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1 Supplementary Figures

1.1 Figure S1: Alternate template pedigree including inbred

individuals

Fig. S1: Alternate template pedigree including three inbred individuals. a: Diagram of
the alternative template pedigree, provided to BADGER when evaluating the impact
of close inbreeding. Coloured arrows denote the pairwise relationships investigated
during the inbreeding benchmark. Additional inbred individuals are coloured in dark
red, with individuals III.3, III.4 and IV.1 being the result of a mating respectively
involving two siblings, two half-siblings, and two first-cousins. b: Pairwise matrix of the
relationships defined by the simulated pedigree shown in (a). A complete description
of the pairwise relationships contained within the input pedigrees used throughout
this study is described in Supplementary Table S2
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1.2 Figure S2: Alternative input pedigrees used to evaluate

the impact of inbreeding on the normalisation procedure

of correctKin, KIN and READv2.

Fig. S2: Diagram and pairwise relationship matrix of three alternative pedigree
topologies, given as input to correctKin, KIN and READv2 methods, where only one
out of the three inbred individuals (III.3, III.4 and IV.1) is included in the tested
cohort. a: Full-siblings scenario. b: Half-siblings scenario. c. First-cousins scenario.
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1.3 Figure S3: Comparing the performance of READv2

against its predecessor, READ

Fig. S3: Benchmark results across increasing values of sequencing depth for the
READ (dashed tan line) method and its updated version, READv2 (solid yellow line).
a: Confusion matrices of the READ and READv2 methods, confronting expected
and predicted relationships. Expected and predicted values are displayed in rows and
columns, respectively. 1◦, 2◦, 3◦ correspond to first-, second-, and third-degree rela-
tionships, respectively, U corresponds to ”unrelated individuals”, and S to ”self”
(monozygotic twins). b: UOC values summarizing the classification performance of
each method for the considered sequencing depths. Higher values of 1−UOC indicate
higher performance.
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1.4 Figure S4: Accuracy and bias of r-coefficients as a function

of sequencing depth (pmd-mask).

Fig. S4: Normalized estimates of MBE (left column) and RMSD (right column),
across all evaluated methods (bar colours), sequencing depths (rows), and expected
relatedness coefficients (y-axis ticks), using sample alignment files processed through
pmd-mask. Increasing values of nRMSD indicate lower accuracy when estimating
relatedness coefficients. nMBE values that deviate furthest from zero indicate higher
bias, with positive and negative values highlighting a tendency towards over- or
under-estimating r-coefficients, respectively. Error bars represent CI95% for the given
estimate.
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1.5 Figure S5: Accuracy and bias of r-coefficients as a function

of sequencing depth (mapDamage2)

Fig. S5: nMBE (left column) and nRMSD (right column) estimates, across all
evaluated methods (bar colours), sequencing depths (rows), and expected relatedness
coefficients (y-axis ticks), using sample alignment files processed through mapDamage2

. Increasing values of nRMSD indicate lower accuracy when estimating relatedness
coefficients. nMBE values that deviate furthest from zero indicate higher bias, with
positive and negative values highlighting a tendency towards over- or under-estimating
r-coefficients, respectively. Error bars represent CI95% for the given estimate.
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1.6 Figure S6: Full grid of confusion matrices and UOC values

across increasing values of sequencing depth

(mapDamage2)

Fig. S6: Benchmark results across increasing values of sequencing depth, using sam-
ple alignment files processed through mapDamage2 post-mortem damage rescaling
software. a: Confusion matrices of the five tested methods confronting expected and
predicted relationships. Expected and predicted values are displayed in rows and
columns, respectively. 1◦, 2◦, 3◦ correspond to first-, second-, and third-degree rela-
tionships, respectively, U corresponds to ”unrelated individuals”, and S to ”self”
(monozygotic twins). b: UOC values summarizing the classification performance of
each method for the considered sequencing depths. Higher values of 1−UOC indicate
higher performance.
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1.7 Figure S7: Accuracy and bias of r-coefficients as a function

of contamination rate (AFR)

Fig. S7: nMBE (left column) and nRMSD (right column) estimates, across all
evaluated methods (rows), rates of contamination from an AFR individual (bar colours
[1], and expected relatedness coefficients (y-axis ticks). Increasing values of nRMSD
indicate lower accuracy when estimating relatedness coefficients. nMBE values that
deviate furthest from zero indicate higher bias, with positive and negative values
highlighting a tendency towards over- or under-estimating r-coefficients, respectively.
Error bars represent CI95% for the given estimate.
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1.8 Figure S8: Accuracy and bias of r-coefficients as a function

of contamination (GBR)

