
Supplementary Information for “Data-driven discovery of

spatiotemporal dynamical systems with sparse interpretable neural

networks”

Siyuan Xing, Qingyu Han, Efstathios G. Charalampidis, Ying-Cheng Lai

July 4, 2025

Contents

Supplementary Note 1: Training of SREINet 2

Supplementary Note 2: Numerical experiments 3

Supplementary Note 3: Computational complexity 11

Supplementary Note 4: Learning with empirical data 12

Supplementary Table 1: Memory consumption of SINDy 13

Supplementary Table 2: Memory comparison of SREINet and a recent NN 13

Supplementary Table 3: Training performance and computational cost analysis 14

Supplementary Table 4: Effect of noise 14

Supplementary Table 5: Comparison with MANDy 14

Supplementary Table 6: Training hyperparameters 15

Supplementary Note 5: Identified paradigmatic spatiotemporal dynamic systems 16

1

Supplementary Note 1: Training of SREINet

Algorithm 1 Training of SREINet (sparse regression embedded interpretable network)

Data dimension: d; early-stopping loss value: δ; maximum epochs per dimension: nmax; minimum pruning
for early stopping: ∆min.

Generate a piecewise-continuous pruning schedule F with N periods.
for i = 1, 2, . . . , d do

for epoch = 1, 2, . . . , nmax do
∆=F (epoch) ▷ ∆: current pruning threshold
B=generate binary masks(∆) ▷ B: binary masks
for i = 1, 2, . . . , l do ▷ l: number of layers

W [i] = W [i] ∗B[i] ▷ elementwise product to zero the weights less than ∆
end for
for (Xi, Ẋi) in training set do ▷ Mini-batch training

train loss[i] = train step(Xi, Ẋi, B)
end for
for (Xi, Ẋi) in validation set do

val loss[i] = ∥NN (Xi)− Ẋi∥2
end for
if mean(train loss) ≤ δ and ∆ ≥ ∆min then

break ▷ Stop the training of the ith dimension
end if

end for
end for

Algorithm 1 presents the pseudocode of the proposed training method. Similar to standard training of
neural networks (NNs), the method splits data into training and validation sets using an 80-20 ratio. To
start, we generate a N -period pruning schedule, where each period is characterized by a piecewise-continuous
function with three length-tunable segments: a zero segment, a transition segment, and a maximum segment.
Introducing the transition and periodicity to the pruning schedule serves to mitigate the risk of accidentally
pruning dominant terms before their weights grow beyond the threshold. Inside the main loop, each
dimension is individually trained for a maximum of nmax steps. During each step, a new threshold is
selected according to the pruning schedule, which will then be used to generate binary masks, i.e., 0-1
matrices that match the shapes of the weight matrices. Afterwards, these binary masks are element-wise
multiplied with the corresponding weight matrices to nullify the weights below the current threshold. After
the nullification, the mini-batch training is deployed to minimize the loss function, along with the evaluation
of the loss values on the validation set. When the training-loss mean falls below a minimum value and the
pruning value exceeds its minimum threshold, training for this dimension is deemed complete. The process
is repeated for each dimension until training is done for all dimensions.

Algorithm 2 Generate binary masks: masks = generate binary masks(∆)

Input: pruning threshold: ∆.
binary masks = []
for W in model.trainable variables do

mask = |W | ≥ ∆ ▷ Create a mask where each element is 1 if |W ij | ≥ ∆, otherwise 0
mask[0,0] = 1 ▷ The weights connecting constant neurons cannot be pruned
binary masks.append(mask)

end for
return binary masks

The two key pseudocodes for the generation of binary masks and mini-batch training with binary masking,

2

Algorithm 3 Train step with pruning: loss = train step[X , Ẋ , B]

Input: measurement data X , velocity-field data Ẋ , binary masks B
ˆ̇X = NN (X) ▷ Estimate the velocity field by SREINet

loss= ∥ ˆ̇X − Ẋ∥2 ▷ Calculate loss value
gradients = calculate gradient(loss, model.trainable weights)
for i = 1, 2, . . . , l do ▷ l: the number of layers

masked gradients[i] = gradients[i]∗B[i] ▷ ∗: element-wise product
end for
optimizer.apply gradients(masked gradients, model.trainable weights)
return loss

are detailed in Algorithms 2 and 3. The first pseudocode generates binary masks (matrices) by iterating
through the trainable variables of the network, assigning ones to those with a absolute value greater than
the current threshold and zeros to those below. Note that the weights connecting neurons with constant 1
cannot be pruned, because SREINet has only one path for the constant term, so pruning any weight on this
path will eliminate the constant term. The second pseudocode involves multiplying the binary masks with
the gradients during backpropagation, preventing the gradients of pruned weights from contributing to the
gradient update.

Supplementary Note 2: Numerical experiments

We describe more training details and numerical results from the examples presented in the main text.

Lorenz-96 model

The differential equation of the Lorenz-96 system reads

ẋj = xj−1(Axj+1 −Bxj−2)− Cxj + F, j = 1, 2, . . . , n, (1)

where x−1 = xn−1, x0 = xn, and xn+1 = x1. In numerical experiments, we choose n = 100, which divides
a latitude circle equally into 100 sectors. To generate the data, we use an 8th order Runge-Kutta method,
DOP853 to simulate the dynamics from t = 0 to t = 10 and produce 6 trajectories originated from random
initial conditions. With a time step dt = 10−3, 60, 000 points are collected in total. This dataset is then
shuffled and split into training and validation sets with the 80-20 ratio. To construct SREINet for the
Lorenz-96 system, we adopt univariate first-order monomial candidate functions in each layer, assuming that
the highest polynomial order is two. This yields a two-layer SREINet with 101 neurons per layer (comprising
a constant function φ = 1 and 100 monomials of input variables). The network weights are initialized with
a random distribution with zero mean and standard deviation 10−3. Training is performed using the Adam
optimizer at the fixed learning rate of 10−3 and mini-batch size of 128. This size balances the training speed
and accuracy with the given data volume. We set the maximum pruning threshold to 0.3. The minimum
loss value for early stopping of each dimension is fixed at 10−10, with the early-stopping pruning at 0.1. The
pruning schedule has a period of 30 epochs, beginning with the first 15% of the epochs without pruning,
followed by a 75% transition period using a shifted sine function. After the training, we perform numerical
simulation from the final time of the training data to further validate the network’s extrapolation capability.

As the approximation of vector field has been discussed in the main text, we focus herein on the error
evolution of the state variables, as shown in the Supplementary Fig. 1, where a good agreement between
the states of identified model and of the actual system can be seen for t < 6. For t > 6, the effect of chaos
intrinsic to the system can be seen, where the trajectories from the SREINet-discovered model and the actual
system diverge. The chaotic behavior is in fact shared by all systems studied with random initial conditions.
The divergent behavior can be further seen through the time series of four sampled states x20, x40, x60, x80,
as shown in Supplementary Fig. 2.

3

Supplementary Figure 1: Evolution of absolute solution error in the Lorenz-96 system with random initial
conditions. The trajectory of the identified model closely matches the ground truth for t < 6. Due to the
system’s chaotic nature, small errors in the vector field prediction eventually cause the trajectory from the
discovered model to diverge over time from that of the actual system.

Kuramoto model

The Kuramoto model under external forcing has the form

θ̇i = ωi +
K

n

n∑
j=1

sin(θj − θi) + h sin(θi) i = 1, 2, . . . , n (2)

where ωi is the natural frequency of the i-th oscillator, K is the coupling strength, and h is the coefficient
of external forcing. To be concrete, we set the system size to be n = 60. The Kuramoto network structure
is in fact equivalent to that of, e.g., a 120-dimension Lorenz-96 system. We assume the oscillators’ nature
frequencies are evenly distributed in [−5, 5], use h = 0.2 and focus on the weak coupling regime by setting
K = 2. We collect 10 trajectories emanating from random initial conditions with a normal distribution of
N ∼ (0, 10−4). Each trajectory is simulated using a backward differentiation scheme for the time duration
of T = 500, and sampled 5000 points with time step dt = 0.1. In total, we produce a dataset with 50, 000
points, then shuffle and split them into training and validation sets. We construct a two-layer SREINet with
cosine and sine activation functions in each layer. With an additional neuron φ = 1, each layer possesses
121 neurons, yielding a SREINet with 1212 = 14, 641 trainable weights. During the training, we use the
Adam optimizer at the constant learning rate of 10−3 with the mini-batch size of 128. The trained SREINet
includes terms sin2(θi) and cos2(θi) that sum to constant values. We use a post-processing code to combine
such terms into constants when recovering the governing equations. The pruning period is 50 with the
maximum pruning threshold of 0.15. The loss value and pruning threshold for early stopping is set to 10−10

and 0.05, respectively.
Supplementary Fig. 3 presents the time evolution of the absolute phase difference between the original

and identified systems. The results are produced by employing a backward differentiation scheme with
the initial conditions of the first trajectory in the training set. The phases of the identified system closely
matches with the ground truth for t < 25 and deviations occur afterwards due to chaos. The growth of
the error can also been seen from the snapshots of sampled oscillators at distinct time instants, as shown in
Supplementary Fig. 4.

