

001	
002	
003	
004	
005	
006	
007	Supplementary Materials:
008	
009	BADGER: evaluating the performance of ancient DNA genetic
010	relatedness estimation methods using high-fidelity pedigree simulations.
011	
012	
013	
014	
015	
016	
017	
018	
019	
020	
021	
022	
023	
024	
025	
026	
027	
028	
029	
030	
031	
032	
033	
034	
035	
036	
037	
038	
039	
040	
041	
042	
043	
044	
045	
046	

047	Contents	
048		
049		
050	1 Supplementary Figures	4
051		
052	1.1 Figure S1: Alternate template pedigree including inbred individuals	4
053		
054	1.2 Figure S2: Alternative input pedigrees used to evaluate the impact	
055	of inbreeding on the normalisation procedure of correctKin, KIN and	
056	READv2.	5
057		
058	1.3 Figure S3: Comparing the performance of READv2 against its prede-	
059	cessor, READ	6
060		
061	1.4 Figure S4: Accuracy and bias of r-coefficients as a function of sequencing	
062	depth (pmd-mask).	7
063		
064	1.5 Figure S5: Accuracy and bias of r-coefficients as a function of sequencing	
065	depth (mapDamage2)	8
066		
067	1.6 Figure S6: Full grid of confusion matrices and UOC values across	
068	increasing values of sequencing depth (mapDamage2)	9
069		
070	1.7 Figure S7: Accuracy and bias of r-coefficients as a function of contam-	
071	ination rate (AFR)	10
072		
073	1.8 Figure S8: Accuracy and bias of r-coefficients as a function of contam-	
074	ination (GBR)	11
075		
076	1.9 Figure S9: Full grid of confusion matrices and UOC values across	
077	increasing values of contamination (AFR)	12
078		
079	1.10 Figure S10: Full grid of confusion matrices and UOC values across	
080	increasing values of contamination (GBR)	13
081		
082	1.11 Figure S11: Impact of admixture on the accuracy and bias of r-coefficients	14
083		
084	1.12 Figure S12: Confusion matrices and UOC values across increasing values	
085	of sequencing depth (ASW)	15
086		
087	1.13 Figure S13: Ancestry proportions of admixed American populations. .	16
088		
089		
090		
091		
092		

1.14 Figure S14: Average heterozygosity rate of the European CEU population, and admixed American populations	17	093 094 095
1.15 Figure S15: Accuracy and bias of r-coefficients estimates for pairwise comparisons involving inbred individuals	18	096 097 098
1.16 Figure S16: Impact of inbreeding on the accuracy and bias of r-coefficients estimates for pairwise comparisons involving outbred individuals	19	099 100 101 102 103 104
2 Material and Methods	20	105 106
2.1 Description of BADGER's simulation pipeline	20	107 108
2.1.1 1000 genomes dataset pre-processing	21	109
2.1.2 Pedigree simulations	21	110 111
2.1.3 Ancient DNA simulations	22	112 113
2.1.4 Alignment	23	114
2.1.5 Quality filtering and preprocessing of alignment files	24	115 116
2.1.6 Correction of <i>post-mortem</i> deaminations	24	117 118
2.1.7 Variant calling	24	119
2.1.8 Genetic relatedness estimation	25	120 121
2.2 Statistical analysis and benchmark using badger.plots	28	122 123
2.2.1 Estimation of classification performance	29	124
2.2.2 Average accuracy and bias of relatedness coefficients	30	125 126
2.3 Key Resources Table	32	127 128
3 Description of the pmd-mask command line utility	34	129 130
3.1 Rationale, behaviour and workflow description	34	131 132
3.2 Pseudo-code describing the main algorithm of pmd-mask	37	133 134 135 136 137 138

