appropriate clustering normalization method for datasets, a brief explanation of each approach is provided.

- **StandardScaler** is applied to standardize features by removing the mean and scaling to unit variance. This results in a distribution with a mean of 0 and a standard deviation of 1. It is recommended when the data follows a Gaussian (normal) distribution or when a transformation to zero mean and unit variance is desired. However, since it is sensitive to outliers, it may not be appropriate for datasets with significant outliers.
- **RobustScaler** is used to scale features using statistics that are robust to outliers. The median is subtracted, and scaling is performed according to the interquartile range (IQR). This method is suitable when the data contains outliers or when minimizing the impact of outliers on the scaling process is important. It is particularly effective for datasets with skewed distributions or extreme values.
- **MinMaxScaler** is employed to scale features to a specified range, typically between 0 and 1. The data is transformed so that the minimum value becomes 0 and the maximum becomes 1. This approach is suitable when the original distribution of the data needs to be preserved and when features have bounded ranges or when interpretability of scaled values is desired.

✳️ k-means Clustering and Silhouette Analysis

Assessing Group Formation and Heterogeneity

Select Data Source

Raw data

1

Select Scaler

StandardScaler

2

Enter Range of Clusters for Silhouette (e.g., 2-10)

2-10

3

Run Silhouette Analysis

Enter Specific Number of Clusters

4

4

-

+

Select Dimensionality Reduction Method

PCA

5

Select Number of Dimensions

2

6

Apply Specific Clustering

In section (3), specify the range of cluster numbers to evaluate for silhouette analysis (format: start–end). This analysis helps determine the optimal number of clusters a priori, before performing the actual clustering.

Once the optimal number of clusters has been identified—or if a specific number of clusters is already known—set the exact number to use for final clustering and visualization (4).

If necessary, dimensionality reduction can be applied before clustering (5).

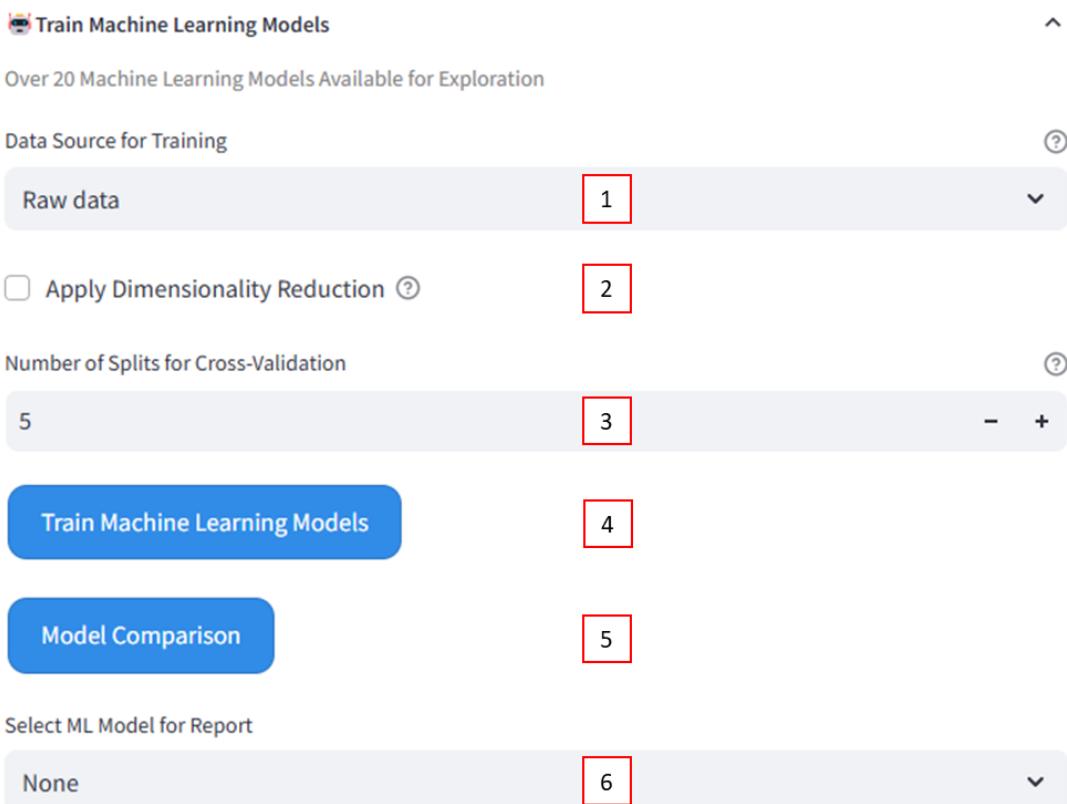
Finally, choose whether to visualize the clustering results in 2D or 3D (6).