4

Supplementary Figure 2: Time series of four distinct states in the Lorenz-96 system: (a) x20, (b) x40, (c)
x60, (d) x80. Black curve: ground truth; red dash curve: simulation of the SREINet-discovered system. In
each case, the time series from the discovered model agrees with that of the actual model for t < 6. The
apparently divergence for t > 6 is the result of chaos.

Discrete ϕ4 model

The ϕ4 system with a cubic nonlinearity is given by

üi = C(ui+1 + ui−1 − 2ui) + 2(ui − u3
i), i = −n/2,−n/2 + 1, . . . , n/2− 1, (3)

where C is the coupling strength between adjacent nodes. This model describes the dynamics of a 1D discrete
lattice with N nodes, where the coupling term (un+1 + un−1 − 2un) represents the discrete Laplacian. We
impose free boundary conditions: un/2 = un/2−1 and u−n/2−1 = u−n/2. Let xi = ui. The corresponding
state-space form of Eq. (3) is

ẋi = xi+n,

ẋi+n = C(xi+1 + xi−1 − 2xi) + 2(xi − x3
i).

(4)

We set the system size to n = 50 and C = 2, and employ the numerical integrator DOP853 to generate 6
trajectories with a time span of T = 500 and random initial conditions drawn from N (0, 0.1). We sample
the data with the time step dt = 0.1, yielding in total 50, 000 points. For convenience, we group the data
of the velocity equations into the first 50 dimension and the data of the acceleration equations into the last
50 dimensions. The data are split into training and validation sets with the 80 − 20 ratio. We construct
a 3-layer SREINet with monomial candidate functions, resulting in 101 candidate functions per layer with

5

Supplementary Figure 3: Evolution of prediction errors in the Kuramoto System. The inference error of the
vector field remain below 4 × 10−4. Despite of this small error, the trajectories of states diverge for t > 20
due to chaos.

Supplementary Figure 4: Snapshots of six Kuramoto oscillators on a ring. The oscillator indices are i ∈
0, 10, 20, 30, 40, 50, 60. Top left: t = 0, top right: t = 10, bottom left: t = 20, bottom right: t = 30.

2 × 1012 = 20, 402 trainable weights in total. We adopt the Adam optimizer at the learning rate of 0.001

6

with the mini-batch size 128. The pruning schedule has 60 epochs per period, with the maximum pruning
threshold of 0.5. The early-stopping loss pruning thresholds are 10−10 and 0.15, respectively. Supplementary
Fig. 5 shows that the state prediction error is negligible with t < 60, as further illustrated in Supplementary
Fig. 5. The trajectory from the SREINet identified system diverges from that from the original system for
t > 60.

Supplementary Figure 5: Error evolution in the ϕ4 system.

DNLS model

The discrete nonlinear Schrödinger equation (DNLS) has the form

iu̇j = −C

2
(uj+1 + uj−1 − 2uj)− |uj |2uj , (5)

where the dynamical variable uj is complex, C is the coupling constant and the coupling term uj+1+uj−1−2uj

represents discrete Laplacian. We choose n = 50 sites, and set C = 4. The one-dimensional lattice is
supplemented with periodic boundary conditions: u−26 = u24 and u25 = u−25. we apply the numerical
scheme “DOP853” to simulate 16 trajectories for the duration of T = 100. The initial amplitudes are
randomly selected while the initial phases are uniformly distributed in [0, 2π]. We generate a dataset of
160, 000 samples with the time step dt = 0.01 to ensure convergence. For convenience, we write uj = αj+iβj

and obtain the differential equations for the real and imaginary parts:

α̇j = −2(αj+1 + βj−1 − 2βj)− βj(α
2
j + β2

j),

β̇j = 2(αj+1 + αj−1 − 2αj) + αj(α
2
j + β2

j).
(6)

We split the real and imaginary parts of data and concatenate them to reconstruct the dataset. This doubles
the number of dimensions to 100. We shuffle the dataset and divide it into training and validation sets using
the 80-20 ratio. We apply a 3-layer SREINet with monomial candidate functions, identical to the SREINet
structure that we applied to the ϕ4 model. We train the SREINet using the Adam optimizer at the fixed
learning rate of 5× 10−3 with the mini-batch size 512. We set the maximum pruning threshold to 0.15 with
the period of 40 epochs. Early stopping is triggered when the training loss falls below 10−10 and the pruning
value is greater than 0.05. The predictions are produced using the initial conditions of the first trajectory
in the dataset. As illustrated in Supplementary Fig. 7, the SREINet discovered model can yield trajectories
that match the ground truth for t < 50.

7

Supplementary Figure 6: Time histories of sampled nodes in the ϕ4 system. Top left: u10, top right: u20,
bottom left: u30, bottom right: u40. The black solid curve corresponds to the ground truth and the red dash
curve is from the SREINet discovered system.

AL model

The Ablowitz-Ladik model is given by

iu̇j = −1

2
(uj+1 − 2uj + uj−1)−

1

2
|uj |2(uj+1 + uj−1), (7)

with the periodic boundary conditions u−1 = un, and un+1 = u0. We simulate four trajectories with the
time span of T = 500, where the initial amplitude of the nodal dynamics are randomly selected and the
initial phases are uniformly distributed in [0, 2π]. The dataset is produced by sampling each trajectory with
the time step dt = 0.1, with 200, 000 points. Similar to the DNLS, we set uj = αj + iβj and get

α̇j =
1

2
(−βj+1 + 2βj − βj−1) +

1

2
(α2

j + β2
j)(−βj+1 − βj−1),

β̇j =
1

2
(αj+1 − 2αj + αj−1) +

1

2
(α2

j + β2
j)(αj+1 + αj−1).

(8)

We concatenate the data for the real and imaginary parts and apply the 80-20 ratio to split it into training
and validation sets. We generate a 3-layer SREINet with 129 neurons per layer. The candidate functions of
each layer are Φ = [1, x1, x2, . . . , x128], leading to a network with 2× 129× 129 = 33, 282 trainable weights.
The learning rate of the Adam optimizer is set as 10−3, with the mini-batch size 512. The early-stopping loss
threshold is 10−10 while the early-stopping pruning threshold is 0.03. The maximum pruning value is 0.10.

8

Supplementary Figure 7: Error evolution of the DNLS with random initial conditions. The dynamics of the
SREINet identified system accurately match the ground truth for t < 40 and divergence occurs afterwards
due to chaos.

Supplementary Figure 8: Representative time series from the SREINet identified DNLS system in comparison
with the ground truth. Shown are the time series at four different spatial sites: |u10|, |u15|, |u20|, and |u30|.
The SREINet identified system accurately predicts wave propagation in the DNLS system.

9

The pruning profile has 40 epochs per period. As shown in Supplementary Fig. 9, the SREINet discovered
model can precisely predict the evolution of states for t < 100. The large prediction errors afterwards are
mainly caused by the phase difference, as can be verified through the amplitude histories of, e.g., u−30, u−15,
u0, u15 in Supplementary Fig. 10. The agreement between the prediction (red) and ground truth (black) is
reasonable, in spite of the discrepancies in 150 < t < 200.

Supplementary Figure 9: Error evolution of the AL model with random initial conditions. The dynamics
generated by the SREINet identified system agree well with the ground truth for t < 100.

Supplementary Figure 10: Representative time series generated by the SREINet identified system for the
AL model. Shown are the time series from four spatial sites: |u−30|, |u−15|, |u0|, and |u15|. The SREINet
discovered system can accurately predict wave propagation in the AL system.

10

Supplementary Note 3: Computational complexity

Space complexity

The memory consumption of SREINet is estimated by summing three components: weights, layer outputs,
and input batch data. Additional memory overhead for gradients and optimizer are neglected as they do
not affect the overall space complexity. During training, the total number of floating-point numbers needed
by the network is

(p− 1)(n+ 1)2 + (n+ 1)︸ ︷︷ ︸
weights

+ pmb(n+ 1)︸ ︷︷ ︸
layer

outputs

(9)

where n is the data dimension (network width is argumented by 1 due to the constant term), p is the number
of layers, and mb is the mini-batch size. The first term represents the total number of weights (trainable and
fixed). The second term characters the memory required to store layer outputs during forward propagation,
which are also needed for gradient computation in backpropagation. The final term represents the memory
for mini-batch input. In summary, the space complexity [1] of SREINet is

O(pn2 + pnmb). (10)

In contrast, the space complexity of a recent NN structure [2] is O(pn3 + pn2mb), and that of a matrix-
formulation algorithm (e.g., SINDy [3]) is O(m(n+p)!/(n!p!)) (see Supplementary Table 1), where m denotes
the total number of data points.

