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1 Analytical Form of the Interatomic Potentials

The analytical form employed in the fitting procedure is based on the Extended Hartree-Fock
Approximate Correlation Energy (EHFACE) Method, proposed by da Silva and Varandas [1].
In essence, the potential energy is decomposed into a short-range term and a long-range term:

U(R) = uEHF (R) + udc(R) (1)

The short-range term or Extended Hartree-Fock (EHF) term is written as

uEHF (r) = −D

R

(
1 +

n∑
i=1

air
i

)
exp(−rγ(r)) (2)

γ(r) = γ0[1 + γ1 tanh(γ2r)] (3)

where r = R−Re. The parameters D, ai, e γi are ajustable. The long-range part of EHFACE
potential or dynamic correlation (dc) term is given by

udc(R) = −
N∑

n=6,8,10

χn(R)
Cn

Rn
(4)

where Cn represent the dispersion coefficients and χn(R) is the damping function given by

χn(R) =

[
1− exp

(
−AnR

ρ
− BnR

2

ρ2

)]n
(5)

Furthermore, An andBn are auxiliary functions and are written asAn = α0n
−α1 andBn = β0 exp(−β1),

with α0, α1, β0 and β1 being universal dimensional parameters for all isotropic interactions: α0

= 16.36606, α1 = 0.70172, β0 = 17.19338, and β1 = 0.09574. In turn, for the MN atomic pair,
ρ/α0 = 5.5 + 1.25R0, where R0 = 2(< r2M >

1
2 + < r2N >

1
2 ) is the LeRoy parameter. < r2M >

and < r2N > are the expected values of the square radii for the outermost electron in the M and
N atoms, respectively. The EHFACE model guarantees the correct asymptotic limits R → ∞
and R → 0.

2 Low Lying Electronic States

2.1 Model Formulation

In this work, we consider a system ofN indistinguishable, non-interacting diatomic molecules
confined in a volume V and in thermal equilibrium at temperature T . The microscopic descrip-
tion of the system is developed within both classical and quantum statistical mechanics, starting
from the construction of the total Hamiltonian and the corresponding partition function. Each
molecule is assumed to be independent, with its total Hamiltonian separable into translational
and internal contributions. We adopt a canonical coordinate system (q, p), where the trans-

lational degrees of freedom are described by the center-of-mass coordinate R⃗cm ∈ R3 and its
conjugate momentum P⃗cm, while the internal degrees of freedom are given by q′ = (r, θ, ϕ), rep-
resenting the internuclear distance and spherical angles defining the molecular orientation, with
conjugate momenta p′ = (pr, pθ, pϕ). The total Hamiltonian operator in quantum description
can be expressed as:
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Ĥ = T̂tr + Ĥint

= − h̄2

2m
∇2

cm +− h̄2

2µ

d2

dr2
+ Un(r) +

h̄2

2µr2
[
J(J + 1)− Λ2

]
(6)

wherem is the total mass of the molecule, µ is the reduced mass, Un(r) is the electronic potential
energy curve for the electronic state n, J is the total angular momentum quantum number, and
Λ is the absolute value of the electronic angular momentum projection onto the internuclear
axis. Non-adiabatic couplings and spin-orbit interactions are neglected. The corresponding
classical Hamiltonian reads:

H = Ttr + Hint

=
1

2m
P 2
cm +

[
p2r
2µ

+ Un(r) +
1

2µr2

(
p2θ +

p2ϕ
sin2 θ

)]
(7)

where the rotational kinetic energy is implicitly expressed through the moment of inertia I =
µr2. With the Hamiltonians defined, the quantum canonical partition function is written as:

Qqm(T, V,N) =
1

N !

[
V

λ3
T

∑
n

gn
∑
v,J

gnJ exp

(
−En,v,J

kBT

)]N
(8)

where λT = h/
√
2πmkBT is the thermal wavelength, En,v,J represents the total molecular

energy in the electronic (n), vibrational (v), and rotational (J) levels, gn is the degeneracy
of the electronic state, and gnJ is the rotational degeneracy factor. Alternatively, the classical
partition function is given by:

Qcl(T, V,N) =
1

N !

[
1

h3

∫
R3

d3Rcm

∫
R3

d3Pcm exp

(
− P 2

cm

2mkBT

)
×

×
∑
n

gn

∫
Ωq′

dq′
∫
Ωp′

dp′ exp

(
−H n

int(p
′, q′)

kBT

)]N
=

1

N !

[
V

λ3
T

∑
n

gn

∫
Ωq′

dq′
∫
Ωp′

dp′ exp

(
−H n

int(p
′, q′)

kBT

)]N
=

1

N !

[
V

λ3
T

∑
n

gn
2
√
π
(2µkBT )

3/2

∫ ∞

0

[
exp

(
−Un(r)

kBT

)
− 1

]
r2 dr

]N
(9)

This classical formulation becomes valid when the energy levels are densely spaced, allowing
for a continuous approximation (typically when kBT ≫ ∆E , with ∆E the level spacing), the
final result is expressed in reduced units [2, 3]. The integration domains cover the full phase
space of internal degrees of freedom, with Ωq′ = [0,∞)× [0, π]× [0, 2π) and Ωp′ = R3.