Supervised Learning

This section focuses on supervised learning to train and save classification models by using either machine learning or deep learning algorithms.

Train Machine Learning Models

This first expander aims to train classification models by using machine learning. Indeed, over 23 algorithms, including linear models, tree-based models, and ensemble methods are trained and compared.



Train Machine Learning Models

Over 20 Machine Learning Models Available for Exploration

Data Source for Training

Raw data 1

Apply Dimensionality Reduction 2

Number of Splits for Cross-Validation

5 3 - +

Train Machine Learning Models 4

Model Comparison 5

Select ML Model for Report

None 6

⚠ Note: As for all analysis, don't forget to choose the desired data source (1).

If needed, a dimensionality reduction can be applied to the data before the training (2). Indeed, reducing feature dimensions, by using PCA, UMAP, or t-SNE, faster training and prevent overfitting in case of features>>>sample.

The models are evaluated by using a k-fold cross-validation. Knowing that the number of splits is chosen in section (3). Higher values give more reliable generalization estimates but increase

training time. For example, with 5 splits, the model trains on 80% of the data and validates on 20%, rotated across 5 cycles.

After clicking the « Train Machine Learning Models » button, a progress bar will appear, providing feedback on the training stage (4).

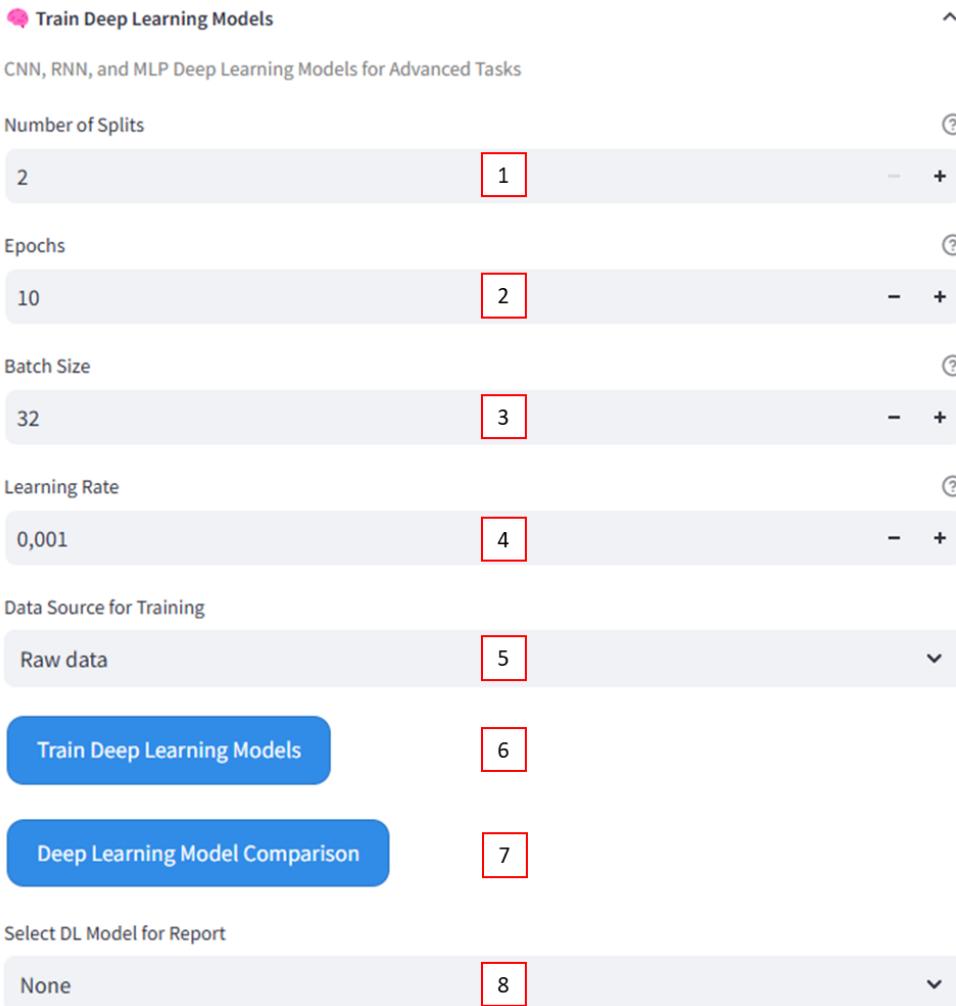
Once training is complete, click the “Model Comparison” button to view the performance of each algorithm (5). A bar chart will display the cross-validated accuracy and F1 score for all models, helping to identify the most effective one.