Time complexity

We analyze the time complexity [1] of SREINet during training through floating-point operations (FLOPs)
of forward and backward propagation, neglecting other computational overhead.

During forward propagation, each layer (except the last one) performs matrix-vector product, yielding
(n + 1)2mb FLOPs for multiplications and (n + 1)nmb FLOPs for additions. The total cost per layer is
therefore

Ffp = (p− 1)(n+ 1)(2n+ 1)mb︸ ︷︷ ︸
matrix−vector

product

+(p− 1)(n+ 1)mb︸ ︷︷ ︸
Hadamard
product

+(2n+ 1)mb︸ ︷︷ ︸
last
layer

, (11)

where the second term represents the FLOPs of the Hadamard product, and the third term indicates the
FLOPs of the output layer.

To evaluate the FLOPs of backpropagation, we recall that the output of SREINet is denoted by N (x),
abbreviated as N in the following analysis. In addition, the output of the l-th layer is represented by y[l].
The gradients of the network output with respect to the parameters and activations of the l-th layer are

∂N
∂W

[l]
ij

=
∂N

∂y
[l+1]
i

∂y
[l+1]
i

∂W
[l]
ij

, (12)

∂N
∂y

[l]
i

=

[
∂N

∂y[l+1]

]T
∂y[l+1]

∂y
[l]
i

, (13)

where ∂N
∂y

[l+1]
i

(and ∂N
∂y[l+1]) is obtained through the backpropagation from the (l+1)-th layer, and computational

cost of evaluating
∂y

[l+1]
i

∂W
[l]
ij

and ∂y[l+1]

∂y
[l]
i

using automatic differentiation is negligible [4]. Consequently, the FLOPs

required for backpropagation through the l-th layer is
[
(n+ 1)2 + (2n+ 1)(n+ 1)

]
mb. The total FLOPs for

backpropagation across all layers is therefore

Fbp = (p− 1)
[
(n+ 1)2 + (2n+ 1)(n+ 1)

]
mb + (n+ 1)mb, (14)

where (n+1)mb is the backpropagation FLOPs of the output layer, which involves only addition operations.
In summary, combining forward and backward propagation, the time complexity of SREINet per training
step is

F = Ffp + Fbp = O(pn2mb). (15)

11

On the contrary, the time complexity per straining step of the recent NN [2] is O(pn3mb). The SINDy
algorithm [3] employs Sequential Thresholded Least Squares (STLSQ), which involves solving a least-squares
problem as its core computational step. The time complexity of this step only is O(ms2), where s =
(n+ p)!/(p!n!) represents the number of candidate functions in the library.

Supplementary Note 4: Learning with empirical data

We use the triple-pendulum dataset from [5], which contains three experimental datasets of free swing
dynamics. The first two datasets are employed for identifying the governing equations of the triple-pendulum
system, while the third dataset is used for validation.

The original position data was acquired using optical encoders at a sampling frequency of 10 kHz over
a 60-second duration, with velocity data computed via finite difference methods. Applying numerical
differentiation again to the velocity data would significantly amplify noise in the acceleration estimations. To
mitigate this issue, we downsample the datasets with a step size of 100. Subsequently, we apply smoothed
numerical differentiation using a Savitzky-Golay filter with a window length of 7 and polynomial order of 2.

The input variables are defined as x = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3], while the outputs correspond to ẋ. The
training dataset comprises input data constructed by concatenating position and velocity measurements,
whereas the output data is formed by concatenating velocity and acceleration data.

The training dataset is partitioned into mini-batches of size 128, and we adopt a learning rate of 0.01.
We construct a 3-layer SREINet, where each layer employs candidate functions

Φ(x) = [1,xT , cos(x)T , sin(x)T , cos(2x)T , sin(2x)T]T ,

with cos(x) = [cos(x1), cos(x2), . . . , cos(xn)]
T . We train the first three output dimensions (velocities) and

the last three output dimensions (accelerations) separately, using different hyperparameters. For the first
three dimensions, we employ a pruning threshold of 0.6, an early stopping pruning threshold of 0.4, and
an early stopping loss threshold of 10−6. These dimensions are trained for 240 epochs per period with a
maximum of 10 periods.

For the last three dimensions, we use a pruning threshold of 0.1, an early stopping pruning threshold of
0.05, and an early stopping loss threshold of 0.2. These dimensions are trained for 200 epochs per period with
a maximum of 5 periods. The final loss values for the six dimensions are 4.1×10−15, 1.7×10−8, 2.4×10−14,
5.5 × 10−1, 1.4, and 3.5, respectively. Despite the relatively large errors in the last three dimensions, the
identified system can still provide a reasonable approximation of the original vector field.

12

Supplementary Table 1: Memory consumption of SINDy

Θ Ξ
p n Size (m× r) Memory (GB) Size (r × n) Memory (GB)

2
10 2000×66 4.92×10−4 66×10 2.46×10−6

100 2000×5151 3.83×10−2 5151×100 1.9×10−3

1000 2000×501501 3.74 501501×1000 1.87

3
10 2000×286 2.13×10−3 286×10 1.065×10−5

100 2000×176851 1.32 176851×100 6.59×10−2

1000 2000×1.67×108 1249.23 1.67×108×1000 624.61

5
10 2000×3003 0.022 3003×10 1.12×10−4

100 2000×9.95×107 719.43 9.95×107×100 35.97
1000 2000×8.46×1012 6.30×107 8.46×1012×1000 3.15×107

Table 1: Nominal memory consumption of SINDy with respect to order of nonlinearity p and number of
dimension n. The size and memory requirement of two SINDy data structures: Θ and Ξ, grows exponentially
as the dimension n and the polynomial order p increase. Sample points: m = 2000. The number of monomials
up to the pth order: r =

(
n+p
n

)
. Each element in the matrices is a single-precision floating-point number (4

bytes).

Supplementary Table 2: Memory comparison of SREINet and a
recent NN

Memory Cost (GB) SREINet (n) A recent NN structure [2] (n)

p 10 100 1000 10 100 1000

2 5.3e-6 8.6e-5 4.2e-3 5.3e-5 8.6e-3 4.2
3 5.7e-6 1.2e-4 7.9e-3 5.7e-5 1.2e-2 7.9
5 6.6e-6 2.0e-4 0.015 6.6e-5 2.0e-2 15.4

Table 2: Memory consumption of SREINet in comparison with that of a recent neural-network structure [2]
for various dimensions n and nonlinearity orders p during mini-batch training. SREINet significantly reduces
the memory usage, enabling the identification of system dynamics with thousands of dimensions on a desktop
computer. In comparison to the matrix-based formulation such as SINDy, SREINet also reduces the memory
storage by orders of magnitude for high dimensions. The mini-batch size is 128.

13

Supplementary Table 3: Training performance and computational
cost analysis

Model Dimensions
Pruning epochs

per period
Average
epochs

Time/dim
[s]

Total time
[min]

Lorenz-96 100 30 81.19 30.11 50.18
Kuramoto 60 50 87.55 35.25 35.25

ϕ4 100 60 40.05 18.83 31.38
DNLS 100 40 101.53 62.07 103.45
AL 128 60 102.10 93.23 198.89

Table 3: Comparison of pruning periods, average training epochs, and computational time of the five models
studied in the main text. Except for ϕ4, the rest four models converge with more than one pruning period.
This pruning mechanism has greatly reduced the effort required for hyperparameter tuning and, therefore,
significantly enhanced the algorithm’s robustness.

Supplementary Table 4: Effect of noise

Noise Level Mean Std 25% (Q1) 50% (Median) 75% (Q3)
1% 0.006 0.005 0.002 0.004 0.008
5% 0.033 0.027 0.008 0.025 0.052
10% 0.100 0.075 0.027 0.095 0.159
15% 0.225 0.166 0.062 0.215 0.358

Table 4: Statistics of coefficient errors at different noise levels.