Fig. S8: nMBE (left column) and nRMSD (right column) estimates, across all eval-
uated methods (rows), rates of contamination from a GBR individual (bar colours)[1],
and expected relatedness coefficients (y-axis ticks). Increasing values of nRMSD
indicate lower accuracy when estimating relatedness coefficients. nMBE values that
deviate furthest from zero indicate higher bias, with positive and negative values high-
lighting a tendency towards over- or under-estimating r-coefficients, respectively. Error
bars represent CI95% for the given estimate.
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1.9 Figure S9: Full grid of confusion matrices and UOC values

across increasing values of contamination (AFR)

Fig. S9: Benchmark results across increasing values of modern human contamination,
using the AFR population [1] as a source of contaminating individuals. a: Confusion
matrices of the five tested methods, confronting expected and predicted relationships.
Expected and predicted values are displayed in rows and columns, respectively. 1◦,
2◦, 3◦ correspond to first-, second-, and third-degree relationships, respectively, U
corresponds to ”unrelated individuals”, and S to ”self” (monozygotic twins). b: UOC
values summarizing the classification performance of each method for the considered
contamination rate. Higher values of 1− UOC indicate higher performance.
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1.10 Figure S10: Full grid of confusion matrices and UOC

values across increasing values of contamination (GBR)

Fig. S10: Benchmark results across increasing values of modern human contami-
nation, using the GBR population [1] as a source of contaminating individuals. a:
Confusion matrices of the five tested methods, confronting expected and predicted
relationships. Expected and predicted values are displayed in rows and columns,
respectively. 1◦, 2◦, 3◦ correspond to first-, second-, and third-degree relationships,
respectively, U corresponds to ”unrelated individuals”, and S to ”self” (monozygotic
twins). b: UOC values summarizing the classification performance of each method for
the considered contamination rate. Higher values of 1− UOC indicate higher perfor-
mance.
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1.11 Figure S11: Impact of admixture on the accuracy and

bias of r-coefficients

Fig. S11: nRMSD (top row) and nMBE (bottom row) estimates, across all evalu-
ated methods (columns), source populations (bar colours), and expected relatedness
coefficients (x-axis ticks), at a simulated sequencing depth of 0.1X. Increasing values
of nRMSD indicate lower accuracy when estimating relatedness coefficients. nMBE
values that deviate furthest from zero indicate higher bias, with positive and nega-
tive values highlighting a tendency towards over- or under-estimating r-coefficients,
respectively. Error bars represent CI95% for the given estimate.
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1.12 Figure S12: Confusion matrices and UOC values across

increasing values of sequencing depth (ASW)

Fig. S12: Benchmark results across increasing values of sequencing depth, using
admixed ASW individuals as a source population for pedigree individuals [1]. a:
Confusion matrices of the five tested methods confronting expected and predicted
relationships. Expected and predicted values are displayed in rows and columns,
respectively. 1◦, 2◦, 3◦ correspond to first-, second-, and third-degree relationships,
respectively, U corresponds to ”unrelated individuals”, and S to ”self” (monozygotic
twins). b: UOC values summarizing the classification performance of each method for
the considered sequencing depths. Higher values of 1 − UOC indicate higher perfor-
mance.
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1.13 Figure S13: Ancestry proportions of admixed American

populations.

Fig. S13: Ancestry proportions of admixed American populations used during this
study. The proportions of this plot were generated using the local ancestry infer-
ence results of (Martin et al. 2017) [2] (https://personal.broadinstitute.org/armartin/
tgp admixture). AFR: African; EUR: European; NAT: Native American; UNK:
Unknown
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1.14 Figure S14: Average heterozygosity rate of the European

CEU population, and admixed American populations.