Additionally, the top three models, ranked by F1 score, are presented with detailed metrics: F1 score, accuracy, sensitivity, and specificity.

To view the confusion matrix and classification report for a specific model, simply select it (6) and click the corresponding button.

Train Deep Learning Models

As the previous expander, this one aims to train classification models by using, this time, deep learning algorithms. Indeed, 3 algorithms, including CNN, RNN and MLP are trained and compared.



Train Deep Learning Models

CNN, RNN, and MLP Deep Learning Models for Advanced Tasks

Number of Splits

2 1

Epochs

10 2

Batch Size

32 3

Learning Rate

0,001 4

Data Source for Training

Raw data 5

Train Deep Learning Models 6

Deep Learning Model Comparison 7

Select DL Model for Report

None 8

⚠ Note: As for all analysis, don't forget to choose the desired data source (5).

The models are evaluated by using a k-fold cross-validation. Knowing that the number of splits is chosen in section (1). Higher values give more reliable generalization estimates but increase training time.

In contrary to machine learning models, different parameters need to be adjusting before the training, like batch normalization, epochs and learning rate.

The epochs (2) correspond to the number of complete passes through the training dataset. Too few may lead to underfitting, too many may cause overfitting. Start with 10–20 and adjust based on performance.

The batch size (3) is the number of samples used per gradient update. Smaller batches give noisier but more frequent updates. Larger batches are more stable but require more memory. A batch size of 32 is a common starting point.

For the learning rate (4), a lower value makes learning slower but more stable. Try 0.001 as a starting point.

After clicking the « Train Deep Learning Models » button, a progress bar will appear, providing feedback on the training stage (6).

Once training is complete, click the “Deep Learning Model Comparison” button to view the performance of each algorithm (7). A bar chart will display the cross-validated accuracy and F1 score for all models, helping to identify the most effective one.

To view the confusion matrix, classification report, training/validation accuracy and loss functions for a specific model, simply select it (8) and click the corresponding button.

It will then be possible to retrieve the results of the model with or without cross-validation.

Save Model

This last expander is designed to simply save trained models and associated feature-label data in .pkl format for future use or real-time applications.

Save Model

Storing Your Trained Models for Future Use.

Select Model Type

Machine Learning

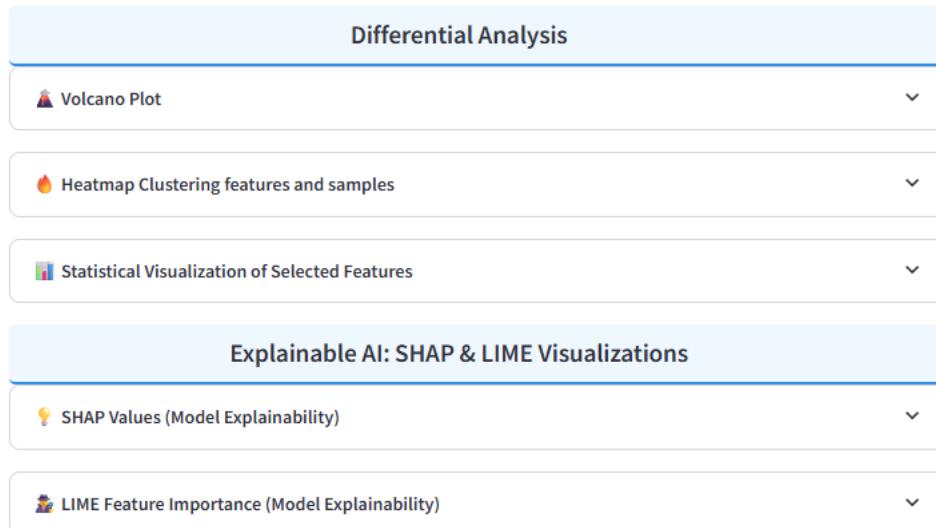
RandomForest

Save Model

⚠ Note: To save a model, simply select the model type, either a machine learning or deep learning model (1), and then choose the corresponding algorithm (2).