2.2 Assumptions and Limitations

For each dissociative channel considered for alkali metal dimers, the equilibrium can be
formally represented by the reversible process:

A2(α) ⇀↽ A(α′) + A(α′′) (10)
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where α, α′, and α′′ denote the relevant internal states of the molecular and atomic species
involved [4]. In this framework, the total internal partition functionQint can be decomposed into
the sum of three distinct contributions: the bound-state contributionQB

int, the contribution from
continuum QC

int is separed in metastable or quasi-bound states QM
int, and the free contribution

QF
int [4, 5], such that

Qint(T ) = QB
int(T ) +QC

int(T ) (11)

= QB
int(T ) +QM

int(T ) +QF
int(T )

The classical expression for the internal partition function, obtained by integrating over
the entire phase space, naturally includes all three contributions within Qcl

int. For electronic
bound-state potentials Un(r), there exists a finite distance σ such that Un(σ) = 0. In the region
r ∈ [0, σ), the potential energy is positive, Un(r) > 0, and thus the Qcl

int < 0. Conversely,
in the region r ∈ [σ,∞), where Un(r) ≤ 0, the contribution is Qcl

int > 0. Therefore, the
classical partition function contains both negative and positive contributions depending on
the integration domain. This approach captures the three possible contributions of bound,
metastable, and free states to the internal partition function of alkali metal dimers [4]. However,
at low temperatures, the classical description fails to quantitatively reproduce the physical
behavior of the system, as it neglects the quantum nature of the molecular energy levels. In
this regime, the thermal energy becomes comparable to or smaller than the spacing between
energy eigenvalues, making the continuous approximation of energy, inherent to the classical
partition function, invalid. Therefore, a quantum mechanical description of the system becomes
necessary, requiring the use of the quantum partition function to accurately account for the
discrete energy levels.

The quantum expression for the internal partition function, Qqm
int , typically includes only the

contribution from bound states, neglecting the metastable and free state contributions. This
approximation is justified by the fact that, for electronic states with sufficiently deep potential
wells QB

int(T ) ≫ QM
int(T ). The number of metastable states, which may exist behind centrifugal

barriers, is generally small and becomes negligible for deeply bound electronic states. Moreover,
QB

int(T ) > QF
int(T ). Therefore, in this work, the quantum description of the internal partition

function is restricted to the sum over bound states. This assumption remains valid for the range
of temperatures considered here, as the total contribution from bound levels is expected to be
significantly larger than the combined contributions from metastable and continuum states for
the electronic states investigated. The limitations of the model adopted in this work arise from
fundamental approximations made to ensure computational feasibility and internal consistency
of the physical assumptions. First, the system is assumed to be in thermal equilibrium, which
allows the use of well defined statistical distributions to describe the population of energy
states. Additionally, the ideal gas approximation is adopted, meaning that intermolecular
interactions are neglected. Finally, not all electronic states of each dissociative channel were
included. In particular, purely repulsive states and those associated with complex potential
energy curves, such as double-well potentials, were excluded. Including such states which
are often poorly characterized or lack reliable spectroscopic data could introduce significant
uncertainties into the internal partition function. Since this function directly influences the
resulting thermodynamic and population properties, its construction was deliberately limited
to well defined bound states, in order to preserve the physical reliability and consistency of the
model within the acceptable limits of precision.
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2.3 Relative Error Associated with Rovibrational Energy Splitting
in the Partition Function at High Temperatures

In this section, we examine the relative error introduced in the internal partition function
when using simplified rovibrational energy splittings, particularly in systems with low-lying
electronic states, at high temperatures. The internal partition function, computed via quantum
mechanical methods, includes contributions from electronic, vibrational, and rotational energy
levels. However, at elevated temperatures, neglecting or inaccurately treating the contribution
of electronically excited states can lead to deviations. We evaluate the magnitude of this error
and its dependence on the energetic proximity of these states, aiming to quantify how such
simplifications impact the accuracy of thermodynamic predictions.

Consider the internal partition function obtained by the quantum mechanical methods:

Qint(T ) =
nmax∑
n=1

gn

vmax(n)∑
v=0

Jeven,max(n)∑
J∈2N0

gevennuc (2J + 1) exp

(
−En,v,J

kBT

)

+

Jodd,max(n)∑
J∈2N0+1

goddnuc(2J + 1) exp

(
−En,v,J

kBT

) (12)

We can rewrite it in a simplified form using: En,v,J = Eel
n + Evib

n,v + Erot
n,v,J

Qint(T ) :=
∑
n

gn
∑
v,J

gnJ exp

(
−En,v,J

kBT

)

=
∑
n

gn exp

(
− Eel

n

kBT

)∑
v,J

gnJ exp

(
−
Evib
n,v + E rot

n,v,J

kBT

)
(13)

Let E ′
n,v,J = En,v,J + δn,v,J , where En,v,J is the true energy and δn,v,J is the splitting. We

then have an approximate partition function given by

Q
′

int(T ) =
∑
n

gn
∑
v,J

gnJ exp

(
−E ′

n,v,J

kBT

)

=
∑
n

gn exp

(
− Eel

n

kBT

)∑
v,J

gnJ exp

(
−
Evib
n,v + E rot

n,v,J + δn,v,J

kBT

)