Fig. S14: Sample-wise distribution of the proportions of heterozygous sites of every
1000g-phase3 sample, according to their assigned population. Per-sample counts and
proportions of heterozygous sites were directly calculated from the base dataset of
the 1000g-phase3 project, using bcftools stats [3]. Note that these counts only
take SNPs into account. Boxplot notches represent the 95% confidence interval of the
median. Whiskers of each boxplot extend from the maximum to the minimum value
found within the range [Q1 − 1.5 · IQR;Q3 + 1.5 · IQR]

17



783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

1.15 Figure S15: Accuracy and bias of r-coefficients estimates

for pairwise comparisons involving inbred individuals

Fig. S15: nRMSD (top row) and nMBE (bottom column) estimates, obtained when
simulating inbreeding, across all evaluated methods (bar colours) and expected relat-
edness coefficients (x-axis ticks). Increasing values of nRMSD indicate lower accuracy
when estimating relatedness coefficients. nMBE values that deviate furthest from zero
indicate higher bias, with positive and negative values highlighting a tendency towards
over- or under-estimating r-coefficients, respectively. Error bars represent CI95% for
the given estimate.
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1.16 Figure S16: Impact of inbreeding on the accuracy and

bias of r-coefficients estimates for pairwise comparisons

involving outbred individuals

Fig. S16: nRMSD (top row) and nMBE (bottom column) estimates, obtained
when simulating inbreeding, across all evaluated methods (columns), expected relat-
edness coefficients (x-axis ticks) and pedigree scenarii (bar colours). Increasing values
of nRMSD indicate lower accuracy when estimating relatedness coefficients. nMBE
values that deviate furthest from zero indicate higher bias, with positive and nega-
tive values highlighting a tendency towards over- or under-estimating r-coefficients,
respectively. Error bars represent CI95% for the given estimate.

19



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

2 Material and Methods

2.1 Description of BADGER’s simulation pipeline

Fig. S17: Complete directed acyclic graph of the BADGER workflow, given the input
and parameters provided throughout this study. Node names follow those of the snake-
make rules found in BADGER’s source code. Green nodes represent data entry points
which are automatically downloaded by BADGER. Red nodes represent snakemake
rules that are targeted by BADGER by default. The yellow cluster denotes a grouped
data input for the reference genome.
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2.1.1 1000 genomes dataset pre-processing

BADGER first downloads the 1000 genomes phase3-v5b dataset from the EMBL–EBI

FTP website [1] (See: Key Resources Table) and proceeds to apply normalization and

left-alignment of indels, using bcftools norm. Multi-allelic positions and any lingering

unphased genotypes are then filtered out using bcftools view (--phased -m2 -M2).

From the processed dataset, BADGER then generates two data subsets according to

the population or super-population label of the samples:

� A concatenated VCF file containing all samples belonging to the selected founder

population. This file is used as an input to ped-sim when simulating pedigrees, as

a source of founder individuals. During this study, the selected founder population

was either CEU, to simulate a genetically homogeneous population, or one of the five

populations belonging to the admixed American population (ASW, CLM, MXL, PEL,

PUR) to simulate an admixed population.

� A set of VCF files (one for each autosome), containing all samples belonging to

the selected contaminating population is generated. This second dataset is used as

input for gargammel when simulating ancient DNA fragments to extract a single

contaminating individual, and use its genotype as a source of modern human con-

tamination. During this study, we selected either the AFR super-population, or the

GBR population as a source to simulate modern human contamination.

2.1.2 Pedigree simulations

BADGER leverages the software ped-sim to simulate pedigrees in multiple repli-

cates, using founder individuals randomly selected from the founder dataset. Here,

we parametrized ped-sim to simulate sex-specific recombination rates, as well as a

crossover interference model, using the refined genetic map from [4] and the inter-

ference parameter estimates of [5], respectively. To maximize the number of possible

combinations, and given that BADGER only simulates autosomes, the original genetic
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sex of the individuals selected as founders was not taken into account to select

founders within the pedigree replicates.Simulation of genotyping errors, opposite

homozygous errors, missingness, and pseudo-haploid rates were all disabled at this

step, to prevent any compounding interactions with the error model of gargammel

(--err_rate 0 --err_hom_rate 0 --miss_rate 0 --pseudo_hap 0).

Simulation of monozygotic twins and/or duplicate samples within the pedigree is

performed by merely duplicating the genotype of the selected individuals within the

output VCF of ped-sim (See rule ”dopplegang twins”, Supplementary Figure S17).

2.1.3 Ancient DNA simulations

Simulation of raw ancient DNA fragments for every pedigree individual is performed

using gargammel. As this software requires the use of FASTA-format haplotype

sequences, BADGER first uses bcftools consensus to apply the variants from the

output VCF file of ped-sim to a reference .fasta file, thus generating a consen-

sus sequence for every pedigree individual and, when simulating non-null rates of

modern human contamination, a randomly selected contaminating sample from the

contaminant dataset.