Biomarker Discovery

This fourth tab is divided into 2 sub-categories: statistical hypothesis tests and black box model analysis. This two aims to discover biomarkers, either dependent on the classification models, or independently.



The screenshot shows the Biomarker Discovery section of the PRISM Profiler. It is divided into two main categories: "Differential Analysis" and "Explainable AI: SHAP & LIME Visualizations".

- Differential Analysis**
 - Volcano Plot
 - Heatmap Clustering features and samples
 - Statistical Visualization of Selected Features
- Explainable AI: SHAP & LIME Visualizations**
 - SHAP Values (Model Explainability)
 - LIME Feature Importance (Model Explainability)

Differential Analysis

This first sub-category includes three expanders, each offering a method for biomarker discovery independent of classification models: volcano plot analysis, heatmap clustering, and statistical testing.

Volcano Plot

This first expander, using volcano plot, aims to discover significant features between conditions using p-value and fold change thresholds for either binary or multi class.

As for all analysis, the desired data source needs to be chosen (1).

The analysis can be done on all the features in the dataset (2) or on selected features (3). It is possible to enable feature detection to automatically identify peaks of interest based on an intensity threshold (4-5). If wanted, the intensity threshold for peak detection needs to be set (6).

⚠ Note: Don't forget to set the p-value and fold change threshold to filter significant features (7-8).

Finally, check the last box to highlight feature names in the Volcano Plot (8).

Volcano Plot

Significant features between conditions using p-value and fold change thresholds for both binary and multi-class.

Select Data Source for Volcano Plot

Raw data

1

Select All Features for Volcano Plot

2

Features

3

Use Feature Detection

4

Peak Intensity Threshold

0,01000

5

- +

Select P-Value Threshold

0,050

6

- +

Select Fold Change Threshold

2,0

7

- +

Highlight Feature Names

8

Display Volcano Plot

Heatmap Clustering features and samples

The second expander, using heatmap clustering, aims to cluster feature and samples with statistical significance tested on intensities.

As for all analysis, the desired data source needs to be chosen (2).

The analysis can be done on all the features in the dataset (1) or on selected features (3).

The colors used for under expression, neutral expression and overexpression can be changed if needed (4).

Check the “Average by class” box to average the feature values by class in the Heatmap (5).

It is possible to perform a statistical test on the selected features (6). If wanted, the p-value threshold for statistical test needs to be set (7). In addition, choose the data type for the statistical test (original or transformed log2 (fold-change)) (8).

 Heatmap Clustering features and samples

Feature and sample clustering-heatmap can be performed on all or selected features, with statistical significance tested on original or log2 intensities.

Select All Features

1

Select Data Source for Heatmap

2

Raw data

Features (comma-separated)

3

RBM47, UBA6

 Color of Underexpression

4

 Color of Neutral

 Color of Overexpression

Average by Class

5

Perform Statistical Test

6

P-value

7

0,01

Select Data Type for Statistical Test

Original Intensity

8

Show Heatmap

Statistical Visualization of Selected Features

This third expander allows to display boxplots, violin plots, or bar plots for selected features, to assess their statistical significance.

To use it, simply enter a comma-separated list of features to visualize (1), and choose the appropriate statistical test to apply (2): Kruskal-Wallis, Mann-Whitney, independent t-test, or ANOVA.