139 **1 Supplementary Figures**

140

141 **1.1 Figure S1: Alternate template pedigree including inbred**

142 **individuals**

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

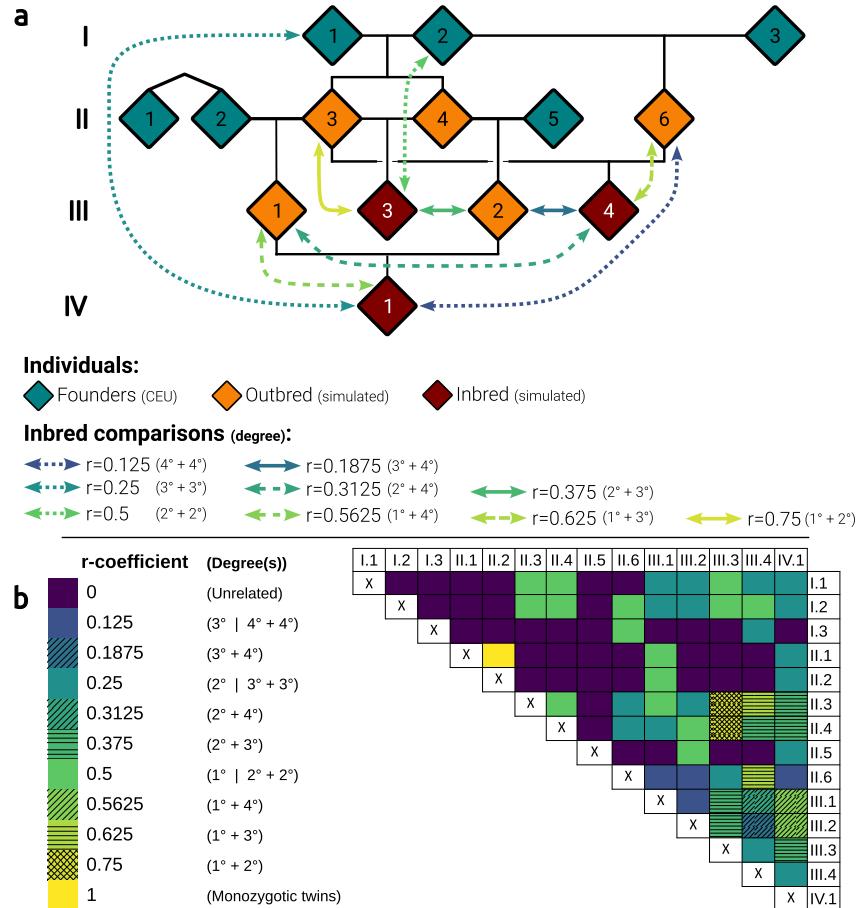
165

166

167

168

169


170

171

172

173

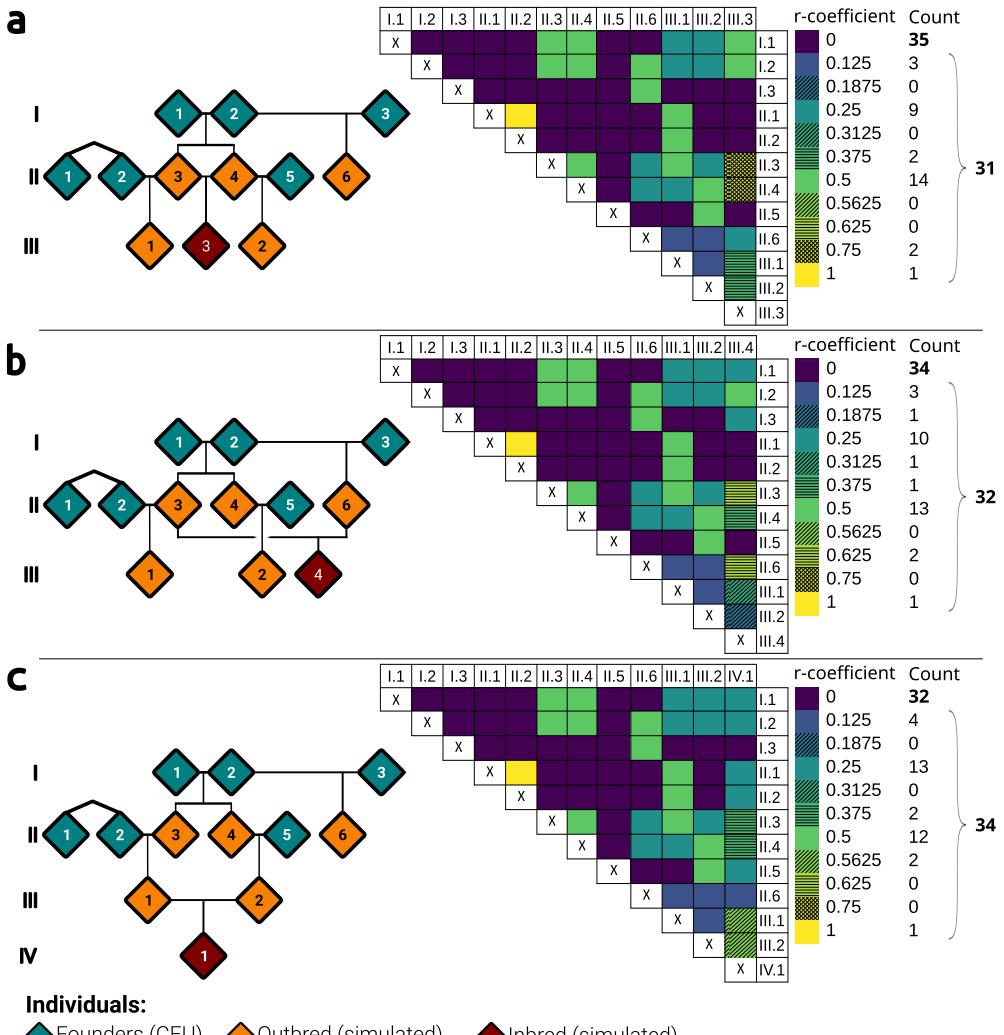
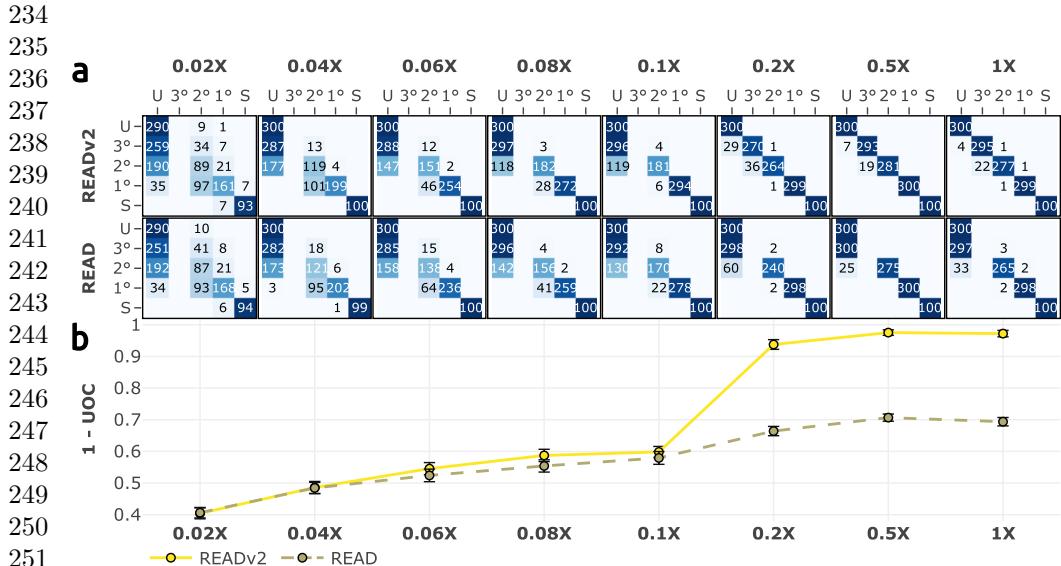
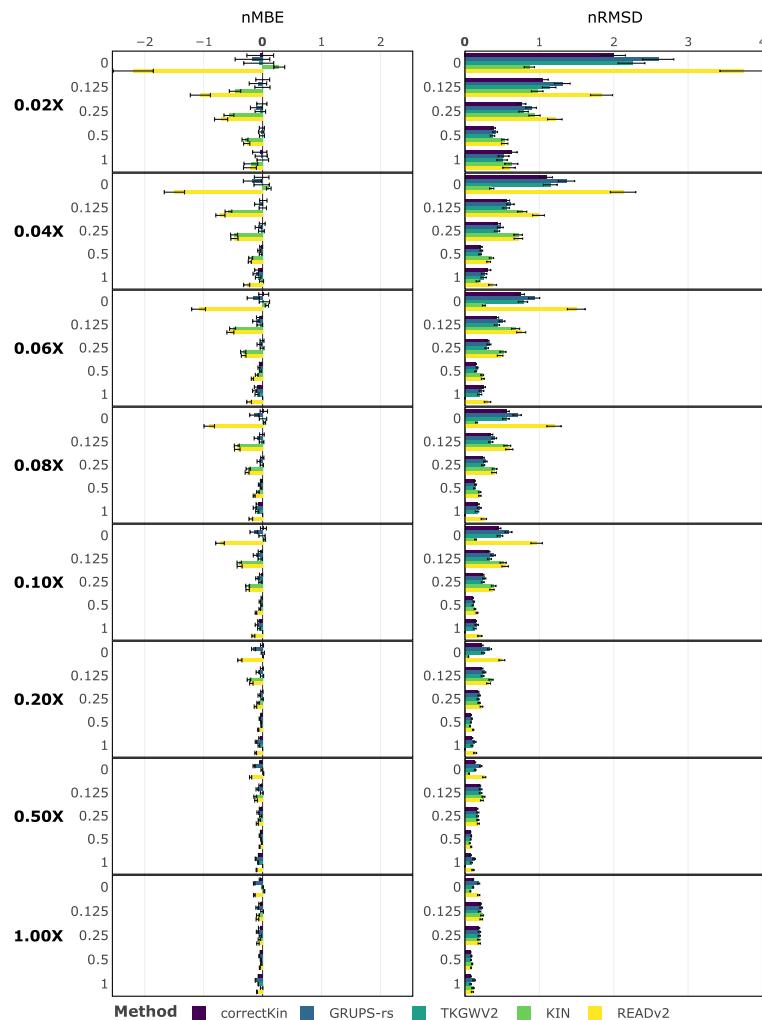

174

Fig. S1: Alternate template pedigree including three inbred individuals. **a:** Diagram of the alternative template pedigree, provided to BADGER when evaluating the impact of close inbreeding. Coloured arrows denote the pairwise relationships investigated during the inbreeding benchmark. Additional inbred individuals are coloured in dark red, with individuals III.3, III.4 and IV.1 being the result of a mating respectively involving two siblings, two half-siblings, and two first-cousins. **b:** Pairwise matrix of the relationships defined by the simulated pedigree shown in (a). A complete description of the pairwise relationships contained within the input pedigrees used throughout this study is described in Supplementary Table S2