Supplementary Table 5: Comparison with MANDy

MANDy SREINet
Points Mean [Sec] Std [Sec] Mean [Sec] Std [Sec]

3,000 44.96 2.01 N/A N/A
4,000 95.78 0.26 94.24 17.44
5,000 200.70 8.30 86.20 18.09
6,000 287.58 2.50 99.84 18.32
7,000 431.67 11.81 83.63 8.48
8,000 587.86 14.23 79.22 17.33
9,000 788.33 5.69 100.54 21.90
10,000 1115.93 0.16 118.30 35.28

Table 5: Computation time of MANDy and SREINet versus data size.

14

Supplementary Table 6: Training hyperparameters

Model Learning Loss Pruning Pruning Epochs Zero Transition Transition
rate threshold threshold period/ per period percent percent function

Lorenz-96 0.001 1e− 10 0.3 50 30 15% 75% Sine in [−π, π]
Kuramoto 0.001 1e− 10 0.015 50 50 15% 75% Sine in [−π, π]
ϕ4 0.001 1e− 10 0.5 10 60 15% 75% Sine in [−π, π]
DNLS 0.005 1e− 10 0.15 20 40 15% 75% Sine in [−π, π]
AL 0.001 1e− 10 0.1 20 60 15% 75% Sine in [−π, π]

Table 6: Hyperparameters for the selected models.

15

Supplementary Note 5: Identified paradigmatic spatiotemporal dynamic
systems

Lorenz-96.

Ground truth:
ẋj = xj−1(xj+1 − xj−2)− xj + 8, j = 1, 2, . . . , n,

with periodic boundary conditions x−1 = xn−1, x0 = xn, and xn+1 = x1.
Identified system (program output):

(x1)’= 7.999988556 - 0.9999985695*x1 + 0.9999999404*x100*x2 - 0.9999997318*x100*x99
(x2)’= 7.999989033 - 0.9999985695*x2 + x1*x3 - 0.9999999106*x1*x100
(x3)’= 7.999988556 - 0.9999984205*x3 - 0.9999997616*x1*x2 + 1.00000006*x2*x4
(x4)’= 7.999989986 - 0.9999988675*x4 - 0.9999997616*x2*x3 + 0.9999999702*x3*x5
(x5)’= 7.999988556 - 0.9999985695*x5 - 0.9999998212*x3*x4 + 0.9999999702*x4*x6
(x6)’= 7.999989033 - 0.9999984205*x6 - 0.9999996722*x4*x5 + 0.999999851*x5*x7
(x7)’= 7.99998951 - 0.9999987185*x7 - 0.9999996722*x5*x6 + 0.9999999404*x6*x8
(x8)’= 7.999989986 - 0.9999988079*x8 - 0.999999702*x6*x7 + 0.9999997318*x7*x9
(x9)’= 7.99999094 - 0.9999988675*x9 - 0.9999998212*x7*x8 + 0.9999999702*x10*x8
(x10)’= 7.99999094 - 0.9999989569*x10 - 0.999999851*x8*x9 + 0.9999997914*x11*x9
(x11)’= 7.99998951 - 0.9999984205*x11 - 0.999999851*x10*x9 + 0.9999999106*x10*x12
(x12)’= 7.99998951 - 0.9999987185*x12 - 0.9999997318*x10*x11 + 0.9999999106*x11*x13
(x13)’= 7.999990463 - 0.9999989867*x13 - 0.999999702*x11*x12 + 0.999999851*x12*x14
(x14)’= 7.999990463 - 0.9999986887*x14 - 0.9999997318*x12*x13 + 0.9999999702*x13*x15
(x15)’= 7.99998951 - 0.9999986589*x15 - 0.9999998808*x13*x14 + 0.9999999702*x14*x16
(x16)’= 7.999990463 - 0.9999989271*x16 - 0.9999997616*x14*x15 + 0.9999999702*x15*x17
(x17)’= 7.999989986 - 0.9999986887*x17 - 0.999999851*x15*x16 + 0.9999999404*x16*x18
(x18)’= 7.999988556 - 0.9999985695*x18 - 0.9999997318*x16*x17 + 0.999999851*x17*x19
(x19)’= 7.99999094 - 0.9999990463*x19 - 0.999999702*x17*x18 + x18*x20
(x20)’= 7.999989986 - 0.9999986291*x20 - 0.9999997914*x18*x19 + 0.9999999702*x19*x21
(x21)’= 7.999989033 - 0.9999985695*x21 - 0.9999998212*x19*x20 + 0.9999998808*x20*x22
(x22)’= 7.999988556 - 0.9999986291*x22 - 0.9999997616*x20*x21 + 0.999999851*x21*x23
(x23)’= 7.99998951 - 0.9999988079*x23 - 0.999999702*x21*x22 + 1.00000003*x22*x24
(x24)’= 7.99998951 - 0.9999987185*x24 - 0.999999851*x22*x23 + 0.9999997914*x23*x25
(x25)’= 7.999989986 - 0.9999989271*x25 - 0.9999997616*x23*x24 + 0.9999999106*x24*x26
(x26)’= 7.999989986 - 0.9999987483*x26 - 0.9999997914*x24*x25 + 0.9999999106*x25*x27
(x27)’= 7.999989986 - 0.9999989569*x27 - 0.9999999106*x25*x26 + 0.9999999106*x26*x28
(x28)’= 7.99999094 - 0.9999988675*x28 - 0.9999999106*x26*x27 + x27*x29
(x29)’= 7.999988556 - 0.9999986887*x29 - 0.9999999404*x27*x28 + 1.000000119*x28*x30
(x30)’= 7.999988079 - 0.9999997616*x28*x29 + 0.9999999702*x29*x31 - 0.9999984503*x30
(x31)’= 7.999988556 - 0.9999985695*x31 - 0.9999999404*x29*x30 + 0.9999999702*x30*x32
(x32)’= 7.99998951 - 0.9999988675*x32 - 0.9999997914*x30*x31 + 0.9999997914*x31*x33
(x33)’= 7.999988556 - 0.9999985099*x33 - 0.9999998212*x31*x32 + x32*x34
(x34)’= 7.999988556 - 0.9999984503*x34 - 0.999999702*x32*x33 + 0.9999999404*x33*x35
(x35)’= 7.999989033 - 0.9999985099*x35 - 0.9999997318*x33*x34 + 0.999999851*x34*x36
(x36)’= 7.999989986 - 0.9999987185*x36 - 0.999999851*x34*x35 + 0.9999999106*x35*x37
(x37)’= 7.999989986 - 0.9999989271*x37 - 0.9999997914*x35*x36 + 0.9999999404*x36*x38
(x38)’= 7.99998951 - 0.9999986887*x38 - 0.9999997616*x36*x37 + 0.9999999404*x37*x39
(x39)’= 7.99998951 - 0.9999985397*x39 - 0.9999998212*x37*x38 + 1.000000089*x38*x40
(x40)’= 7.99998951 - 0.9999988377*x40 - 0.999999851*x38*x39 + 0.9999999106*x39*x41
(x41)’= 7.999988556 - 0.9999985695*x41 - 0.9999997616*x39*x40 + 0.9999998212*x40*x42
(x42)’= 7.999990463 - 0.9999988973*x42 - 0.9999999106*x40*x41 + 1.00000006*x41*x43
(x43)’= 7.999988556 - 0.9999988079*x43 - 0.9999997616*x41*x42 + 1.00000003*x42*x44
(x44)’= 7.999989033 - 0.9999985695*x44 - 0.9999998212*x42*x43 + 0.9999999702*x43*x45
(x45)’= 7.999987125 - 0.9999983311*x45 - 0.9999998808*x43*x44 + 0.9999998212*x44*x46