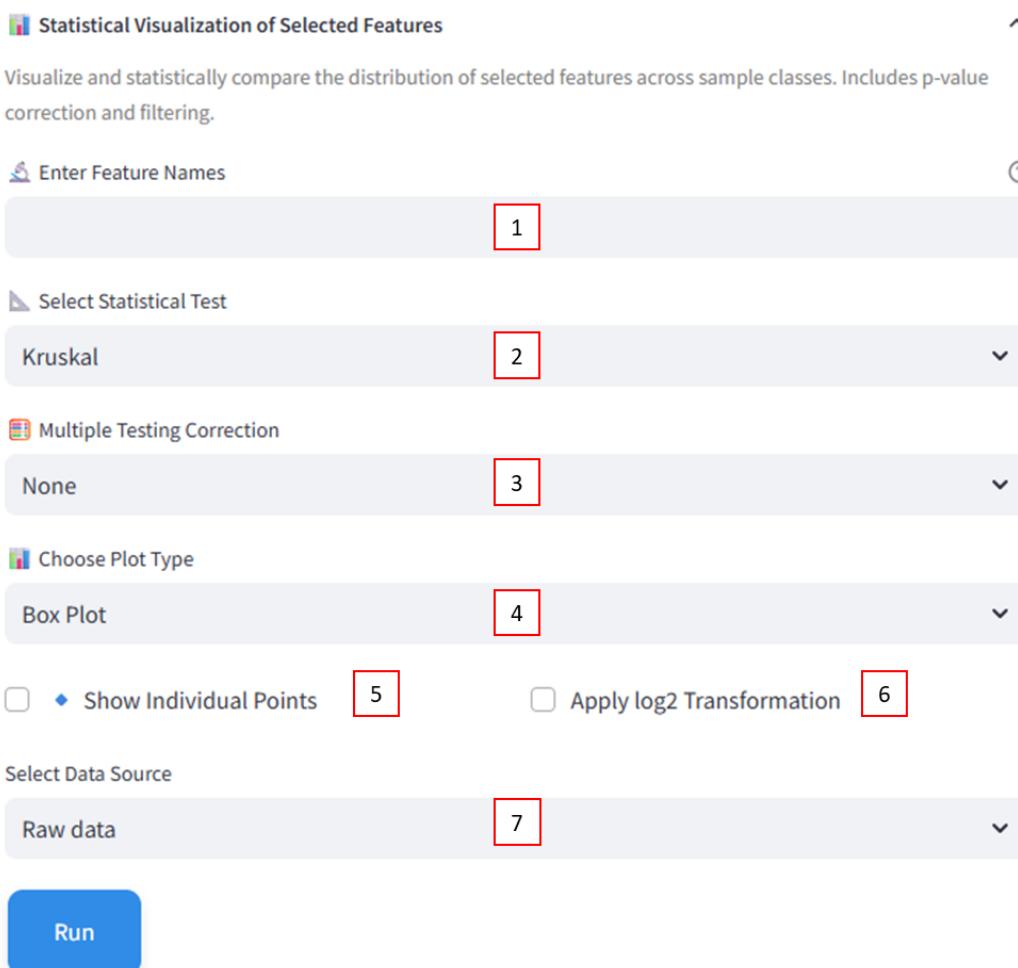
Note : The choice of statistical test depends on the number of groups being compared and the distribution of the data. Profiler suggests appropriate tests based on these factors.

In general :

- **Mann-Whitney test** : Used for comparing two groups when the data are not normally distributed.
- **Independent t-test** : Used for comparing two groups when the data are normally distributed and have equal variances.
- **Kruskal-Wallis test** : Suitable for comparing three or more groups when the data are not normally distributed.
- **ANOVA** : Used for comparing three or more groups when the data are normally distributed.

When the normality of the data is uncertain, non-parametric tests such as Mann-Whitney test or Kruskal-Wallis tests are safer choices, though they tend to be less powerful than their parametric counterparts.

When dealing with multi-class rather than binary data, it is recommended to apply a multiple testing correction, such as Bonferroni or False Discovery Rate (Benjamini-Hochberg), depending on the characteristics of the dataset (3).



1

2

3

4

5

6

7

You can optionally check the box (5) to overlay a scatter plot on the boxplot or violin plot. In addition, select the desired plot type: boxplot, violin plot, or bar plot (4).

Optionally, check the box (6) to use log2 transformed values for the plots.

⚠ Note: As for all analysis, don't forget to choose the desired data source (7).

Black Box Model Analysis

This second sub-category includes two expanders, each offering a method for biomarker discovery dependent of classification models: SHAP values and LIME feature importance.

SHAP Values

In this first expander, the contribution of each dataset feature to the model's predictions is visualized using SHAP.

The type of model to interpret, machine learning or deep learning, must first be selected (1).

⚠ Note: For now, biomarker discovery, using SHAP and LIME, is only available for machine learning models.

The interpretation will be based on the model previously selected in the 'Train machine learning models' section.

⚠ Note: As with all analyses, the appropriate data source must be selected (2). It must be the same as the one used during model training.

💡 SHAP Values (Model Explainability)

Visualize how each feature contributes to model predictions using SHAP.

Select Model Type for Interpretation

Machine Learning

1

Select Data Source

Raw data

2

Show SHAP Values Importance

However, SHAP cannot explain the predictions of all algorithms.

The table below summarizes which algorithms are supported and which are not.