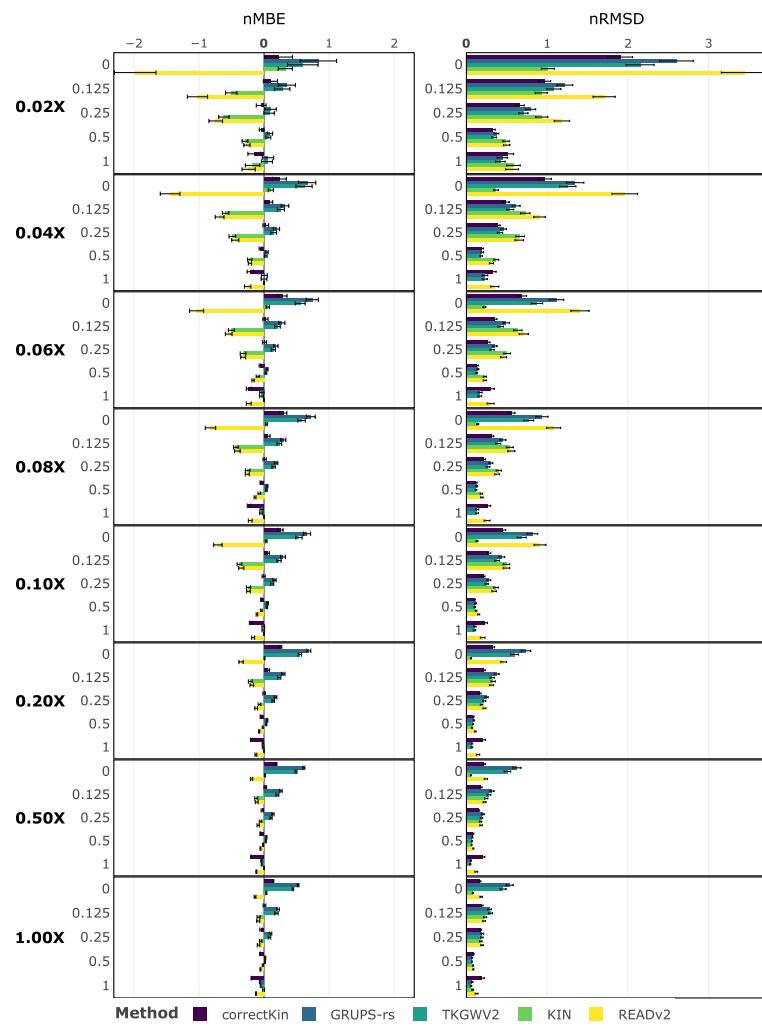

1.2 Figure S2: Alternative input pedigrees used to evaluate the impact of inbreeding on the normalisation procedure of correctKin, KIN and READv2.

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

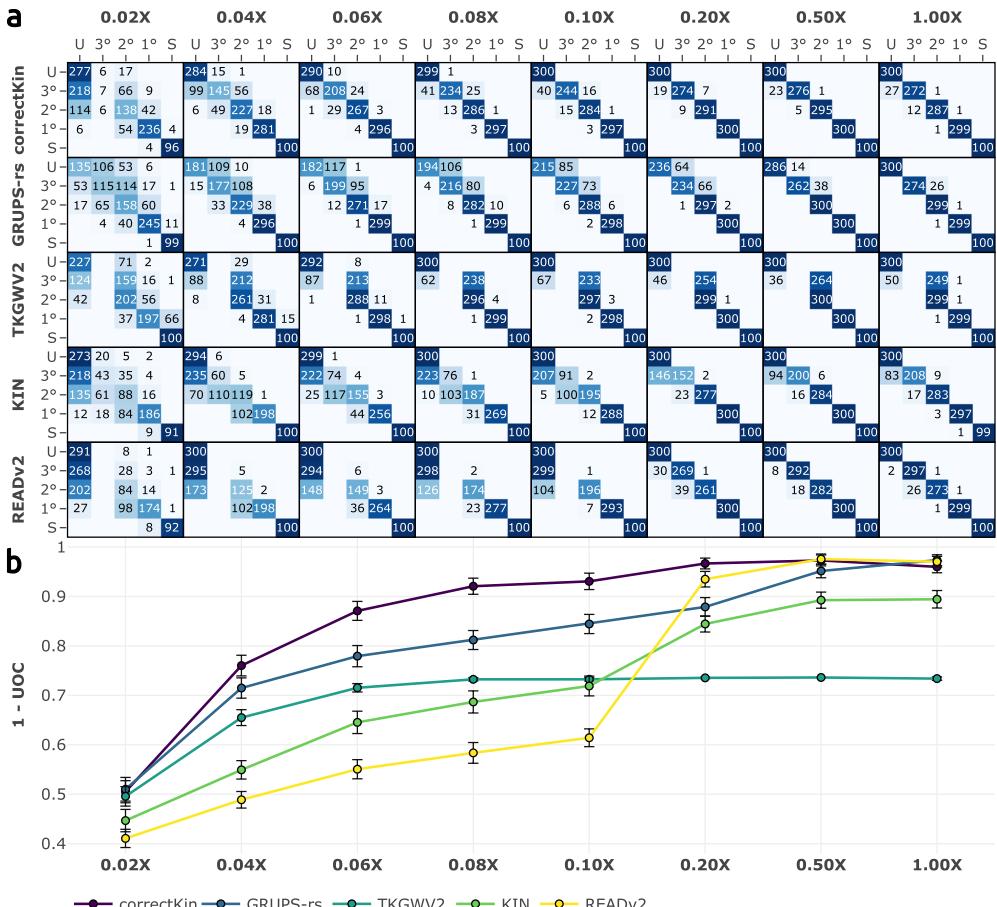
Fig. S2: Diagram and pairwise relationship matrix of three alternative pedigree topologies, given as input to correctKin, KIN and READv2 methods, where only one out of the three inbred individuals (III.3, III.4 and IV.1) is included in the tested cohort. **a:** Full-siblings scenario. **b:** Half-siblings scenario. **c:** First-cousins scenario.