16

(x46)’= 7.99998951 - 0.9999987483*x46 - 0.9999997914*x44*x45 + 0.9999999404*x45*x47
(x47)’= 7.99998951 - 0.9999987781*x47 - 0.9999997318*x45*x46 + x46*x48
(x48)’= 7.999990463 - 0.9999987483*x48 - 0.999999851*x46*x47 + 1.00000006*x47*x49
(x49)’= 7.999989033 - 0.9999988675*x49 - 0.9999997914*x47*x48 + 0.9999998808*x48*x50
(x50)’= 7.999989033 - 0.9999988377*x50 - 0.9999997914*x48*x49 + 1.00000003*x49*x51
(x51)’= 7.999989033 - 0.9999985695*x51 - 0.9999997914*x49*x50 + 0.9999999404*x50*x52
(x52)’= 8.000012398 - 1.00000149*x52 - 1.000000238*x50*x51 + x51*x53
(x53)’= 7.999988079 - 0.9999983609*x53 - 0.999999702*x51*x52 + 1.00000003*x52*x54
(x54)’= 7.999990463 - 0.9999986887*x54 - 0.9999998808*x52*x53 + 0.999999851*x53*x55
(x55)’= 7.999989986 - 0.9999989867*x55 - 0.999999702*x53*x54 + 1.00000003*x54*x56
(x56)’= 7.999990463 - 0.9999989271*x56 - 0.9999998808*x54*x55 + 1.00000006*x55*x57
(x57)’= 7.99998951 - 0.9999986291*x57 - 0.9999997616*x55*x56 + 0.9999999404*x56*x58
(x58)’= 7.99998951 - 0.9999987483*x58 - x56*x57 + 0.9999999404*x57*x59
(x59)’= 7.999989033 - 0.9999986887*x59 - 0.9999998212*x57*x58 + 0.9999997318*x58*x60
(x60)’= 7.99998951 - 0.9999988079*x60 - 0.9999998808*x58*x59 + 1.00000003*x59*x61
(x61)’= 7.99998951 - 0.9999986887*x61 - 0.9999997914*x59*x60 + 1.00000003*x60*x62
(x62)’= 7.999989033 - 0.9999987483*x62 - 0.9999997318*x60*x61 + 0.9999999404*x61*x63
(x63)’= 7.999989986 - 0.9999988377*x63 - 0.9999995828*x61*x62 + 0.9999999106*x62*x64
(x64)’= 7.999989033 - 0.9999984503*x64 - 0.9999997616*x62*x63 + 0.9999999404*x63*x65
(x65)’= 7.999989033 - 0.9999987185*x65 - 0.9999998212*x63*x64 + 0.9999997914*x64*x66
(x66)’= 7.99998951 - 0.9999986887*x66 - 0.9999997318*x64*x65 + 0.999999851*x65*x67
(x67)’= 7.999989986 - 0.9999988079*x67 - 0.9999997318*x65*x66 + 1.000000149*x66*x68
(x68)’= 7.999989986 - 0.9999988675*x68 - 0.9999997914*x66*x67 + 0.9999999702*x67*x69
(x69)’= 7.999990463 - 0.9999988079*x69 - 0.9999999106*x67*x68 + 0.9999999702*x68*x70
(x70)’= 7.999988079 - 0.9999982715*x70 - 0.9999998212*x68*x69 + x69*x71
(x71)’= 7.999990463 - 0.9999986887*x71 - 0.9999997914*x69*x70 + 0.9999999702*x70*x72
(x72)’= 7.999989986 - 0.9999985397*x72 - 0.9999997914*x70*x71 + 0.9999999702*x71*x73
(x73)’= 7.999988556 - 0.9999986887*x73 - 0.9999997616*x71*x72 + 1.000000149*x72*x74
(x74)’= 7.999988556 - 0.9999986589*x74 - 0.9999996126*x72*x73 + x73*x75
(x75)’= 7.999990463 - 0.9999988973*x75 - 0.9999999106*x73*x74 + x74*x76
(x76)’= 7.999989986 - 0.9999987185*x76 - 0.9999999106*x74*x75 + 1.00000006*x75*x77
(x77)’= 7.99998951 - 0.9999986887*x77 - 0.9999997318*x75*x76 + x76*x78
(x78)’= 7.999989033 - 0.9999988377*x78 - 0.9999997914*x76*x77 + 0.9999999702*x77*x79
(x79)’= 7.99999094 - 0.9999990165*x79 - 0.9999999106*x77*x78 + 0.9999999404*x78*x80
(x80)’= 7.999989033 - 0.9999985993*x80 - 0.9999996722*x78*x79 + 0.9999999106*x79*x81
(x81)’= 7.999988079 - 0.9999985397*x81 - 0.9999997914*x79*x80 + 0.9999999106*x80*x82
(x82)’= 7.999989986 - 0.9999988377*x82 - 0.9999997318*x80*x81 + 0.9999998212*x81*x83
(x83)’= 7.999989986 - 0.9999987781*x83 - 0.9999997616*x81*x82 + x82*x84
(x84)’= 7.999989986 - 0.9999987781*x84 - 0.9999997616*x82*x83 + x83*x85
(x85)’= 7.999988079 - 0.9999983907*x85 - 0.9999997318*x83*x84 + 0.999999851*x84*x86
(x86)’= 7.99998951 - 0.9999988377*x86 - 0.999999702*x84*x85 + 0.9999999404*x85*x87
(x87)’= 7.999989986 - 0.9999988675*x87 - 0.9999998212*x85*x86 + 0.9999999702*x86*x88
(x88)’= 7.999989033 - 0.9999984205*x88 - 0.999999851*x86*x87 + 0.9999999106*x87*x89
(x89)’= 7.999987125 - 0.9999983907*x89 - 0.9999996722*x87*x88 + 1.00000003*x88*x90
(x90)’= 7.999989033 - 0.9999985993*x90 - 0.9999997914*x88*x89 + 0.9999998808*x89*x91
(x91)’= 7.99998951 - 0.9999987483*x91 - 0.9999997318*x89*x90 + 1.00000003*x90*x92
(x92)’= 7.99999094 - 0.999999851*x90*x91 + 0.9999999404*x91*x93 - 0.9999988675*x92
(x93)’= 7.99998951 - 0.9999983907*x93 - 0.9999998212*x91*x92 + x92*x94
(x94)’= 7.999989986 - 0.9999987483*x94 - 0.9999997318*x92*x93 + 1.00000003*x93*x95
(x95)’= 7.99999094 - 0.9999989867*x95 - 0.9999997914*x93*x94 + 0.9999999702*x94*x96
(x96)’= 7.99999094 - 0.9999988079*x96 - 0.9999998212*x94*x95 + 0.999999851*x95*x97
(x97)’= 7.999988079 - 0.9999982417*x97 - 0.999999851*x95*x96 + 1.000000089*x96*x98
(x98)’= 7.99998951 - 0.9999987185*x98 - 0.9999997914*x96*x97 + 0.9999999702*x97*x99
(x99)’= 7.999991417 - 0.9999989569*x99 - 0.9999998212*x97*x98 + 0.9999999106*x100*x98

17

(x100)’= 7.999990463 - 0.9999989867*x100 + 0.9999999106*x1*x99 - 0.9999997914*x98*x99

ϕ4

Ground truth (state space form):

ẋi = xi+n,

ẋi+n = 2(xi+1 + xi−1 − 2xi) + 2(xi − x3
i),

with free boundary conditions x1 = x0, x50 = x51.

Identified system (program output):
(x1)’= 1.000000047*x51
(x2)’= 1.000000106*x52
(x3)’= 0.999999816*x53
(x4)’= 1.000000002*x54
(x5)’= 1.000000049*x55
(x6)’= 0.9999999962*x56
(x7)’= 0.9999999984*x57
(x8)’= 0.9999999509*x58
(x9)’= 0.999999985*x59
(x10)’= 1.000000035*x60
(x11)’= 0.9999999969*x61
(x12)’= 1.00000002*x62
(x13)’= 1.000000001*x63
(x14)’= 0.9999999619*x64
(x15)’= 1.000000018*x65
(x16)’= 0.9999999979*x66
(x17)’= 0.9999999739*x67
(x18)’= 0.999999983*x68
(x19)’= 1.000000038*x69
(x20)’= 1.000000051*x70
(x21)’= 1.000000031*x71
(x22)’= 1.000000057*x72
(x23)’= 1.000000007*x73
(x24)’= 1.000000059*x74
(x25)’= 1.000000046*x75
(x26)’= 1.000000008*x76
(x27)’= 1.000000009*x77
(x28)’= 0.9999999341*x78
(x29)’= 1.000000007*x79
(x30)’= 1.000000000x80
(x31)’= 1.000000000x81
(x32)’= 1.000000001*x82
(x33)’= 0.9999999549*x83
(x34)’= 1.000000038*x84
(x35)’= 0.9999999983*x85
(x36)’= 1.00000004*x86
(x37)’= 1.000000007*x87
(x38)’= 1.000000057*x88
(x39)’= 1.000000002*x89
(x40)’= 0.9999999955*x90
(x41)’= 1.000000005*x91
(x42)’= 1.000000015*x92