Here, note that copy-number variations, two-sided inversions, and insertions of

ALU, LINE1, SVA and Nuclear Mitochondrial elements are filtered out using regular

expressions, to comply with the requirements of bcftools (--exclude ’ALT~"<CN

[0-9].*>"||ALT~"<INS:.*>" || ALT~"<INV>’).

For every individual, haplotype sequences are then inserted in the required endo

input directory of gargammel. Likewise, when simulating human contamination, the

haplotype sequences of the randomly sampled individual are inserted in the optional

cont input directory. BADGER then applies gargammel on these input directories,

using the user-provided misincorporation probability and fragment size frequency pro-

files. Here, we elected to use the post-mortem damage profile of ”Chan Meso”: a young

adult female individual dated from the Mesolithic period (9137 ± 124 cal.BP ) and

22
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exhumed from the ”Chan do Lindero” karst system of Pedrafita, Lugo, Spain [6]. This

choice of reference was motivated by the fact that Chan Meso was sequenced on an

Illumina HiSeq2000 platform – one of the preset sequencing platform model choice for

gargammel’s – and exhibits ”average” post-mortem damage patterns (i.e. an approx-

imate misincorporation rate of 0.22, at the 3′-and 5′-end of reads, and a mode of

approximately 70 base pairs on its fragment size frequency distribution). Note that

while BADGER can be parametrized to handle bacterial contamination from publicly

available databases, this capacity was not leveraged during the present study.

To optimize the I/O throughput and runtime performance of BADGER, generation

of ancient DNA fragments using gargammel is applied in parallel for every pedigree

individual, on a per-chromosome basis using a simple scatter-gather approach. Hence,

per-chromosome FASTQ files are merely concatenated using zcat and gzip UNIX

command-line utilities.

2.1.4 Alignment

The raw paired-end fragments of every individual composing the pedigree are then

trimmed of adapter sequences and collapsed, using AdapterRemovalv2 [7], requiring a

minimum adapter overlap of 1, read length of 17 and base quality of 20. (--minlength

17 --minquality 20 --minadapteroverlap 1).

Trimmed fragments are then aligned against the GRCh37 reference genome, using

bwa aln [8], following the best practices described in [9] (-l 1024 -n 0.01 -k 2 -o

2). Note that collapsed single-end sequences and non-collapsed paired-end sequences

are mapped separately, using bwa samse and bwa sampe respectively, and then merged

using samtools merge. Here, a generic read group tag is placed using samtools

addreplacerg following merging.
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2.1.5 Quality filtering and preprocessing of alignment files

Following alignment and merging, a simple quality filtration step is first applied to

the raw binary alignment files of every sample using samtools view. Hence, the raw

files are trimmed of any sequence that is either a) unmapped, b) measuring less than

30 nucleotides, or c) carrying a mapping quality score lower than 20 (PHRED scale)

(-F4 -q20 -e ’length(seq)>30’).

Alignment files are then sorted using samtools sort and removed of any

optical PCR duplicates using picard MarkDuplicates (--REMOVE_DUPLICATES true

--VALIDATION_STRINGENCY LENIENT --ASSUME_SORT_ORDER coordinate)

2.1.6 Correction of post-mortem deaminations

Patterns of post-mortem deamination were estimated on every sample alignment file,

using mapDamage2. To estimate the performance impact of applying post-mortem

damage rescaling, two alternative post-processing methods were then applied:

� ”Rescaled” versions of the alignment files, wherein the base quality scores of putative

nucleotide misincorporation sites are downscaled, were generated by applying the

--rescale flag of mapDamage2.

� ”Masked” version of the alignment files were generated using the in-house soft-

ware pmd-mask and the misincorporation probability estimates of mapDamage2

(misincorporation.txt file). Here, potential C>T and G>A deamination sites are

masked all together, along the 5’ and 3’ ends of fragments, respectively, until the

misincorporation probability is less than 1%.

2.1.7 Variant calling

Next, BADGER jointly applies random pseudo-haploid variant calling on every post-

processed alignment file by first creating a pileup file with samtools mpileup. Here,

autosomal bi-allelic SNP positions from the AADR ”1240K” SNP dataset, version 52.2
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were targeted [10], while disabling Base alignment quality (BAQ) recalculation, and

filtering out any position with a mapping and/or base quality lower than 20 (-RB -q20

-Q20). This pileup file is then directly given as input to the pileupCaller module

of sequenceTools (https://github.com/stschiff/sequenceTools), to generate pseudo-

haploid variant calls (--randomHaploid --minDepth 1), in binary PLINK format.