231 **1.3 Figure S3: Comparing the performance of READv2**
 232
 233 against its predecessor, READ

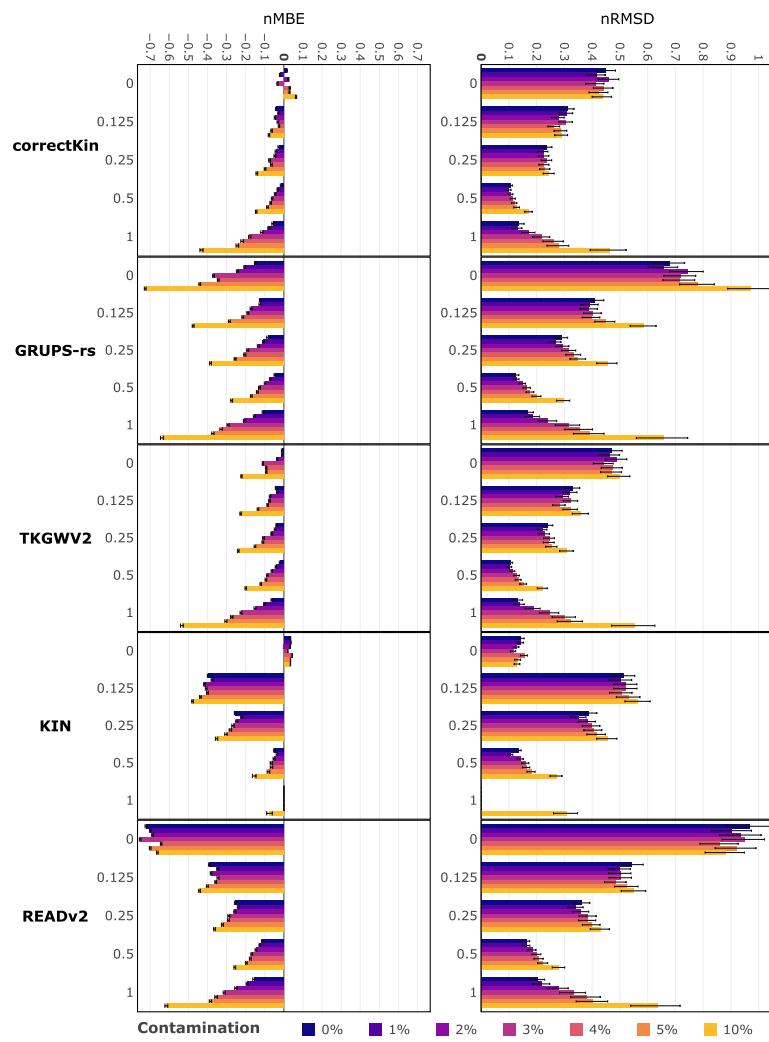
252 **Fig. S3:** Benchmark results across increasing values of sequencing depth for the
 253 READ (dashed tan line) method and its updated version, READv2 (solid yellow line).
 254 **a:** Confusion matrices of the READ and READv2 methods, confronting expected
 255 and predicted relationships. Expected and predicted values are displayed in rows and
 256 columns, respectively. 1° , 2° , 3° correspond to first-, second-, and third-degree rela-
 257 tionships, respectively, U corresponds to "unrelated individuals", and S to "self"
 258 (monozygotic twins). **b:** UOC values summarizing the classification performance of
 259 each method for the considered sequencing depths. Higher values of $1 - UOC$ indicate
 260 higher performance.