18

(x43)’= 0.9999999808*x93
(x44)’= 0.9999998647*x94
(x45)’= 1.000000031*x95
(x46)’= 1.000000012*x96
(x47)’= 1.000000024*x97
(x48)’= 1.00000002*x98
(x49)’= 1.000000029*x99
(x50)’= 1.000000027*x100
(x51)’= - 1.999999992*x1ˆ3 + 2.000000052*x2
(x52)’= 2.00000017*x1 - 1.999999968*x2 - 1.999999843*x2ˆ3 + 1.999999766*x3
(x53)’= 2.000000189*x2 - 1.999999985*x3 - 1.999999927*x3ˆ3 + 1.999999985*x4
(x54)’= 2.000000182*x3 - 1.99999997*x4 + 2.000000182*x5 - 2.000000193*x4ˆ3
(x55)’= 2.000000026*x4 - 1.999999817*x5 + 2.000000026*x6 - 2.000000039*x5ˆ3
(x56)’= 2.000000033*x5 - 2.000000033*x6 + 2.000000033*x7 - 2.000000034*x6ˆ3
(x57)’= 1.999999978*x6 - 1.999999978*x7 - 1.999999964*x7ˆ3 + 1.999999978*x8
(x58)’= 2.000000028*x7 - 2.000000221*x8 + 2.000000028*x9 - 1.99999996*x8ˆ3
(x59)’= 2.000000481*x8 - 2.000000481*x9 + 2.00000043*x10 - 2.00000024*x9ˆ3
(x60)’= 1.999999876*x9 - 1.999999876*x10 - 2.000000226*x10ˆ3 + 1.999999876*x11
(x61)’= 1.99999992*x10 - 1.99999992*x11 + 2.000000123*x12 - 2.000000228*x11ˆ3
(x62)’= 1.999999917*x11 - 1.999999917*x12 - 2.000000106*x12ˆ3 + 2.000000117*x13
(x63)’= 1.999999982*x12 - 1.999999982*x13 + 1.999999982*x14 - 1.999999913*x13ˆ3
(x64)’= 2.000000156*x13 - 1.999999967*x14 + 1.999999967*x15 - 1.999999755*x14ˆ3
(x65)’= 2.000000022*x14 - 1.99999983*x15 + 2.000000022*x16 - 1.999999828*x15ˆ3
(x66)’= 1.999999841*x15 - 2.000000037*x16 + 1.999999841*x17 - 2.000000215*x16ˆ3
(x67)’= 1.999999976*x16 - 1.999999976*x17 - 2.000000097*x17ˆ3 + 1.999999976*x18
(x68)’= 1.999999712*x17 - 2.000000268*x18 + 2.000000083*x19 - 2.000000339*x18ˆ3
(x69)’= 2.000000115*x18 - 2.000000115*x19 + 2.000000115*x20 - 2.000000114*x19ˆ3
(x70)’= 2.000000119*x19 - 2.000000119*x20 + 1.99999992*x21 - 2.000000136*x20ˆ3
(x71)’= 1.999999837*x20 - 2.000000053*x21 - 1.999999774*x21ˆ3 + 1.999999837*x22
(x72)’= 2.000000146*x21 - 1.999999945*x22 + 1.999999743*x23 - 2.000000133*x22ˆ3
(x73)’= 2.000000208*x22 - 2.000000005*x23 - 1.999999935*x23ˆ3 + 2.000000208*x24
(x74)’= 1.999999934*x23 - 1.999999745*x24 - 2.00000011*x24ˆ3 + 1.999999934*x25
(x75)’= 2.000000028*x24 - 2.000000228*x25 + 2.000000028*x26 - 1.999999942*x25ˆ3
(x76)’= 1.999999966*x25 - 2.000000056*x26 - 1.99999996*x26ˆ3 + 2.000000056*x27
(x77)’= 1.999999896*x26 - 1.999999896*x27 - 2.000000095*x27ˆ3 + 2.000000099*x28
(x78)’= 2.000000062*x27 - 2.000000062*x28 + 2.000000062*x29 - 2.000000014*x28ˆ3
(x79)’= 2.000000044*x28 - 1.999999664*x29 - 2.000000224*x29ˆ3 + 1.999999854*x30
(x80)’= 2.000000097*x29 - 2.000000097*x30 + 2.000000097*x31 - 2.000000069*x30ˆ3
(x81)’= 1.999999884*x30 - 2.000000277*x31 - 2.000000012*x31ˆ3 + 2.000000277*x32
(x82)’= 2.000000116*x31 - 1.999999935*x32 - 2.000000046*x32ˆ3 + 1.999999935*x33
(x83)’= - 2.000000201*x33 + 2.000000103*x32 - 1.999999993*x33ˆ3 + 2.000000103*x34
(x84)’= 1.999999933*x33 - 2.000000126*x34 - 2.000000377*x34ˆ3 + 2.000000126*x35
(x85)’= 1.999999875*x34 - 1.999999875*x35 - 1.999999947*x35ˆ3 + 1.999999875*x36
(x86)’= 2.000000063*x35 - 2.000000269*x36 - 1.999999866*x36ˆ3 + 2.000000063*x37
(x87)’= 1.999999839*x36 - 2.000000013*x37 - 1.999999782*x37ˆ3 + 1.999999839*x38
(x88)’= 2.000000035*x37 - 2.000000234*x38 + 2.000000035*x39 - 1.999999808*x38ˆ3
(x89)’= 2.000000031*x38 - 2.000000031*x39 + 1.999999816*x40 - 2.000000069*x39ˆ3
(x90)’= 1.99999996*x39 - 1.999999944*x40 - 1.999999978*x40ˆ3 + 1.999999944*x41
(x91)’= 2.000000059*x40 - 2.000000059*x41 - 2.000000052*x41ˆ3 + 2.000000059*x42
(x92)’= 1.999999844*x41 - 2.000000248*x42 - 1.999999918*x42ˆ3 + 1.999999844*x43
(x93)’= 1.999999945*x42 - 2.000000144*x43 - 1.999999915*x43ˆ3 + 2.000000144*x44
(x94)’= 1.999999832*x43 - 1.999999832*x44 - 2.000000116*x44ˆ3 + 2.00000003*x45
(x95)’= 2.000000163*x44 - 1.999999964*x45 + 2.000000163*x46 - 1.999999941*x45ˆ3
(x96)’= 1.999999943*x45 - 2.000000123*x46 + 1.999999943*x47 - 1.99999986*x46ˆ3

19

(x97)’= 1.999999823*x46 - 1.999999823*x47 + 2.000000229*x48 - 1.999999758*x47ˆ3
(x98)’= 2.000000077*x47 - 2.000000268*x48 + 2.000000077*x49 - 2.000000493*x48ˆ3
(x99)’= 1.999999972*x48 - 1.999999972*x49 + 1.999999765*x50 - 1.999999919*x49ˆ3
(x100)’= 1.999999989*x49 - 2.000000133*x50ˆ3

DNLS

Ground truth:

α̇j = −2(βj+1 + βj−1 − 2βj)− βj(α
2
j + β2

j),

β̇j = 2(αj+1 + αj−1 − 2αj) + αj(α
2
j + β2

j),
(16)

where uj = αj + iβj . We assume periodic boundary conditions: u0 = u50, u51 = u1.
Identified system (program output):