Yes (13)	No (10)
Decision Tree	AdaBoost
Extra Tree	Bagging
Extra Trees	Dummy
Gradient Boosting	KNeighbors
Hist Gradient Boosting	Linear SVC
Linear Discriminant Analysis	NaiveBayes_Gaussian
LGBM	NaivesBayes_Bernoulli
Logistic Regression	Nearest Centroid
Passive Aggressive	Quadratic Discriminant Analysis

Perceptron Random Forest Ridge Classifier SGD	SVC
--	-----

LIME Feature Importance

This second expander provides a LIME-based interpretation of how each feature in the dataset contributes to the model's predictions.

Begin by selecting the type of model to interpret, either machine learning or deep learning (1).

⚠ Note: For now, biomarker discovery, using SHAP and LIME, is only available for machine learning models.

The interpretation will rely on the model previously chosen in the 'Train machine learning models' section.

⚠ Note: As for all analyses, be sure to select the correct data source (2). It must correspond to the one used during model training.

LIME Feature Importance (Model Explainability)

 Model-based interpretation using LIME. For binary classification, note that class orientation and top features may vary per sample.

Select Model Type for LIME Interpretation

Machine Learning

1

Select Data Source for LIME

Raw data

2

Show LIME Feature Importance

Keep in mind that LIME does not support all algorithms.

The table below outlines which algorithms are compatible with LIME and which are not.

Yes (14)	No (9)
AdaBoost	Bagging
Decision Tree	Dummy
Extra Tree	Hist Gradient Boosting
Extra Trees	KNeighbors
Gradient Boosting	Linear Discriminant Analysis
Linear SVC	Quadratic Discriminant Analysis
LGBM	NaiveBayes_Gaussian
Logistic Regression	NaivesBayes_Bernoulli

Passive Aggressive Perceptron Random Forest Ridge Classifier SGD SVC	Nearest Centroid
---	------------------

Enrichment

This fifth tab is only composed of one expander for the enrichment analysis.

Biological and Molecular Pathway Enrichment

✖
Enrichment Analysis
▼

Enrichment analysis

The goal, here, is to analyze the biological pathways for enrichment insights.

✖
Enrichment Analysis
^

✖
Analyzing Biological Pathways for Enrichment Insights.

Select a gene set category

Reactome

1

Select a database

Reactome_2022

2

Select an organism

Human

3

Select number of pathways to display

4

Name 1

5

Genes 1

6

+ Add Class

7

- Remove Class

8

Perform Enrichment

Indeed, just choose a category of gene sets to analyze (KEGG, GO, Reactome, ARCHS4, Drug, MSigDB and Other) (1).

From the selected category, choose a specific gene set database (mostly the year of the database) (2).

31

Additionally, select the organism for which the enrichment analysis will be performed, either Human, Mouse, Rat, Yeast, Fly, Worm or Fish (3).

The number of pathways statistical enriched to display can be chosen in the section (4).

Finally, genes of interest (comma-separated) should be entered in section (6) and the respective conditions of interest in section (5).

⚠ Note: Enrichment analysis can be performed on multiple gene groups. To achieve this, classes can be added (6) or removed (7), and a name should be assigned to each group.

Survival Analysis

This sixth tab is divided into 2 sub-categories: group comparison and multivariate regression.

Group comparison

 Kaplan-Meier Analysis

Multivariate Regression

 Cox Model Analysis

 Import test data and Make Predictions

Group Comparison

Kaplan-Meier Analysis

The Kaplan-Meier curve is a statistical method used to estimate the probability of survival over time, considering the time until an event occurs (such as death, relapse, or recovery).

To perform this analysis, the dataset must include a column for "Overall Survival", a "State" column (indicating whether the event of interest occurred) and a "Class" column (groups).

This method is particularly useful for comparing survival between two or more groups of patients (e.g., younger vs. older individuals, treated vs. untreated). It also allows for the estimation of key survival metrics, such as the median survival time.

To assess whether survival differences between groups are statistically significant, a log-rank test is typically performed.

 Kaplan-Meier Analysis

Kaplan-Meier survival analysis to assess time to a specific event (death/relapse...).

 Requires: 'Overall survival', 'State', and 'Class' columns.

Run Kaplan-Meier Analysis

Multivariate Regression

Cox Model Analysis

A Cox analysis (or Cox proportional hazards regression model) is used to evaluate the impact of multiple variables (called covariates) on survival time or the time to a specific event (such as death, relapse, or recovery).