2.1.8 Genetic relatedness estimation

Note that the benchmarked genetic relatedness estimation methods may have differing

input data. Hence:

� The random pseudo-haploid variant calls of pileupCaller were given as input to

READv1 and READv2.

� The joint pileup file of samtools mpileup was given as input to GRUPS-rs

� The post-processed binary alignment files of every sample composing a pedigree

replicate were given as input to correctKin, KIN and TKGWV2.

correctKin

Following the guidelines of [11], BADGER first generates a subset of the AADR

”1240K”, to provide correctKin with a user-selected set of reference individual geno-

types. Here, all samples belonging to the EUR super-population of the 1000g-phase3

dataset and contained within the 1240K dataset were selected as reference individuals

for correctKin during this study. However, as BADGER also makes use of 1000-

genomes samples as a source of founder individuals during pedigree simulations, the

pipeline first excludes any sample previously given as an input to ped-sim, from

the list of reference samples added to the correctKin input dataset. BADGER then

merges the resulting ”1240K” data subset with the pseudo-haploid variant callset of

the pedigree replicate, using plink (--bmerge --merge-mode 1 --allow-no-sex

--keep-allele-order). Still following guidelines, a covariance matrix and a marker

overlap fraction matrix are generated from this merged dataset, using pcangsd [12]
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and the markerOverlap module of correctKin. Unrelated individuals were filtered out

using the filterRelates module of correctKin. Here, note that, a) all pairs of indi-

viduals not found in the resulting output file were considered as unrelated, and b)

pairs of individuals classified as ”uncertain” are reclassified as unrelated.

GRUPS-rs

Following the guidelines of [13], BADGER first creates an FSA-encoded dataset of

reference individuals from the raw 1000-genomes phase3 dataset, using the grups-

rs fst module. This preprocessing step is merely intended to increase the runtime

efficiency of BADGER and the resulting fsa-encoded 1000g-phase3 dataset is used as

an input throughout all pedigree replicates. For every pedigree replicate, BADGER

then directly applies grups-rs pedigree-sims on the pileup file described in 2.1.7,

while requesting 1000 simulation replicates, and using samples from the 1000g-phase3

EUR super-population as reference individuals (--reps 1000 --pedigree-pop EUR

--min-depth 1 --seq-error-rate 0.0).

Since GRUPS-rs requires the use of a user-constructed template pedigree to per-

form its simulations, we provided the software with the same template throughout this

study (Supplementary Figure S18). Note that this simple pre-constructed template is

made available as an example within the sofware’s documentation, contains a pair of

siblings, half-siblings and first-cousins, and uses these comparisons to estimate first-,

second- and third-degree relationships, respectively.
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Fig. S18: Diagram of the input template pedigree definition file provided to the
GRUPS-rs method throughout this study.

KIN

BADGER first applies the KINgaroo module on the post-processed binary alignment

files of all individuals composing a pedigree replicate. Bi-allelic autosomal SNPs from

the ”1240K” dataset are targeted during this preprocessing step (--bedfile), while

disabling contamination correction (--contam_parameter 0). The main KIN module

is then applied on the output of KINgaroo using default parameters. From the final

output of KIN, a coefficient of relatedness r is deduced for all tested pairs of individuals,

using the provided Cotterman coefficient estimates for every given pair, i.e.: r =

k1/2 + k2.

READv1

The pseudo-haploid variant callset of pileupCaller described in section 2.1.7 is given

as input to READ, with default arguments (normalization statistic: median, sliding

window size: 106 bp).

From the final output of READv1, the relatedness coefficient r of every tested pair

of individuals is derived from the normalized P 0 estimates of a given pair, using the

following equation: r = 2(1− P 0).
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READv2

Likewise, for every pedigree replicate, the pseudo-haploid variant dataset produced

by pileupCaller in section 2.1.7 is provided to READv2 by BADGER, using the

default parameters (--norm_method median). Contrary to READv1, the coefficient

of relatedness r is directly obtained from the final output results of the software.

TKGWV2

BADGER applies TKGWV2 on every tested pair of post-processed alignment files, using

the support 1000g-phase3 EUR population bed files and allele frequencies provided in

[14] (1000GP3_22M_noFixed_noChr.bed and 1000GP3_EUR_1240K.frq, respectively).