(a1)’= - 1.999999906*b2 + 3.99999988*b1 - 0.9999998209*a1ˆ2*b1 - 0.9999998414*b1ˆ3 - 2.000000154*b50
(a2)’= - 2.000000007*b1 + 4.000000015*b2 - 2.000000007*b3 - 0.9999999576*a2ˆ2*b2 - 0.9999999743*b2ˆ3
(a3)’= - 2.0000001*b2 + 4.000000199*b3 - 2.0000001*b4 - 1.000000404*a3ˆ2*b3 - 0.9999998923*b3ˆ3
(a4)’= - 1.000000008*a4ˆ2*b4 - 1.999999949*b3 + 3.999999898*b4 - 1.000000008*b4ˆ3 - 1.999999949*b5
(a5)’= - 2.000000019*b4 + 4.000000038*b5 - 2.000000019*b6 - 1.000000037*a5ˆ2*b5 - 1.000000065*b5ˆ3
(a6)’= - 1.999999987*b5 + 3.999999974*b6 - 1.999999987*b7 - 0.9999998763*a6ˆ2*b6 - 0.9999999521*b6ˆ3
(a7)’= - 1.999999926*b6 + 3.999999853*b7 - 1.000000012*a7ˆ2*b7 - 1.000000014*b7ˆ3 - 1.999999926*b8
(a8)’= - 0.9999999124*a8ˆ2*b8 - 1.999999995*b7 + 3.999999989*b8 - 0.9999999601*b8ˆ3 - 1.999999995*b9
(a9)’= - 2.000000028*b8 + 4.000000056*b9 - 2.000000028*b10 - 1.000000982*a9ˆ2*b9 - 0.9999998735*b9ˆ3
(a10)’= - 0.9999995406*a10ˆ2*b10 - 2.000000101*b9 + 4.000000201*b10 - 0.9999995903*b10ˆ3 - 1.999999744*b11
(a11)’= - 2.00000001*b10 + 4.00000002*b11 - 2.00000001*b12 - 1.00000001*a11ˆ2*b11 - 0.999999996*b11ˆ3
(a12)’=4.000000011*b12 - 2.000000058*b11 - 1.000000202*a12ˆ2*b12 - 0.9999999382*b12ˆ3 - 1.999999883*b13
(a13)’= - 2.000000082*b12 + 4.000000163*b13 - 2.000000082*b14 - 1.000000674*a13ˆ2*b13 - 1.000000006*b13ˆ3
(a14)’= - 1.000000058*a14ˆ2*b14 - 2.000000031*b13 + 4.000000063*b14 - 1.000000118*b14ˆ3 - 2.000000031*b15
(a15)’= - 0.9999998546*a15ˆ2*b15 - 2.00000002*b14 + 4.00000004*b15 - 1.000000101*b15ˆ3 - 2.00000002*b16
(a16)’= - 1.000000206*a16ˆ2*b16 - 2.000000001*b15 + 4.000000003*b16 - 0.9999999832*b16ˆ3 - 2.000000001*b17
(a17)’= - 2.000000043*b16 + 3.999999916*b17 - 2.000000043*b18 - 1.000000303*a17ˆ2*b17 - 1.000000001*b17ˆ3
(a18)’= - 2.00000009*b17 + 3.999999769*b18 - 0.9999999846*a18ˆ2*b18 - 0.9999996906*b18ˆ3 - 1.999999885*b19
(a19)’= - 2.000000047*b18 + 4.000000093*b19 - 2.000000047*b20 - 0.9999999497*a19ˆ2*b19 - 0.9999998784*b19ˆ3
(a20)’= - 1.000000654*a20ˆ2*b20 - 2.000000225*b19 + 4.000000093*b20 - 1.000000135*b20ˆ3 - 2.000000225*b21
(a21)’= - 2.000000034*b20 + 3.999999946*b21 - 2.000000034*b22 - 1.000000086*a21ˆ2*b21 - 0.9999999848*b21ˆ3
(a22)’= - 1.999999973*b21 + 3.999999946*b22 - 1.000000007*a22ˆ2*b22 - 0.9999998598*b22ˆ3 - 1.999999973*b23
(a23)’= - 1.999999962*b22 + 3.999999924*b23 - 1.999999962*b24 - 1.000000109*a23ˆ2*b23 - 0.9999999955*b23ˆ3
(a24)’= - 0.9999994674*a24ˆ2*b24 - 2.000000079*b23 + 3.999999771*b24 - 0.9999995415*b24ˆ3 - 2.000000079*b25
(a25)’= - 1.000000059*a25ˆ2*b25 - 2.00000006*b24 + 4.000000119*b25 - 1.000000068*b25ˆ3 - 2.00000006*b26
(a26)’= - 2.000000002*b25 + 4.000000003*b26 - 2.000000002*b27 - 0.9999998949*a26ˆ2*b26 - 0.9999999*b26ˆ3
(a27)’= - 1.000000069*a27ˆ2*b27 - 2.000000036*b26 + 4.000000073*b27 - 1.000000165*b27ˆ3 - 2.000000036*b28
(a28)’= - 1.999999957*b27 + 4.000000155*b28 - 1.999999957*b29 - 1.000000215*a28ˆ2*b28 - 1.000000048*b28ˆ3
(a29)’= - 1.000000138*a29ˆ2*b29 - 2.000000042*b28 + 4.000000083*b29 - 0.9999997001*b29ˆ3 - 2.000000042*b30
(a30)’= - 1.000000274*a30ˆ2*b30 - 2.000000013*b29 + 4.000000026*b30 - 0.9999999443*b30ˆ3 - 2.000000013*b31
(a31)’= - 2.000000088*b30 + 4.000000175*b31 - 2.000000088*b32 - 0.9999999692*a31ˆ2*b31 - 0.9999999848*b31ˆ3
(a32)’= - 2.00000004*b31 + 4.000000079*b32 - 2.00000004*b33 - 0.9999999704*a32ˆ2*b32 - 1.000000014*b32ˆ3
(a33)’=3.999999968*b33 - 2.000000091*b32 - 0.9999999376*a33ˆ2*b33 - 0.9999999925*b33ˆ3 - 2.000000091*b34
(a34)’=4.000000013*b34 - 0.9999998633*a34ˆ2*b34 - 1.999999971*b33 - 0.9999999821*b34ˆ3 - 1.999999971*b35
(a35)’= - 2.00000002*b34 + 4.000000039*b35 - 2.00000002*b36 - 1.00000001*a35ˆ2*b35 - 0.999999968*b35ˆ3
(a36)’= - 1.000000211*a36ˆ2*b36 - 2.000000002*b35 + 4.000000003*b36 - 0.9999999279*b36ˆ3 - 2.000000002*b37
(a37)’= - 2.000000101*b36 + 4.000000203*b37 - 2.000000101*b38 - 0.9999999557*a37ˆ2*b37 - 1.00000003*b37ˆ3
(a38)’= - 0.9999999482*a38ˆ2*b38 - 1.999999969*b37 + 3.999999939*b38 - 0.9999998896*b38ˆ3 - 1.999999969*b39
(a39)’= - 1.000000033*a39ˆ2*b39 - 1.999999967*b38 + 3.999999934*b39 - 1.00000006*b39ˆ3 - 1.999999967*b40
(a40)’= - 2.000000062*b39 + 4.000000124*b40 - 2.000000062*b41 - 0.999999942*a40ˆ2*b40 - 0.9999999463*b40ˆ3