=
∑
n

gn exp

(
− Eel

n

kBT

)∑
v,J

gnJ exp

(
−
Evib
n,v + E rot

n,v,J

kBT

)
exp

(
−δn,v,J

kBT

)
(14)

Assuming that |δn,v,J | ≪ kBT and applying the first-order Taylor expansion of the expo-
nential, we have:

exp

(
−δn,v,J

kBT

)
= 1− δn,v,J

kBT
+O((δn,v,J/kBT )

2) (15)

neglecting higher-order terms, we obtain a first-order approximation for the corrected partition
function:
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Q′
int(T ) ≈

∑
n

gn exp

(
− Eel

n

kBT

)∑
v,J

gnJ exp

(
−
Evib
n,v + E rot

n,v,J

kBT

)(
1− δn,v,J

kBT

)
= Qint(T )−

1

kBT

∑
n,v,J

δn,v,J gn g
n
J exp

(
−En,v,J

kBT

)
(16)

defining relative error as:

εrel :=

∣∣∣∣Qint −Q
′
int

Qint

∣∣∣∣ (17)

Thus, the first order approximation for the relative error is given by:

εrel ≈
1

kBT

1

Qint

∑
n,v,J

δn,v,Jgng
n
J exp

(
−En,v,J

kBT

)
(18)

that is

εrel ≈
1

kBT
< δn,v,J > (19)

this last expression is important because it shows that the relative error caused by a rela-
tively large splitting leads to a small error at high temperatures, a regime where the low-lying
electronic states are significantly populated. In this work, the electronic states of the first
dissociative channel must be described with accurate potential energy curves, as they can in-
duce significant relative errors at low temperatures. Although our focus is on high-temperature
regimes, the cumulative relative errors arising from the electronic states of the other dissocia-
tive channels may still be non-negligible. Therefore, even though the relative error tends to
decrease at elevated temperatures, a precise representation of the system’s energy eigenvalues
remains essential. This is not only to minimize errors but also to ensure an accurate counting
of the bound states within the system.

2.4 Thermal Population of Low-Lying States at High Temperatures

The population of the electronic state n is given by:

Pn(T ) ∝ gn exp

(
−En,v,J

kBT

)∑
v,J

gnJ exp

(
−
Evib
n,v + E rot

n,v,J

kBT

)
(20)

at high temperatures, where the rovibrational energy is small compared to the thermal energy
Ev,J = Evib

n,v + E rot
n,v,J ≪ kBT can expand the exponential in a Taylor series, we have:

exp

(
− Ev,J
kBT

)
= 1− Ev,J

kBT
+O((Ev,J/kBT )2) (21)

neglecting higher-order terms, we obtain a first-order approximation:

Pn(T ) ∝ gn exp

(
−En,v,J

kBT

)∑
v,J

gnJ

(
1− Ev,J

kBT

)
(22)

where the electronic degeneracy is given by:

gn = (2− δΛn,0)(2Sn + 1), (23)
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accounting for spin multiplicity and the projection Λn of the electronic angular momentum
along the internuclear axis. In this regime, the dominant factor controlling the population
Pn(T ) of an electronic state n is the electronic excitation energy Eelec

n ,electronic degeneracy
gn = (2− δΛn,0)(2Sn + 1) and the total number of vibrational and rotational states.

Another rigorous conclusion at high temperature concerns the number of bound rovibra-
tional states that contribute to the partition function. For a given electronic state n, the total
number of vibrational and rotational levels is finite and determined by the depth of the elec-
tronic potential well D

(n)
e . At high temperatures, more states become thermally accessible,

and the number of contributing rovibrational states increases. The total contribution to the
internal partition function of state n can be approximated as: which must both be small. This
justifies the truncation of the exponential and explains why the electronic structure becomes
the principal determinant of thermodynamic populations at sufficiently high T . Hence, at high
T , the magnitude of this sum depends on the depth of the potential energy curve D

(n)
e and

the density of states within this well, consequently depends on the value of spectroscopic pa-
rameters which altogether can determine how many states satisfy En,v,J < D

(n)
e and are thus

physically bound. These factors collectively determine how many bound rovibrational states
are thermally populated at a given temperature. Importantly, even when two electronic states
have similar electronic excitation energies Eelec

n , the state with the deeper potential well will
typically contribute more significantly to the total partition function at high temperatures, due
to the larger number of accessible bound states. This highlights a key insight: the effective
statistical weight of an electronic state at elevated temperatures is not solely defined by its
electronic degeneracy and excitation energy, but also by the number of rovibrational states
it supports a structural characteristic encoded in the shape and depth of its potential energy
curve.

2.5 Nuclear Spin Degeneracy in Partition Functions

The calculation of molecular partition functions requires careful consideration of nuclear
spin degeneracy, which arises due to the quantum mechanical properties of identical nuclei
within a molecule. Specifically, for molecules composed of identical atoms, the symmetry of the
total nuclear spin wavefunction influences the number of accessible quantum states, depending
on whether the combined nuclear spin states are symmetric (even) or antisymmetric (odd)
under particle exchange. This distinction affects the statistical weight of each molecular state
and is captured by the nuclear spin degeneracy factors g

odd/even
nuc , defined as

godd/evennuc,n =
1

2

[
(2I + 1)2 ± (2I + 1)

]
(24)

or in terms of the weight of rotational nuclear degeneracy:

g even / odd
nuc,n =

(2I + 1)2 ± (2I + 1)

2(2I + 1)2
(25)

The odd/even degeneracy ratio is normalized in the statistical symmetry table, typically
represented as Tab.S1, which specifies how the degeneracies should be handled, taking into
account nuclear spin effects and the system symmetry. The normalization ensures that the
contributions from different degeneracies are properly adjusted to accurately and consistently
calculate the possible states.