Here, note that providing TKGWV2 with a pre-defined dataset of allele frequencies incurs

the risk of targeting positions that were not simulated by ped-sim during a particular

run, as BADGER makes successive use of pedigree simulations using a pre-processed

1000g dataset, followed by the creation of consensus sequences (which will naturally

exclusively contain reference alleles). Hence, to alleviate this potential source of ref-

erence bias, we first filter the provided 1000GP3_EUR_1240K.frq file by removing any

position that was not found within the raw output VCF file previously emitted by ped

-sim. Also note that, contrary to all other candidate methods, TKGWV2 may only be

applied on a single pair of individuals. Thus, applying this method on an entire pedi-

gree replicate requires BADGER to employ a scatter-gather approach, by running the

software on every tested pair of individuals, and subsequently merging the results.

2.2 Statistical analysis and benchmark using badger.plots

Following the application of BADGER in multiple replicates, the statistical analysis

and performance estimation of each method is handled using badger.plots : a com-

mand line interface, written as a companion software to BADGER. This software thus

sequentially performs :
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1. The deserialization and consolidation of the results of each genetic relatedness

estimation software, across all BADGER simulation replicates and sets of studied

biological parameters.

2. The calculation of summary statistics regarding the classification performance of

each method, for each biological parameter studied.

3. The estimation of the average accuracy and bias of each method’s r-coefficient

calculation for each degree of relationship.

4. The generation of interactive plots summarizing these performance statistics.

2.2.1 Estimation of classification performance

For every biological condition and method, we constructed confusion matrices con-

fronting the predicted degrees of relationship for all pairwise comparisons, against the

”true” degrees of relationship, defined by the topology of the template pedigree orig-

inally given as an input for BADGER. From these confusion matrices – one for every

pedigree replicate – we calculated the Uniform Ordinal Classification Index (UOC) as

a measure of a method’s overall classification performance [15]. Briefly, this perfor-

mance metric, adapted from the ordinal classification index of Cardoso and Sousa [16],

is bound between 0 and 1 (0 implying perfectly accurate classification), insensitive

to class-imbalance, and markedly takes into account the inherent relative order, and

ranking distance separating two degrees of relationship. As such, the ordinal nature

of estimating genetic relatedness is retained when estimating performance (e.g. mis-

classifying an ”Unrelated” pairs of individuals as ”First-degree” is more penalized

than misclassifying them as ”Second-degree”). Here, our implementation of the UOC

metric was incorporated into badger.plots by adapting the pseudo-code found in

[16], and source code provided in [17]. For every method and biological condition,

the average UOC of every pedigree replicate is then calculated and plotted as a final

aggregate summary statistic. 95% confidence intervals are directly estimated from the
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distribution of UOC values across all simulation replicates, using normal approxima-

tion. When applicable, estimates for the area under the curve (AUC) of UOC values

of every method were obtained through trapezoidal integration, using the R package

pracma version 2.4.4, and its associated function trapz.

2.2.2 Average accuracy and bias of relatedness coefficients

For every simulated degree of relationship, and across all tested methods and biological

conditions, we calculate the average Root Mean Square Deviation (RMSD) and (Mean

Bias Error) between the calculated and the expected relatedness coefficients (r), in

an effort to gain insight regarding the average accuracy and bias of each method.

Note that, as many of the methods tested here do not directly compute r-coefficients,

badger.plots must first derives this metric from the raw output of every method.

Hence:

� As KIN estimates the Jacquard genetic identity coefficients of every pairwise rela-

tionship [18], we derived an r-coefficient from the provided k1 and k2 values, i.e.:

r = k1

2 + k2

� for READ and READv2, an r-coefficient can be calculated from the normalized P0

of a given pair, using the following formula: r = 2 · (1− P0)

� for GRUPS-rs, an r-coefficient can be derived by first calculating normalized

estimates of the PWDobs
i,j metric of a given pair i, j, which is obtained by divid-

ing this raw estimate by the average expected distribution of unrelated pairs

(P̂WD
sim

i,j,unrelated). It follows that the r-coefficient can be derived using the following

equation: r = 2(1− PWDobs
i,j

P̂WD
sim

i,j,unrelated

)

� Finally, as both correctKin and TKGWV2 compute a kinship coefficient (ϕ), the

r-coefficient is simply obtained by multiplying this estimate by 2: r = 2 · ϕ

Here, it must be noted that the distance separating the expected r-coefficient of a

given degree of relationship from neighbouring distributions varies with the degree of
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relatedness, and is effectively halved for each additional degree separating two indi-

viduals. This implies that a given deviation from the expected average can have a

greatly differing impact on the general accuracy, depending on the degree for which it

is observed (e.g. a standard deviation of 0.1 for the r-coefficient between two individu-

als is insignificant when considering first-degree relationships, but would consistently

cause misclassifications in the case of third-degree relationships).