20

(a41)’= - 1.999999959*b40 + 3.999999919*b41 - 0.9999998242*a41ˆ2*b41 - 0.9999998912*b41ˆ3 - 1.999999959*b42
(a42)’= - 1.999999986*b41 + 4.000000049*b42 - 1.999999986*b43 - 1.000000051*a42ˆ2*b42 - 1.000000074*b42ˆ3
(a43)’= - 2.000000003*b42 + 4.000000006*b43 - 2.000000003*b44 - 1.000000055*a43ˆ2*b43 - 1.000000011*b43ˆ3
(a44)’= - 2.000000078*b43 + 4.000000155*b44 - 2.000000078*b45 - 1.000000179*a44ˆ2*b44 - 0.9999999475*b44ˆ3
(a45)’= - 1.000000187*a45ˆ2*b45 - 1.999999929*b44 + 3.999999858*b45 - 1.000000067*b45ˆ3 - 1.999999929*b46
(a46)’= - 2.000000042*b45 + 4.000000084*b46 - 2.000000042*b47 - 0.9999997128*a46ˆ2*b46 - 1.000000081*b46ˆ3
(a47)’= - 1.000000092*a47ˆ2*b47 - 1.999999974*b46 + 3.999999948*b47 - 0.9999997161*b47ˆ3 - 1.999999974*b48
(a48)’= - 2.000000092*b47 + 4.000000183*b48 - 2.000000092*b49 - 1.000000135*a48ˆ2*b48 - 1.000000043*b48ˆ3
(a49)’= - 2.000000057*b48 + 4.000000113*b49 - 2.000000057*b50 - 1.000000151*a49ˆ2*b49 - 0.999999959*b49ˆ3
(a50)’= - 2.00000016*b1 - 1.999999964*b49 + 3.999999928*b50 - 0.9999999898*a50ˆ2*b50 - 0.9999997811*b50ˆ3
(b1)’= - 3.999999889*a1 + 1.000000005*a1ˆ3 + 1.000000202*a1*b1ˆ2 + 1.999999944*a2 + 1.999999775*a50
(b2)’=1.999999961*a1 - 3.999999921*a2 + 0.9999998528*a2ˆ3 + 1.999999961*a3 + 0.9999998844*a2*b2ˆ2
(b3)’=2.000000023*a2 - 4.000000046*a3 + 2.000000023*a4 + 0.9999999787*a3ˆ3 + 1.000000034*a3*b3ˆ2
(b4)’=1.99999996*a3 - 3.99999992*a4 + 1.000000017*a4ˆ3 + 1.000000031*a4*b4ˆ2 + 1.99999996*a5
(b5)’=2.000000003*a4 - 4.000000005*a5 + 2.000000003*a6 + 1.00000002*a5ˆ3 + 1.000000046*a5*b5ˆ2
(b6)’=2.000000115*a5 - 3.999999872*a6 + 0.9999999546*a6ˆ3 + 1.999999936*a7 + 1.000000059*a6*b6ˆ2
(b7)’=1.999999989*a6 - 4.000000049*a7 + 1.999999992*a8 + 1.000000059*a7ˆ3 + 1.000000102*a7*b7ˆ2
(b8)’=1.999999903*a7 - 3.999999805*a8 + 1.00000009*a8ˆ3 + 0.9999999788*a8*b8ˆ2 + 1.999999903*a9
(b9)’=2.000000047*a8 - 4.000000094*a9 + 2.000000047*a10 + 1.000000023*a9ˆ3 + 0.9999999685*a9*b9ˆ2
(b10)’= - 4.000000304*a10 + 1.999999974*a9 + 1.000000829*a10ˆ3 + 1.999999974*a11 + 0.9999996891*a10*b10ˆ2
(b11)’=2.000000278*a10 - 4.000000168*a11 + 0.9999998725*a11ˆ3 + 0.9999999655*a11*b11ˆ2 + 2.000000084*a12
(b12)’=2.000000015*a11 - 4.000000031*a12 + 0.9999999954*a12ˆ3 + 1.000000107*a12*b12ˆ2 + 2.000000015*a13
(b13)’=2.000000114*a12 - 4.000000227*a13 + 2.000000114*a14 + 1.00000003*a13ˆ3 + 0.9999999543*a13*b13ˆ2
(b14)’=2.000000288*a13 - 4.000000174*a14 + 0.9999999756*a14ˆ3 + 2.000000087*a15 + 0.9999999193*a14*b14ˆ2
(b15)’=1.999999958*a14 - 3.999999916*a15 + 1.999999958*a16 + 0.9999999728*a15ˆ3 + 0.9999997729*a15*b15ˆ2
(b16)’=2.000000011*a15 - 4.000000023*a16 + 0.9999996481*a16ˆ3 + 0.999999668*a16*b16ˆ2 + 2.000000011*a17
(b17)’=2.000000003*a16 - 4.000000007*a17 + 2.000000003*a18 + 1.000000148*a17ˆ3 + 0.9999993176*a17*b17ˆ2
(b18)’=2.000000013*a17 - 4.000000026*a18 + 0.9999999362*a18ˆ3 + 2.000000013*a19 + 1.000000193*a18*b18ˆ2
(b19)’=2.000000039*a18 - 4.000000078*a19 + 2.000000039*a20 + 0.9999999438*a19ˆ3 + 1.000000036*a19*b19ˆ2
(b20)’=2.000000069*a19 - 4.000000137*a20 + 1.000000295*a20ˆ3 + 1.00000016*a20*b20ˆ2 + 2.000000069*a21
(b21)’=2.00000004*a20 - 4.000000081*a21 + 2.00000004*a22 + 0.9999999717*a21ˆ3 + 1.000000212*a21*b21ˆ2
(b22)’=2.000000076*a21 - 4.000000153*a22 + 0.9999996205*a22ˆ3 + 2.000000076*a23 + 0.9999998329*a22*b22ˆ2
(b23)’=2.00000005*a22 - 4.000000101*a23 + 2.00000005*a24 + 1.00000001*a23ˆ3 + 1.000000067*a23*b23ˆ2
(b24)’=2.000000078*a23 - 3.999999775*a24 + 0.9999995971*a24ˆ3 + 2.000000078*a25 + 0.9999997633*a24*b24ˆ2
(b25)’=1.999999951*a24 - 3.999999901*a25 + 0.9999999934*a25ˆ3 + 1.999999951*a26 + 0.9999999253*a25*b25ˆ2
(b26)’=2.000000099*a25 - 3.999999826*a26 + 0.9999999922*a26ˆ3 + 2.000000099*a27 + 0.9999996216*a26*b26ˆ2
(b27)’=2.000000001*a26 - 4.000000001*a27 + 2.000000001*a28 + 1.00000001*a27ˆ3 + 0.9999997886*a27*b27ˆ2
(b28)’=2.000000006*a27 - 4.000000011*a28 + 0.9999999849*a28ˆ3 + 1.000000129*a28*b28ˆ2 + 2.000000006*a29
(b29)’=2.000000073*a28 - 4.000000145*a29 + 2.000000073*a30 + a29ˆ3 + 0.9999999797*a29*b29ˆ2
(b30)’=1.999999932*a29 - 3.999999863*a30 + 1.0000001*a30ˆ3 + 1.000000034*a30*b30ˆ2 + 1.999999932*a31
(b31)’= - 3.999999933*a31 + 1.999999978*a30 + 0.9999999015*a31ˆ3 + 1.999999978*a32 + 0.9999999574*a31*b31ˆ2
(b32)’=2.000000045*a31 - 4.000000079*a32 + 2.000000045*a33 + 0.9999999495*a32ˆ3 + 0.9999999286*a32*b32ˆ2
(b33)’=1.999999975*a32 - 4.000000305*a33 + 1.000000013*a33ˆ3 + 1.000002627*a33*b33ˆ2 + 1.999999975*a34
(b34)’=1.999999939*a33 - 3.999999879*a34 + 0.9999999883*a34ˆ3 + 0.9999999919*a34*b34ˆ2 + 1.999999939*a35
(b35)’=2.000000015*a34 - 4.00000003*a35 + 2.000000015*a36 + 0.9999999845*a35ˆ3 + 0.9999999537*a35*b35ˆ2
(b36)’=1.999999985*a35 - 3.99999997*a36 + 0.999999978*a36ˆ3 + 0.9999999683*a36*b36ˆ2 + 1.999999985*a37
(b37)’=1.99999997*a36 - 4.000000058*a37 + 1.99999997*a38 + 0.9999998759*a37ˆ3 + 0.9999999368*a37*b37ˆ2
(b38)’=2.000000057*a37 - 4.000000113*a38 + 0.9999999736*a38ˆ3 + 2.000000057*a39 + 1.000000019*a38*b38ˆ2
(b39)’=2.000000027*a38 - 4.000000054*a39 + 1.00000008*a39ˆ3 + 2.000000027*a40 + 0.9999998972*a39*b39ˆ2
(b40)’=1.999999966*a39 - 3.999999932*a40 + 1.999999966*a41 + 0.9999999548*a40ˆ3 + 1.000000067*a40*b40ˆ2
(b41)’=1.99999996*a40 - 3.99999992*a41 + 0.9999997698*a41ˆ3 + 1.99999996*a42 + 1.000000053*a41*b41ˆ2
(b42)’=1.999999997*a41 - 3.999999994*a42 + 1.999999997*a43 + 0.9999999761*a42ˆ3 + 1.000000061*a42*b42ˆ2
(b43)’=1.999999983*a42 - 3.999999965*a43 + 0.9999999391*a43ˆ3 + 1.999999983*a44 + 0.999999967*a43*b43ˆ2
(b44)’=2.000000081*a43 - 4.000000161*a44 + 0.9999999164*a44ˆ3 + 1.000000038*a44*b44ˆ2 + 2.000000081*a45

21

(b45)’=2.000000083*a44 - 4.000000167*a45 + 2.000000083*a46 + 0.999999838*a45ˆ3 + 1.000000596*a45*b45ˆ2
(b46)’= - 3.999999985*a46 + 2.000000001*a45 + 0.9999999732*a46ˆ3 + 1.000000013*a46*b46ˆ2 + 2.000000001*a47
(b47)’= - 3.999999957*a47 + 2.000000102*a46 + 0.9999999699*a47ˆ3 + 0.9999999476*a47*b47ˆ2 + 1.999999918*a48
(b48)’=2.000000068*a47 - 4.000000136*a48 + 2.000000068*a49 + 0.9999999219*a48ˆ3 + 1.000000046*a48*b48ˆ2
(b49)’=2.000000088*a48 - 4.000000176*a49 + 2.000000088*a50 + 0.9999999621*a49ˆ3 + 0.9999999467*a49*b49ˆ2
(b50)’= - 3.999999923*a50 + 1.999999971*a1 + 1.999999971*a49 + 0.9999999349*a50ˆ3 + 0.9999998079*a50*b50ˆ2

AL model

The identified AL model is not presented herein due to the length of equations. Interested readers may
consult the notebook SREINet AL.ipynb.

Kuramoto model

The identified Kuramoto model is not presented herein due to the length of equations. Interested readers
may consult the notebook SREINet Kuramoto.ipynb.

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to Algorithms (MIT Press, 2022),
4 edn.

[2] Xing, S., Han, Q. & Charalampidis, E. CombOpNet: a neural-network accelerator for SINDy. J. Vib.
Test. Sys. Dyn. 9, 1–20 (2025).

[3] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences 113,
3932–3937 (2016).

[4] Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. Automatic differentiation in machine
learning: a survey. J. Mach. Learn. Res. 18, 5595–5637 (2017).

[5] Kaheman, K. et al. The experimental multi-arm pendulum on a cart: A benchmark system for chaos,
learning, and control. HardwareX 15, e00465 (2023).

22