1

1Table S1 has been adapted from Ref. [6], preserving the correlation between statistical symmetry, electronic
configuration, and the parity.
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Table S1: Nuclear degeneracy in homonuclear molecules arises from the correlation between
statistical symmetry, electronic configuration, and the parity of J . The signs indicate whether
addition or subtraction rules apply.

Statistical
Symmetry

Electronic Configuration Parity sign of J

Fermi-Dirac
(Antisymmetric)
Nuclear Spin: I
Half-Integral

Σ+
g ,Σ

−
u Odd +

Even −

Σ+
u ,Σ

−
g Odd −

Even +

Non-Sigma State: Nuclear weights are equal for both parity of J

Bose-Einstein
(Symmetric)
Nuclear Spin: I
Integral

Σ+
g ,Σ

−
u Odd −

Even +

Σ+
u ,Σ

−
g Odd +

Even −

Non-Sigma State: Nuclear weights are equal for both parity of J

2.6 When Statistical Descriptions of Diatomic Systems Reach Con-
vergence

For Fermi–Dirac or Bose–Einstein statistics including nuclear spin degeneracy, the internal
partition function of an diatomic molecule at sufficiently high temperatures can be approxi-
mated as

Q
F/B
int (T ) =

∑
n

gn exp

(
− Eel

n

kBT

) vmax(n)∑
v=0

exp

(
−
Evib
n,v

kBT

)

×

[
Jeven,max(n)∑

J∈2N0

gevennuc (2J + 1) exp

(
−
E rot
n,v,J

kBT

)
+

Jodd,max(n)∑
J∈2N0+1

goddnuc (2J + 1) exp

(
−
E rot
n,v,J

kBT

)]
.

(26)

The rotational part of the internal partition function can thus be written as:

Q
F/B
rot (T ) =

Jeven,max(n)∑
J∈2N0

gevennuc (2J + 1) exp

(
−
E rot
n,v,J

kBT

)
+

Jodd,max(n)∑
J∈2N0+1

goddnuc (2J + 1) exp

(
−
E rot
n,v,J

kBT

)
.

(27)

At high temperatures, where the condition E rot
n,v,J ≪ kBT holds, the rotational partition

function simplifies to
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Q
F/B
rot (T )

T→∞−−−→
Jeven,max(n)∑

J∈2N0

gevennuc (2J + 1) +

Jodd,max(n)∑
J∈2N0+1

goddnuc (2J + 1)

≈ gevennuc

Jeven,max(n)∑
J∈2N0

(2J + 1) + goddnuc

Jodd,max(n)∑
J∈2N0+1

(2J + 1)

≈ 1

2

(
gevennuc + goddnuc

) Jmax(n)∑
J=0

(2J + 1)

≈ 1

2
(2I + 1)2

Jmax(n)∑
J=0

(2J + 1)

≈ 1

2
QMB

rot (T ), (28)

where, for homonuclear diatomic molecules, the total nuclear spin degeneracy is given by
gnuc = (2I + 1)2. This result demonstrates that, in the high-temperature limit, the rotational
partition function under Fermi–Dirac or Bose–Einstein statistics for homonuclear molecules
becomes equal to half of the classical Maxwell–Boltzmann rotational partition function. This
reduction symmetric factor 1/2, is not an arbitrary adjustment in the Maxwell–Boltzmann de-
scription. Instead, it naturally emerges from the indistinguishability of particles and the quan-
tum symmetrization requirements of nuclear spin states under Fermi–Dirac and Bose–Einstein
statistics. This symmetrization effectively reduces the number of accessible rotational states
by half compared to the classical Maxwell–Boltzmann statistics, which do not consider such
quantum effects and thus omit the 1/2 factor in state counting. Furthermore, at high tem-
peratures, the Fermi–Dirac and Bose–Einstein statistics converge to the Maxwell–Boltzmann
distribution, validating the classical approximation in this limit while preserving the impact of
the symmetrization factor on the effective state degeneracy.

2.7 Analysis of Ground Electronic State Thermodynamic Properties
for Alkali Dimers

In this subsection, a quantitative evaluation of the thermodynamic properties of alkali metal
dimers in their electronic ground states is presented, based on the computational methods devel-
oped in this work. The properties considered include the Gibbs free energy, enthalpy, entropy,
and constant pressure heat capacity, all computed over the temperature range of 300–2000
K using a uniform grid of 170 points. The results obtained from each method are compared
against experimental reference data from the JANAF Thermochemical Tables, as compiled by
Chase (1998) and made available through the NIST database. The selected temperature range
ensures the analysis remains confined to the regime in which only the first dissociation chan-
nel is relevant and the ground electronic state predominates. Table S2 presents the absolute
and relative root-mean-square errors (RMSE ABS and RMSE%) associated with each ther-
modynamic property and computational method, providing a clear metric for assessing model
accuracy. The RMSE ABS is defined as the square root of the mean squared deviation between
the predicted and reference values, while RMSE% is calculated by normalizing RMSE ABS
with respect to the mean reference value and expressing the result as a percentage.
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RMSE ABS =

√√√√ 1

n

n∑
i=1

(yi − ȳi)2 and RMSE % =

(
RMSE

ȳ

)
× 100 (29)

In these equations, yi represents the value predicted by the model at the i-th temperature
point, ȳi denotes the corresponding reference value (e.g., experimental or tabulated), n is the
total number of points considered, ȳ is the arithmetic mean of the reference values over the
entire temperature range. These definitions provide a quantitative measure of the deviation
between the computed and reference thermodynamic properties, both in absolute terms and as
a percentage relative to the magnitude of the reference data.