261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276

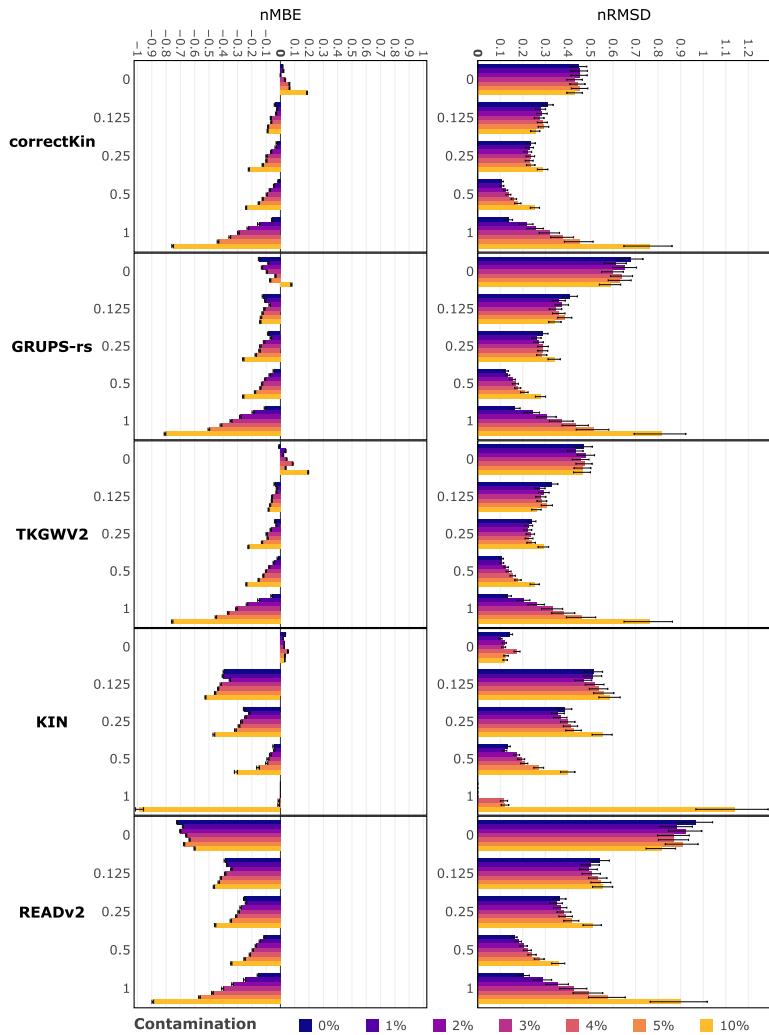
1.4 Figure S4: Accuracy and bias of r-coefficients as a function of sequencing depth (pmd-mask). 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322


Fig. S4: Normalized estimates of MBE (left column) and $RMSD$ (right column), across all evaluated methods (bar colours), sequencing depths (rows), and expected relatedness coefficients (y-axis ticks), using sample alignment files processed through `pmd-mask`. Increasing values of $nRMSD$ indicate lower accuracy when estimating relatedness coefficients. $nMBE$ values that deviate furthest from zero indicate higher bias, with positive and negative values highlighting a tendency towards over- or under-estimating r-coefficients, respectively. Error bars represent $CI_{95\%}$ for the given estimate.

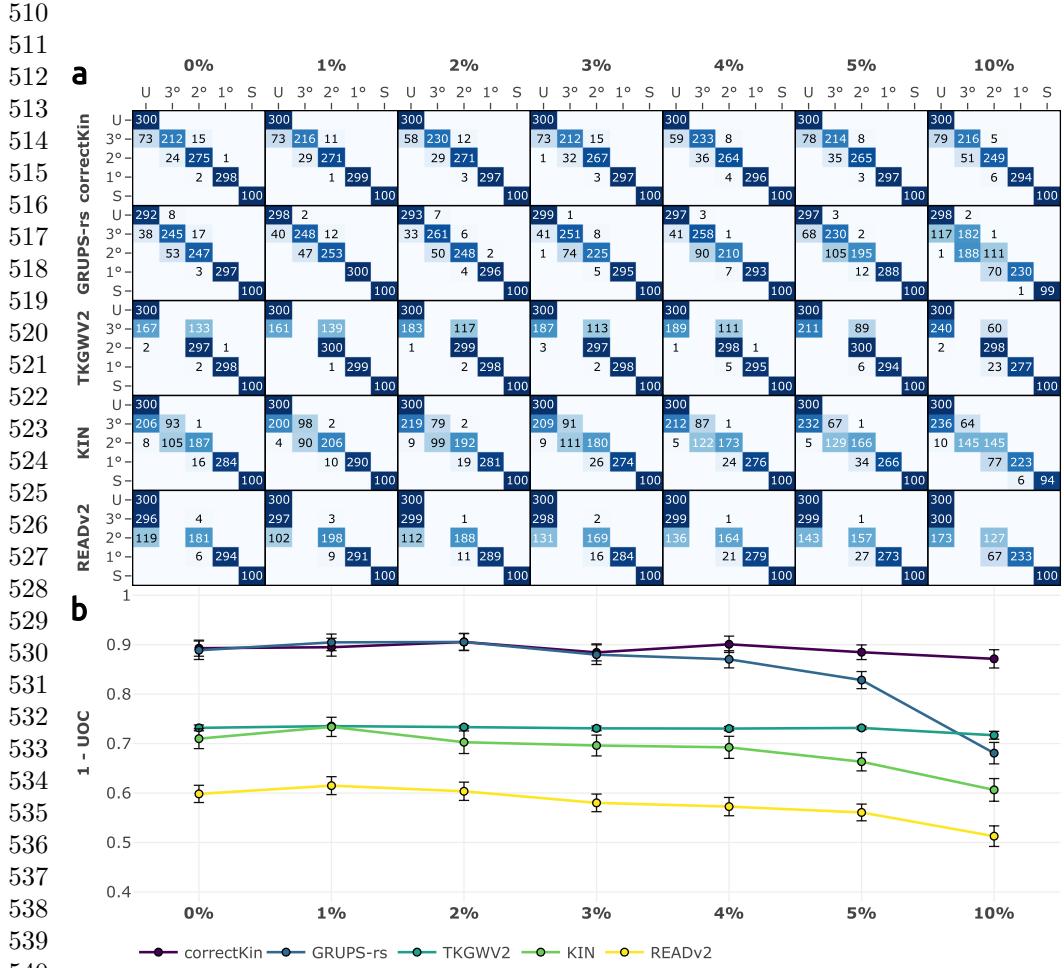
323 1.5 Figure S5: Accuracy and bias of r-coefficients as a function
 324
 325 of sequencing depth (mapDamage2)
 326
 327