Thus, to properly compare the accuracy and bias, both across a given method and

degree of relatedness, we propose to first normalize the RMSD and MBE of a given

relationship by the range of its theoretical distribution. This can be done by dividing

the RMSD of MBE value by the distance separating the two midpoints found between

the mean of a given relationship k and its neighbouring ones (k − 1 and k + 1).

nRMSDm,k =

√∑i=N
i=1 (r̂k−rm,k,i)2

N

r̂k+1−r̂k−1

2

(1)

nMBEm,k =

∑i=N
i=1 (rm,k,i−r̂k)

N
r̂k+1−r̂k−1

2

(2)

where m and k represent a given method and degree of relatedness, respectively. r̂k

is the expected relatedness coefficient of relationship k ; rm,k,i, the calculated related-

ness coefficient for the ith pair of individuals, and N , the total amount of observations

of a given relationship k (k = 0, 0.125, 0.25, 0.5, 1). 95% confidence intervals for these

metrics were calculated using the principles and methods described in [19, 20], i.e.:

nRMSDm,k ∈
[
nRMSDm,k

(
1−

√
1− 1.96

√
2√

N−1

)
;RMSDm,k

(√
1 + 1.96

√
2√

N−1
− 1

)]
(3)
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nMBEm,k ∈
[
nMBEm,k ±

1.96 · σm,k√
N

]
(4)

where σm,k is the population standard deviation of the relatedness coefficients

obtained from method m, and belonging to relationship k.

2.3 Key Resources Table

Reagent or Resource Source Identifier

Deposited data

1000g-phase3-v20130502 IGSR [1] https://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/

HapMapII IHMP [21] http://ftp.ncbi.nlm.nih.gov/

hapmap/recombination/2011-01

phaseII B37/

GRCh37-release113 Church et al. [22] http://ftp.ensembl.org/pub/grch37/

release-113/fasta/homo sapiens/

dna/

Cross-over interference model Campbell et al. [5] https://raw.githubusercontent.com/

williamslab/ped-sim/refs/heads/

master/interfere/nu p campbell.tsv

Sex-specific genetic maps Bhérer et al. [4] https://github.com/

cbherer/Bherer etal

SexualDimorphismRecombination/

AADR dataset v52.2 Mallick et al. [10] https://reichdata.hms.harvard.

edu/pub/datasets/amh repo/

curated releases/V52/V52.2/

SHARE/public.dir/

TKGWV2 support files Fernandes et al. [14] https://github.com/

danimfernandes/tkgwv2

Softwares and algorithms

AdapterRemoval-v2.3.3 Schubert et al. [7] RRID:SCR 011834

ANGSD-v0.939 Korneliussen et al. [23] RRID:SCR 021865

BADGER-v0.5.1 This study https://github.com/MaelLefeuvre/

badger/tree/v0.5.1

bcftools-1.15 Li [3] RRID:SCR 005227

conda-23.1.0 Conda contributors [24] RRID:SCR 018317

correctKin Nyerki et al. [11] RRID:SCR 026952

gargammel-1.1.4 Renaud et al. [25] RRID:SCR 026953
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grups-rs-0.3.2 Lefeuvre et al. [13] RRID:SCR 026954

kin-3.1.3 Popli et al. [26] RRID:SCR 026955

mapDamage-v2.2.1 Jónsson et al. [27] RRID:SCR 001240

pcangsd-0.99 Meisner and Albrechtsen [12] RRID:SCR 026956

ped-sim-v1.4 Caballero et al. [28] RRID:SCR 026957

picard-v2.27.4 Broad Institute [29] RRID:SCR 006525

plink-v1.9 Chang et al. [30] RRID:SCR 001757

pmd-mask-v0.3.2 This study https://github.com/MaelLefeuvre/

pmd-mask/tree/v0.3.2

READ-v1.0 Kuhn et al. [31] RRID:SCR 026958

READv2-v2.00 Alaçamlı et al. [32] RRID:SCR 026959

samtools-v1.15 Li [3] RRID:SCR 002105

sequenceTools-v1.5.2 Schiffels [33] https://github.com/stschiff/

sequenceTools/tree/v1.5.2

snakemake-7.20.0 Mölder et al. [34] RRID:SCR 003475

TKGWV2 Fernandes et al. [14] RRID:SCR 026960

python-3.11.0 Python Software Foundation RRID:SCR 008394

R-v4.1.2 R Development Core Team RRID:SCR 001905
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3 Description of the pmd-mask command line utility