Table S2: Absolute (RMSE ABS.) and relative (RMSE %) root mean square error for the
thermodynamic properties of alkali metals calculated using the methods developed in this work.

Alkali Metal Method
Cp H−H◦

298K S −(G−H298K)/T
(ABS / %) (ABS / %) (ABS / %) (ABS / %)

Li2

1 1.04 / 2.77 0.57 / 1.78 0.42 / 0.17 0.09 / 0.04
2 0.96 / 2.56 0.26 / 0.80 6.60 / 2.71 6.43 / 2.94
3 3.11 / 8.27 2.21 / 6.84 – –
4 3.28 / 8.72 1.57 / 4.85 – –

Na2

1 0.57 / 1.52 0.53 / 1.62 0.74 / 0.27 1.03 / 0.41
2 0.52 / 1.39 0.39 / 1.20 8.18 / 2.95 7.86 / 3.12
3 2.31 / 6.19 0.93 / 2.85 – –
4 2.43 / 6.50 1.02 / 3.13 – –

K2

1 0.26 / 0.76 0.07 / 0.24 1.06 / 0.36 1.06 / 0.39
2 0.38 / 1.11 0.11 / 0.36 4.56 / 1.54 4.61 / 1.70
3 3.23 / 9.56 1.21 / 3.93 – –
4 3.24 / 9.61 1.20 / 3.91 – –

Rb2

1 0.88 / 2.72 0.81 / 2.71 2.02 / 0.64 1.48 / 0.51
2 0.55 / 1.69 0.07 / 0.22 5.43 / 1.72 5.37 / 1.84
3 1.70 / 5.25 1.54 / 5.16 – –
4 1.71 / 5.28 1.54 / 5.17 – –

Cs2

1 0.49 / 1.54 0.17 / 0.58 4.68 / 1.42 4.82 / 1.57
2 0.53 / 1.65 0.36 / 1.20 5.91 / 1.79 5.74 / 1.88
3 1.36 / 4.27 0.97 / 3.27 – –
4 1.37 / 4.29 0.97 / 3.28 – –

Mean (170 points, 300–2000 K) Compared with Chase 1998 [7]

A comparative analysis between methods 1 and 2 revealed a root mean square percentage
error (RMSE%) lower than 3.12% within the considered temperature range. This result demon-
strates that, given the adopted spectroscopic parameters, the Dunham expansion constitutes a
reliable strategy for calculating energy eigenvalues and associated thermodynamic properties.
Nevertheless, it was identified that the applicability of this approach becomes intrinsically con-
strained at elevated temperatures, where the partial population of higher energy states becomes
significant. Under these conditions, the truncation of the Dunham expansion—particularly
the omission of higher-order rovibrational coupling terms—compromises the accurate repre-
sentation of the molecular energy structure, leading to systematic deviations. Conversely, the
classical approach (method 3) and the semiclassical formulation incorporating second-order
Wigner-Kirkwood corrections (method 4) exhibited considerably higher RMSE% values at low
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temperatures. This discrepancy primarily arises from the inability of these methods to account
for the quantization of energy levels, which is especially relevant in the ground-state regime.
As a consequence, these approximations prove inadequate for an accurate description of ther-
modynamic properties at low temperatures. Despite the formal validity of the semiclassical
corrections, their inclusion did not result in significant improvements in the computed ther-
modynamic quantities, indicating a negligible practical impact in temperature regimes where
quantum effects predominate.

2.8 Translational and Internal Contributions of Low Lying States

The ability to separate thermal properties into translational and internal components through
the partition function formalism is fundamental for a detailed understanding of molecular be-
havior. This decomposition allows us to evaluate the relative contributions of different degrees
of freedom, electronic states to the overall thermodynamic properties. By comparing these
contributions across temperature ranges, we can assess the regimes where internal degrees of
freedom become significant and when the system approaches ideal gas behavior. Notably, the
imperfect gas model serves as a viable approximation in temperature intervals where internal
contributions are substantial but still compatible with the assumptions of weak intermolecular
interactions. Such an approach is essential for accurately modeling the thermodynamics of al-
kali metal dimers and predicting their behavior under various conditions. The results for these
translational and internal contributions to the thermodynamic functions are presented below.
Assuming that the total partition function can be factorized into translational and internal
contributions:

Q(T ) = Qtrans(T ) ·Qint(T ), (30)

The molar entropy S(T ) can be expressed as:

S(T ) = R lnQ(T ) +RT
d lnQ(T )

dT

= R lnQtrans +RT
d lnQtrans

dT︸ ︷︷ ︸
Strans(T )