Unlike the Kaplan-Meier curve, which compares survival between groups based on a single variable, the Cox model allows for simultaneous adjustment for multiple factors (e.g., age, sex, comorbidities). This makes it possible to isolate the independent effect of each variable on the outcome.

The model helps to identify factors associated with survival and to quantify their impact. For each covariate, the Cox model estimates a hazard ratio (HR):

- An HR > 1 indicates an increased risk of the event.
- An HR < 1 indicates a reduced risk.
- For example, HR = 2 means the risk is twice as high for individuals with that characteristic, compared to the reference group.

⚠ Note: To perform this analysis (1), the dataset must include a column for "Overall Survival", a "State" column (indicating whether the event of interest occurred) and covariates columns such as age, BMI, markers (either numerical or categorical).

Cox Model Analysis

Cox model to analyze the impact of covariates on survival.

ⓘ Requires: 'Overall survival', 'State', and covariates such as age, BMI, markers... (numeric or categorical).

Run Cox Model Analysis

1

Enter model name:

cox_model

2

Save Cox Model

3

Download Cox Model

4

Download Preprocessor Pipeline

5

Finally, the Cox model can be saved by clicking the "Save Cox Model" button (3) after the desired model name is entered (2). Two buttons will then appear, allowing the Cox model and the corresponding preprocessing pipeline to be downloaded (4-5).

Import test data and Make Predictions

This last expander is designed to make predictions on a new dataset using a previously saved Cox model.

To do so, simply upload:

- a CSV or Excel file containing the new dataset,
- the previously saved Cox model (.pkl), and
- the corresponding preprocessing pipeline (.pkl), which was saved at the same time as the model.

Import test data and Make Predictions ^

Import a CSV or Excel file and use a Saved Cox model to make predictions.

Upload your CSV or Excel file

Drag and drop file here

Limit 98GB per file • CSV, XLSX

[Browse files](#)

Upload your pre-saved Cox model (.pkl)

Drag and drop file here

Limit 98GB per file • PKL

[Browse files](#)

Upload your preprocessor pipeline (.pkl)

Drag and drop file here

Limit 98GB per file • PKL

[Browse files](#)

The output consists of the overall survival prediction and descriptive statistics for the new patient, based on the previously trained Cox model.

Wizard

This seventh tab is divided into 2 sub-categories: Real-time predictions and post-hoc predictions.