3.1 Rationale, behaviour and workflow description

Fig. S19: Summary diagram describing the main process, required inputs, and work-
flow surrounding the pmd-mask command-line utility.

pmd-mask is a simple command-line pre-processing tool written in the Rust pro-

gramming language, which masks the positions from reads that are likely to be

impacted by post-mortem damage (PMD). Briefly, pmd-mask leverages nucleotide–

and position-specific misincorporation rate estimates emitted from the mapDamage2

software (typically, in the form of a misincorporation.txt output file) to apply soft-

trimming on the read extremities, until the PMD rate reaches a user defined threshold
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by setting candidate nucleotides to ‘N’ and their base-quality to 0. Note that the

default threshold is here defined as a misincorporation rate of 0.01, but may be modi-

fied at leisure by the user, using the --threshold argument. Note that, in its current

state, the pmd-mask algorithm only considers the misincorporation rate found at a

given position, and the genotype found in the reference genome. Therefore, nucleotides

at the extremities of a read are masked, regardless of the actual genotype observed at

a given position (Supplementary Figure S19). Pseudo-code snippets, summarizing the

main loop of the program can be read in Algorithm-1. Here, the devised approach is

one that i) is expected to incur less potential bias than when applying PMD-rescaling

through mapDamage2 (i.e. using its provided --rescale flag), and ii) carries the bene-

fit of mitigating the loss of information usually displayed when applying hard-clipping,

by instead specifically targeting potential C>T and G>A transition sites on both the 5′

and 3′ end of the read, respectively. In other terms, this method may be regarded as

a conservative compromise between post-mortem damage rescaling methods such as

mapDamage2, PMDtools, or ATLAS [27, 35, 36] and hard-clipping methods such as

the trimBam module of the bamUtil software [37]. Required inputs for pmd-mask are

as follows:

� --bam: An input .bam file (SAM, BAM, and CRAM formats are accepted). pmd-

mask can either read from a file (using -b|--bam) or from the standard input,

through shell piping.

� --misincorporation: A mapDamage2 misincorporation.txt file. This file pro-

vides strand-specific PMD frequency estimates, which are used to compute the

threshold at which masking should be performed. Evidently, this file must have been

generated from the input BAM file to provide a sound estimate.

� --reference: A reference genome, in the form of a .fasta file . This genome must

of course be identical to the one used to align the input BAM file.
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Additional instructions regarding the installation and usage of pmd-mask, as well

as its source code is made publicly available at https://github.com/MaelLefeuvre/

pmd-mask, under GPL-v3.0 licencing.
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3.2 Pseudo-code describing the main algorithm of pmd-mask

Algorithm 1 Pseudo-code describing the main algorithm of pmd-mask.

Ensure: : args.threshold ∈ [0.00, 1.00[
1: bam← bam reader(args.bam path);
2: refseq ← fasta reader(args.reference path)
3: misincorporation← misincorporation reader(args.misincorporation path)
4:
5: if args.threshold is not null then
6: threshold← args.threshold
7: else
8: threshold← 0.01
9:

10: function mask(read, position)
11: read.nucleotide[position]←′ N ′;
12: read.quality[position]← 0
13:
14: output bam← bam.copy header()
15: for read ∈ bam do
16: ▷ Extract read length, coordinate and strand information ◁
17: n← read.length
18: chr ← read.chromosome
19: pos← read.position
20: strand← read.strand
21: ▷ Mask 5’ Cytosines ◁
22: for mask5′ : (i = 0; i < n; i++) do
23: if misincorporation[′C > T ′][chr][strand][i] ≤ args.threshold then
24: break mask5p′

25: else if reference.get(chr, pos+ i) ==′ C ′ then
26: MASK(read, i)
27: ▷ Mask 3’ Guanines ◁
28: for mask3′ : (i = n; i > 0; i−−) do
29: if misincorporation[′G > A′][chr][strand][i] ≤ args.threshold then
30: break mask3′

31: else if reference.get(chr, pos+ i) ==′ G′ then
32: MASK(read, i)
33:
34: ▷ Store masked read ◁
35: output bam+ = read

return (output bam)
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