+R lnQint +RT
d lnQint

dT︸ ︷︷ ︸
Sint(T )

= Strans(T ) + Sint(T ) (31)

The enthalpy H(T ) is obtained as:

H(T ) = RT 2d lnQ(T )

dT

= RT 2d lnQtrans

dT︸ ︷︷ ︸
Htrans(T )

+RT 2d lnQint

dT︸ ︷︷ ︸
Hint(T )

= Htrans(T ) +Hint(T ) (32)

The Gibbs free energy G(T ) is:
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G(T ) = H(T )− TS(T )

= Htrans(T )− TStrans(T )︸ ︷︷ ︸
Gtrans(T )

+Hint(T )− TSint(T )︸ ︷︷ ︸
Gint(T )

= Gtrans(T ) +Gint(T ) (33)

Finally, the heat capacity at constant pressure Cp(T ) is given by:

Cp(T ) = RT
d2

dT 2
[T lnQint(T )]︸ ︷︷ ︸

Cp,int(T )

+
5

2
R︸︷︷︸

Cp,trans

= Cp,trans(T ) + Cp,int(T ) (34)

These expressions allow a clear separation of translational and internal contributions to
the thermodynamic functions, which is particularly useful in molecular simulations or when
evaluating vibrational, rotational, and electronic effects independently. To quantify the relative
contribution of each component, the internal contribution can be expressed as a percentage of
the total value as:

Entropy:
Strans(T )

S(T )
× 100 = S

(%)
trans,

Sint(T )

S(T )
× 100 = S

(%)
int

Enthalpy:
Htrans(T )

H(T )
× 100 = H

(%)
trans,

Hint(T )

H(T )
× 100 = H

(%)
int

Gibbs free energy:
Gtrans(T )

G(T )
× 100 = G

(%)
trans,

Gint(T )

G(T )
× 100 = G

(%)
int

Heat capacity:
Cp,trans

Cp(T )
× 100 = C

(%)
p,trans,

Cp,int(T )

Cp(T )
× 100 = C

(%)
p,int

(35)

For the lithium dimer, the analysis of Cp rewriting the thermal properties in translational
and internal terms reveals a consistent predominance of the internal contribution Cp,int over the
translational component Cp,tr throughout the investigated temperature range. This distinction
becomes particularly pronounced at elevated temperatures, especially above 2000 K. In the
lower temperature regime, between 300 K and 2000 K, the internal degrees of freedom already
contribute significantly to the total heat capacity. Specifically, the fractional contribution of
Cp,int to the total Cp ranges from a minimum of 53.14% to a maximum of 57.78% within this
interval. These values indicate that even at moderate temperatures, the internal structure of
the Li2 molecule plays a non-negligible role in its thermal behavior, exceeding the contribution
from pure translational motion. Above 2000 K, this trend intensifies markedly. The elevated
thermal energy at such temperatures increasingly populates internal energy levels, enhancing
the internal energy fluctuations and, consequently, the heat capacity associated with internal
degrees of freedom. In this high temperature regime T > 2000K, the condition Cp,int > Cp,tr

holds consistently. Quantitatively, within the temperature range of 4000 K to 6000 K, the
internal contribution accounts for approximately 70.69% to 72.42% of the total heat capacity.
With respect to enthalpy, the translational contribution Htr is the dominant term throughout
most of the temperature range investigated. At 300 K, it reaches its maximum relative contri-
bution, accounting for approximately 65.20% of the total enthalpy. As temperature increases,
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this percentage gradually decreases, although Htr remains the largest single contributor up to
a temperature of 4040 K. At precisely 4040 K, a notable transition occurs: the translational
and internal contributions Htr and Hint become equal in magnitude. Beyond this temperature,
the internal enthalpy component Hint surpasses the translational one. This crossover marks a
significant shift in the energy distribution within the system, indicating the increasing impor-
tance of internal energy level excitations at elevated temperatures. Importantly, this transition
helps to explain the deviation observed between theoretical and experimental enthalpy values
for lithium dimer at high temperatures when calculations consider only the ground electronic
state. The neglect of thermally accessible excited states can lead to underestimation of Hint,
particularly above 4040 K, where its contribution becomes dominant. For entropy and Gibbs
free energy, similar analyses were carried out across the alkali metal dimers (see figure S1 in SM
for more details). In all cases examined, translational contributions to entropy Str and Gibbs
energy Gtr remain dominant throughout the studied temperature range. However, the internal
terms Sint and Gint exhibit a clear and progressive increase with temperature, reflecting the
gradual population of higher internal states and their growing influence on the thermodynamic
behavior of the systems.
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Figure S1: Percentage contribution of translational and internal degrees of freedom to the
thermal properties of Li2 at 1 atm pressure and different temperatures.