Real-Time Predictions

 Real-Time and Post-Acquisition

Post-hoc Predictions

 Using tabular data

Real-Time Predictions

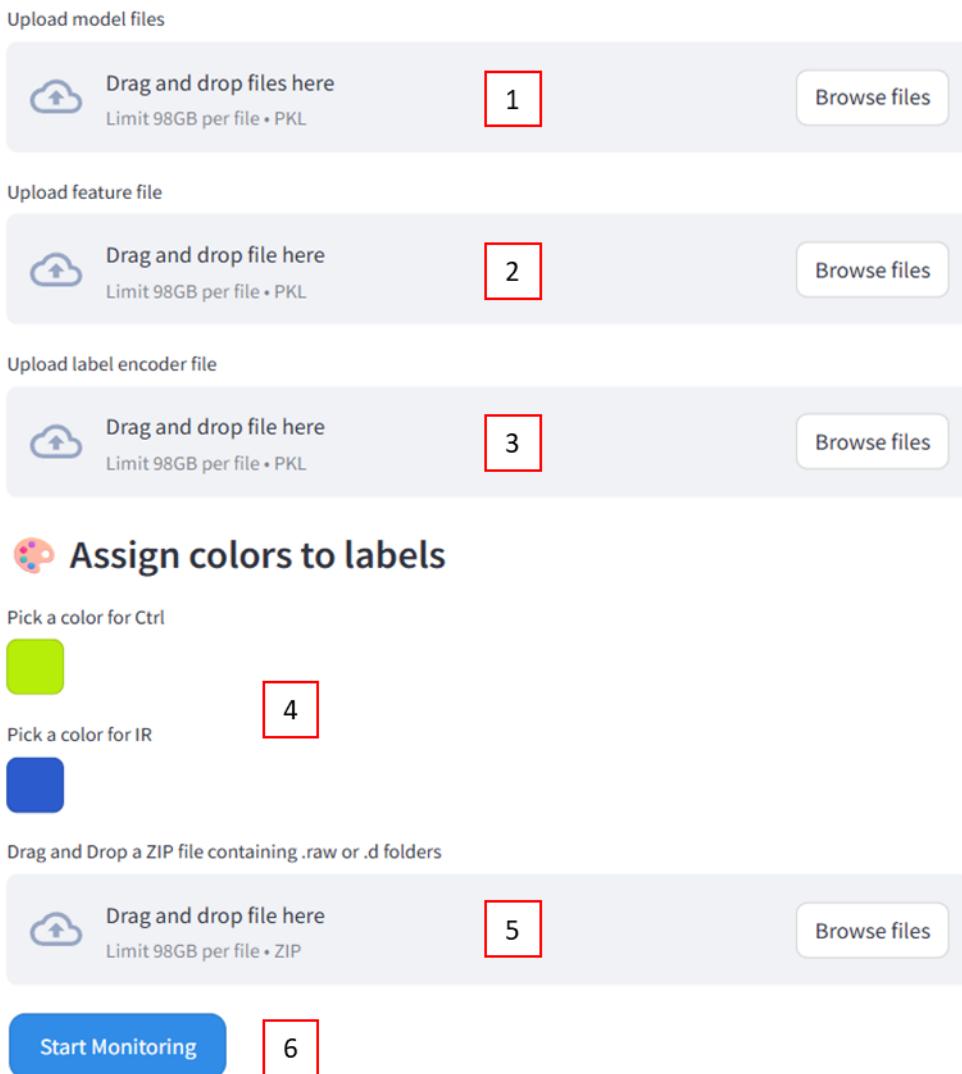
⚠ Note: When using Profiler via the web interface, real-time prediction directly from the instrument is not supported. However, it is possible to drag and drop a Raw file from Waters, Bruker, or Thermo to generate predictions. If real-time prediction is wanted, contact the author to obtain local version of Profiler.

Real-Time and Post-Acquisition

For post-acquisition predictions, zipped raw files are used (5). Prior to this, the following elements must be uploaded:

- the previously trained model (1),
- the corresponding feature set (2), and
- the associated label encoder (3), saved at the same time as the model.

Appropriate colors should be assigned to each label as desired (4).



The screenshot shows the PRISM Profiler web interface with the following sections and numbered steps:

- Upload model files**: A box with a cloud icon and the text "Drag and drop files here Limit 98GB per file • PKL". A red box surrounds the "1" button to its right.
- Upload feature file**: A box with a cloud icon and the text "Drag and drop file here Limit 98GB per file • PKL". A red box surrounds the "2" button to its right.
- Upload label encoder file**: A box with a cloud icon and the text "Drag and drop file here Limit 98GB per file • PKL". A red box surrounds the "3" button to its right.
- Assign colors to labels**:
 - Pick a color for Ctrl**: A green square with a red box around the "4" button to its right.
 - Pick a color for IR**: A blue square with a red box around the "4" button to its right.
- Drag and Drop a ZIP file containing .raw or .d folders**: A box with a cloud icon and the text "Drag and drop file here Limit 98GB per file • ZIP". A red box surrounds the "5" button to its right.
- Start Monitoring**: A blue button with a red box around the "6" button to its right.

Finally, click the “Start Monitoring” button (6) to generate predictions on the new dataset using the previously trained model.

Post-hoc Predictions

Using tabular data

For post-hoc predictions, CSV/XLSX files are used (1). Prior to this, the following elements must be uploaded:

- the previously trained model (2),
- the corresponding feature set (3), and
- the associated label encoder (4), saved at the same time as the model.

Using tabular data

Upload CSV/XLSX File

Drag and drop file here
Limit 98GB per file • CSV, XLSX

1

Browse files

Upload Trained Model (Pickle)

Drag and drop file here
Limit 98GB per file • PKL

2

Browse files

Upload Feature Names (Pickle)

Drag and drop file here
Limit 98GB per file • PKL

3

Browse files

Upload Label Encoder (Pickle)

Drag and drop file here
Limit 98GB per file • PKL

4

Browse files

Predict with Ground Truth

5

Predict without Ground Truth

6

Finally, two options are available to generate predictions on the new dataset using the previously trained model:

- Click “Predict with Ground Truth” (5) when the true outcomes are known and a comparison is desired. In addition to the prediction results displayed in the table, a confusion matrix and a classification report will be generated.
- Click “Predict without Ground Truth” (6) when the true outcomes are not available.