360 **Fig. S5:** $nMBE$ (left column) and $nRMSD$ (right column) estimates, across all
 361 evaluated methods (bar colours), sequencing depths (rows), and expected relatedness
 362 coefficients (y-axis ticks), using sample alignment files processed through `mapDamage2`
 363 . Increasing values of $nRMSD$ indicate lower accuracy when estimating relatedness
 364 coefficients. $nMBE$ values that deviate furthest from zero indicate higher bias, with
 365 positive and negative values highlighting a tendency towards over- or under-estimating
 366 r-coefficients, respectively. Error bars represent $CI_{95\%}$ for the given estimate.
 367
 368

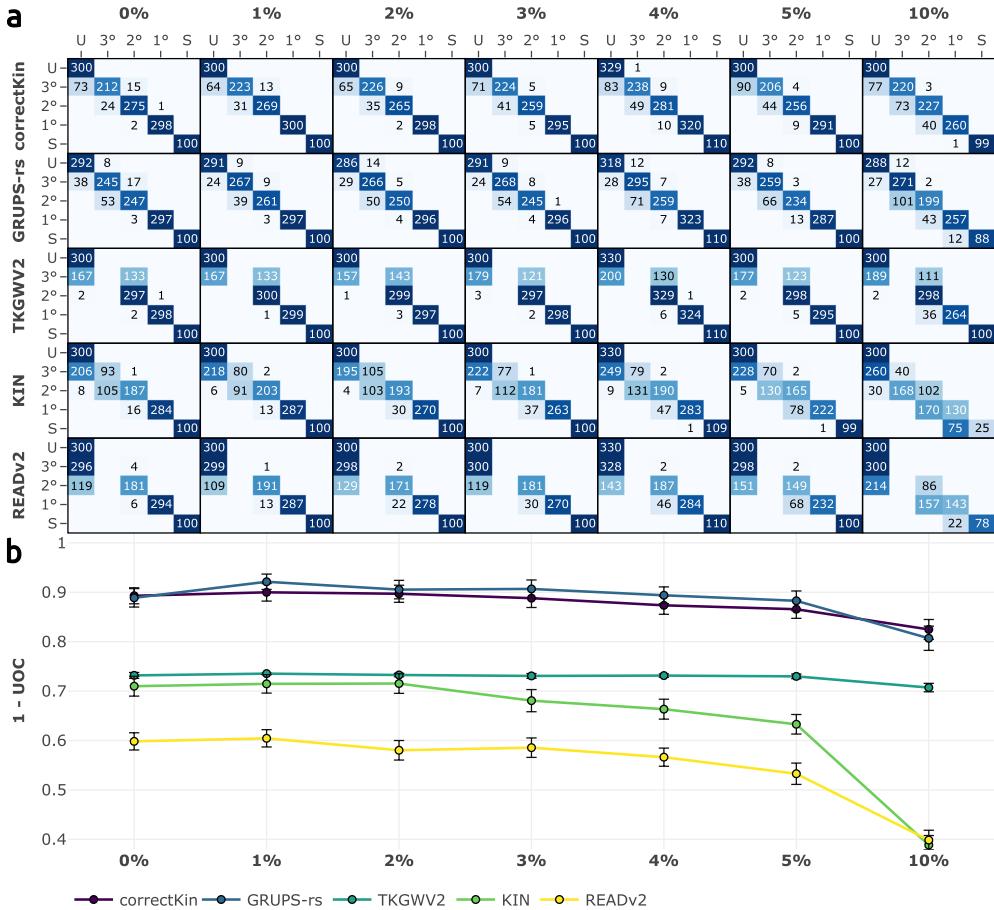
1.6 Figure S6: Full grid of confusion matrices and UOC values across increasing values of sequencing depth (mapDamage2)


Fig. S6: Benchmark results across increasing values of sequencing depth, using sample alignment files processed through mapDamage2 *post-mortem* damage rescaling software. **a:** Confusion matrices of the five tested methods confronting expected and predicted relationships. Expected and predicted values are displayed in rows and columns, respectively. 1°, 2°, 3° correspond to first-, second-, and third-degree relationships, respectively, U corresponds to "unrelated individuals", and S to "self" (monozygotic twins). **b:** UOC values summarizing the classification performance of each method for the considered sequencing depths. Higher values of 1 – UOC indicate higher performance.