For the sodium dimer, a distinct thermal behavior is observed in Cp when analyzed across
the temperature range from 300 to 5100 K. Notably, the internal contribution Cp,int exceeds the
translational term Cp,tr from 300 up to 2050 K, indicanting an early and significant activation
of internal states due to the ground state. Between 2050 K and 2540 K, however, a reverse
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comportament is observed: the translational contribution becomes slightly greater than the
internal one Cp,int < Cp,tr. This inversion suggests a relative stagnation in the activation rate
of new internal degrees of freedom within this interval, while the translational contribution
though constant in its ideal limit briefly dominates in relative terms. Above 2540 K, the
internal heat capacity contribution once again surpasses the translational component Cp,int >
Cp,tr, and continues to increase with temperature. This internal dominance becomes most
pronounced at 5100 K, where the internal term accounts for a maximum of approximately
75.30% of the total heat capacity. Such behavior emphasizes the strong sensitivity of Cp(Na2)
to thermal excitation of internal states at elevated temperatures. Regarding the enthalpy H,
the translational component Htr remains the dominant contributor up to 4530 K. Beyond this
threshold, the internal enthalpy term Hint becomes predominant (see figure S2 in SM for more
details).
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Figure S2: Percentage contribution of translational and internal degrees of freedom to the
thermal properties of Na2 at 1 atm pressure and different temperatures.

For the thermal properties contributions of the potassium dimer K2 in 300 K to 1230 K,
the Cp,int exceeds the translational component Cp,tr. Between 1230 K and 2100 K, an inversion
of this behavior is observed, with Cp,tr slightly surpassing Cp,int and the translational contri-
bution Htr remains the dominant term up to around 3650 K. Beyond this point, the internal
contribution Hint becomes increasingly significant.
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Figure S3: Percentage contribution of translational and internal degrees of freedom to the
thermal properties of K2 at 1 atm pressure and different temperatures.

The thermal behavior of the Rb2 in 300K to approximately 1150K, the internal contribution
Cp,int dominates over the translational part Cp,tr. As the temperature increases beyond 1150K
up to about 2080K, a crossover is observed where Cp,tr becomes slightly greater than Cp,int. For
the enthalpyH, the translational contributionHtr remains the leading term up to approximately
3450K, above which the internal contribution Hint begins to prevail.
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Figure S4: Percentage contribution of translational and internal degrees of freedom to the
thermal properties of Rb2 at 1 atm pressure and different temperatures.

For Cs2 the results in the temperature regime 300K to approximately 1030K, the internal
contribution Cp,int dominates over the translational part Cp,tr. As the temperature increases
beyond 1030K up to about 1570K, a crossover is observed where Cp,tr becomes slightly greater
than Cp,int, 5190K at 6000K the Cp,tr returns to become the greater term. For the enthalpy H,
the translational contribution Htr remains the leading term up to approximately 2450K, above
which the internal contribution Hint begins to prevail.
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Figure S5: Percentage contribution of translational and internal degrees of freedom to the
thermal properties of Cs2 at 1 atm pressure and different temperatures.

And for Fr2 in the temperature regime 300K to approximately 990K, the internal contri-
bution Cp,int dominates over the translational part Cp,tr. As the temperature increases beyond
990K up to about 1370K, a crossover is observed where Cp,tr becomes slightly greater than
Cp,int, 5520K at 6000K the Cp,tr returns to become the greater term. For the enthalpy H,
the translational contribution Htr remains the leading term up to approximately 2340K, above
which the internal contribution Hint becomes predominant.
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Figure S6: Percentage contribution of translational and internal degrees of freedom to the
thermal properties of Fr2 at 1 atm pressure and different temperatures.

2.9 Entropy Contribution of Low Lying States

To calculate the percentage contribution of the low-lying electronic states to the thermal
property of entropy, we employed the Gibbs entropy equation based on the occupation probabil-
ities derived from the partition function under thermal equilibrium for the alkali metal dimers.
These probabilities, Pi, correspond to the relative contributions of each electronic state to the
total partition function. The entropy S is thus given by:

S(T ) = −R
∑
i

Pi(T ) lnPi(T ), where Pi(T ) =
Qi(T )∑
j Qj(T )

(36)

where Qi represents the partition function contribution of the i-th electronic state. The detailed
results for these entropy contributions are presented below.
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Figure S7: Entropy percentage of the n-th electronic state to the total internal partition function
of Li2 at different temperatures.
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Figure S8: Entropy percentage of the n-th electronic state of Na2 at different temperatures.
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Figure S9: Entropy percentage of the n-th electronic state to the total internal partition function
of K2 at different temperatures.
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Figure S10: Entropy percentage of the n-th electronic state to the total internal partition
function of Rb2 at different temperatures.
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Figure S11: Entropy percentage of the n-th electronic state to the total internal partition
function of Cs2 at different temperatures.
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Figure S12: Entropy percentage of the n-th electronic state to the total internal partition
function of Fr2 at different temperatures.

From a statistical physics perspective, the behavior of the percentage contributions of elec-
tronic entropy exhibits a direct and strong dependence on the thermal population probabilities
of the electronic states. At low temperatures, the system predominantly occupies the electronic
ground state, whose probability asymptotically approaches unity as the temperature tends to
zero. Consequently, the configurational disorder associated with the electronic degrees of free-
dom vanishes, leading to a null contribution to entropy from the ground state under these
conditions. As the temperature increases, the thermal energy becomes sufficient to overcome
the energy gaps between the electronic states, rendering excited states progressively accessible.
This enhanced accessibility results in a redistribution of the occupation probabilities among
the available states, thereby increasing the electronic entropy. The behavior of the entropy is
therefore intrinsically analogous to the statistical distribution of the electronic state popula-
tions governed by the Boltzmann factor. In summary, the electronic entropy displays a highly
temperature dependent profile: it remains negligible at low temperatures due to the dominance
of the ground state, and progressively increases as higher electronic states become thermally
populated. This trend consistently mirrors the probability distribution of the electronic states
as a function of temperature.

2.10 Partition Function of Alkali Metals

The total partition function for the alkali metal dimers was computed using the quantum
statistical method 1 adopted in this work, considering only the bound electronic states. Fig-
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ure S13 presents the results for the partition function as a function of temperature. The solid
lines represent calculations that include all bound electronic states considered in this study,
while the dotted points correspond to the partition function evaluated using only the electronic
ground state. It is evident that the inclusion of excited electronic states leads to a signifi-
cant increase in the partition function, especially at higher temperatures. Additionally, a clear
periodic trend is observed along the alkali metal series, with heavier dimers exhibiting larger
partition function values. This behavior reflects the increasing density of accessible internal
states for heavier species, contributing to enhanced thermodynamic activity. These results
highlight the critical role of electronic excitation in accurately describing the thermodynamics
of alkali metal dimers.
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Figure S13: Total Low Lying Partition Function of Alkali Metals with ideal gas model.

2.11 Excluding Negative Terms from the Molecular Partition Func-
tion: A Numerical Justification

In the classical formalism, the internal partition function for a diatomic molecule interacting
via an effective potential Un(r) is given by:

Qcl
int(β) =

gn
2
√
π

(
2µ

β

)3/2 ∫ ∞

0

[exp(−βUn(r))− 1] r2 dr. (37)

This integral includes contributions from both attractive and repulsive regions of the poten-
tial. However, unlike in the quantum formulation, the classical expression does not inherently
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distinguish bound from unbound states. The classical integral can be separated into two parts:
Qcl

int(β) = QN(β) +QNE(β), according to Ref.[8] where:

QN(β) =
gn
2
√
π

(
2µ

β

)3/2 ∫ σ

0

[exp(−βUn(r))− 1] r2 dr, (38)

QNE(β) =
gn
2
√
π

(
2µ

β

)3/2 ∫ ∞

σ

[exp(−βUn(r))− 1] r2 dr. (39)

The term QN(β) is strictly negative due to the exponential suppression in the repulsive
region (exp(−βUn(r)) ≪ 1 when Un(r) ≫ 0). To quantitatively assess the influence of this term,
we define the ratio R(β) = |QN |/QNE which measures the magnitude of the negative repulsive
contribution relative to the physically meaningful non-repulsive region. When R(β) ≪ 1, the
repulsive term is negligible, and its exclusion does not affect the physical predictions of the
model. To further illustrate the negligible role of the repulsive region, we consider the hard
sphere model for analyses of ground electronic states in the purelly repulsive region:

Un(r) =

{
∞, 0 ≤ r < σ

0, r ≥ σ
(40)

Substituting this into the classical partition function:

QNHS(β) =
gn
2
√
π

(
2µ

β

)3/2 ∫ σ

0

[exp(−βUn(r))− 1] r2 dr

=
gn
2
√
π

(
2µ

β

)3/2 ∫ σ

0

[0− 1] r2 dr

= − gn
2
√
π

(
2µ

β

)3/2 ∫ σ

0

r2 dr

= − gn
6
√
π

(
2µ

β

)3/2

σ3. (41)

This expression shows that the repulsive contribution has a simple analytical form, which is
purely negative and scales with σ3. Its magnitude decreases rapidly with increasing temperature
and mass, as expected for a term dominated by a volume exclusion effect.
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Figure S14: Classical partition function Ratio |QN |/QNE as a function of temperature. The
dashed line indicates the results with hard sphere model for the QN function.

At low temperatures, QNE dominates due to the prevalence of bound configurations, while
QN remains small and at high temperatures, although both terms increase, their relative ratio
stabilizes and remains below unity in most physically relevant cases. These results provide both
a numerical and conceptual justification for excluding the negative repulsive contribution from
the internal partition function, the results also show that the hard sphere model can describe the
negative contribution of the classical partition function at moderate temperature range [8, 9].
Doing so yields a more physically meaningful result that accurately reflects only the accessible,
bound configurations of the molecular system. Moreover, this classical analysis offers insight
into the quantum case. Since the classical and quantum partition functions converge in the
high-temperature limit, and the repulsive classical term is negligible at low temperatures where
bound states dominate, it is therefore consistent to construct the quantum partition function
using only the bound energy levels. This approach avoids the inclusion of unbound continuum
states and aligns with the thermodynamic behavior observed classically.

Furthermore, for low-lying electronic states with sufficiently deep potential wells, it is rea-
sonable to assume analogies with the behavior of the electronic ground state at moderate tem-
peratures, particularly regarding the negative contribution to the partition function. In such
cases, the negative term QN is expected to be significantly smaller than QNE, which supports
the predominance of QNE in this regime. On the other hand, for electronic states associated
with shallow potential wells, it may occur that QN exceeds QNE at high temperatures. Nev-
ertheless, when considering a thermal regime in which multiple electronic states are accessible,
the total sum of all QNE contributions from the available states tends to be significantly greater
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than the sum of all corresponding QN terms of n electronic state. Therefore, it is a reasonable
assumption to consider that

∑
n Q

n
NE ≫

∑
nQ

n
N over a wide temperature range.
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