415 1.7 Figure S7: Accuracy and bias of r-coefficients as a function
 416
 417 of contamination rate (AFR)


453 **Fig. S7:** $nMBE$ (left column) and $nRMSD$ (right column) estimates, across all
 454 evaluated methods (rows), rates of contamination from an *AFR* individual (bar colours
 455 [1], and expected relatedness coefficients (y-axis ticks). Increasing values of $nRMSD$
 456 indicate lower accuracy when estimating relatedness coefficients. $nMBE$ values that
 457 deviate furthest from zero indicate higher bias, with positive and negative values
 458 highlighting a tendency towards over- or under-estimating r-coefficients, respectively.
 459 Error bars represent $CI_{95\%}$ for the given estimate.
 460

1.8 Figure S8: Accuracy and bias of r-coefficients as a function of contamination (GBR) 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498


Fig. S8: $nMBE$ (left column) and $nRMSD$ (right column) estimates, across all evaluated methods (rows), rates of contamination from a *GBR* individual (bar colours)[1], and expected relatedness coefficients (y-axis ticks). Increasing values of $nRMSD$ indicate lower accuracy when estimating relatedness coefficients. $nMBE$ values that deviate furthest from zero indicate higher bias, with positive and negative values highlighting a tendency towards over- or under-estimating r-coefficients, respectively. Error bars represent $CI_{95\%}$ for the given estimate.

507 **1.9 Figure S9: Full grid of confusion matrices and UOC values**
508
509 **across increasing values of contamination (AFR)**

540 **Fig. S9:** Benchmark results across increasing values of modern human contamination,
541 using the *AFR* population [1] as a source of contaminating individuals. **a:** Confusion
542 matrices of the five tested methods, confronting expected and predicted relationships.
543 Expected and predicted values are displayed in rows and columns, respectively. 1° ,
544 2° , 3° correspond to first-, second-, and third-degree relationships, respectively, *U*
545 corresponds to "unrelated individuals", and *S* to "self" (monozygotic twins). **b:** UOC
546 values summarizing the classification performance of each method for the considered
547 contamination rate. Higher values of $1 - UOC$ indicate higher performance.
548

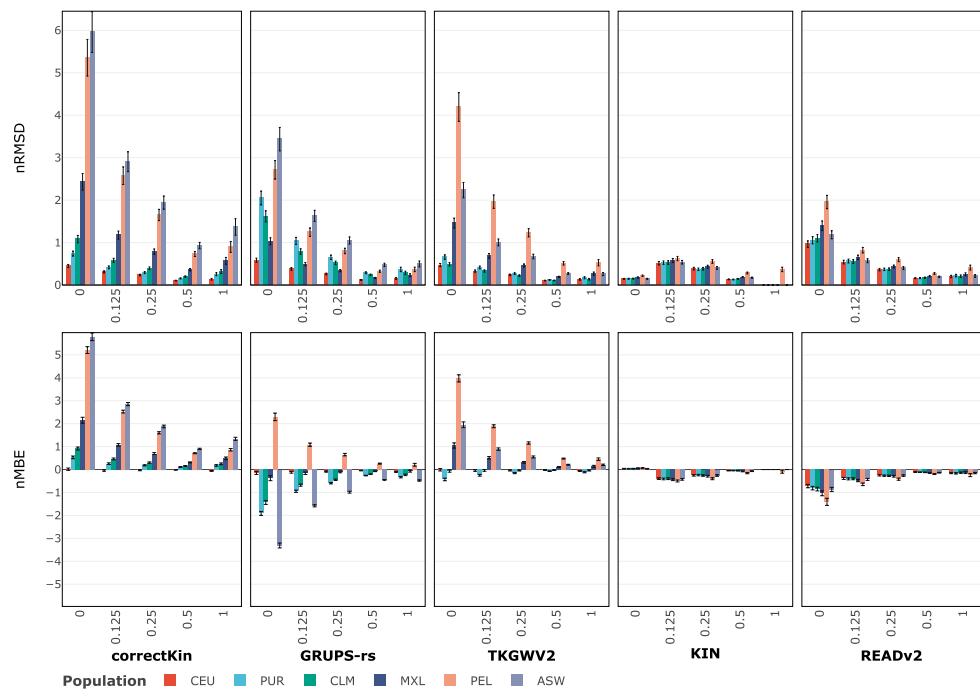
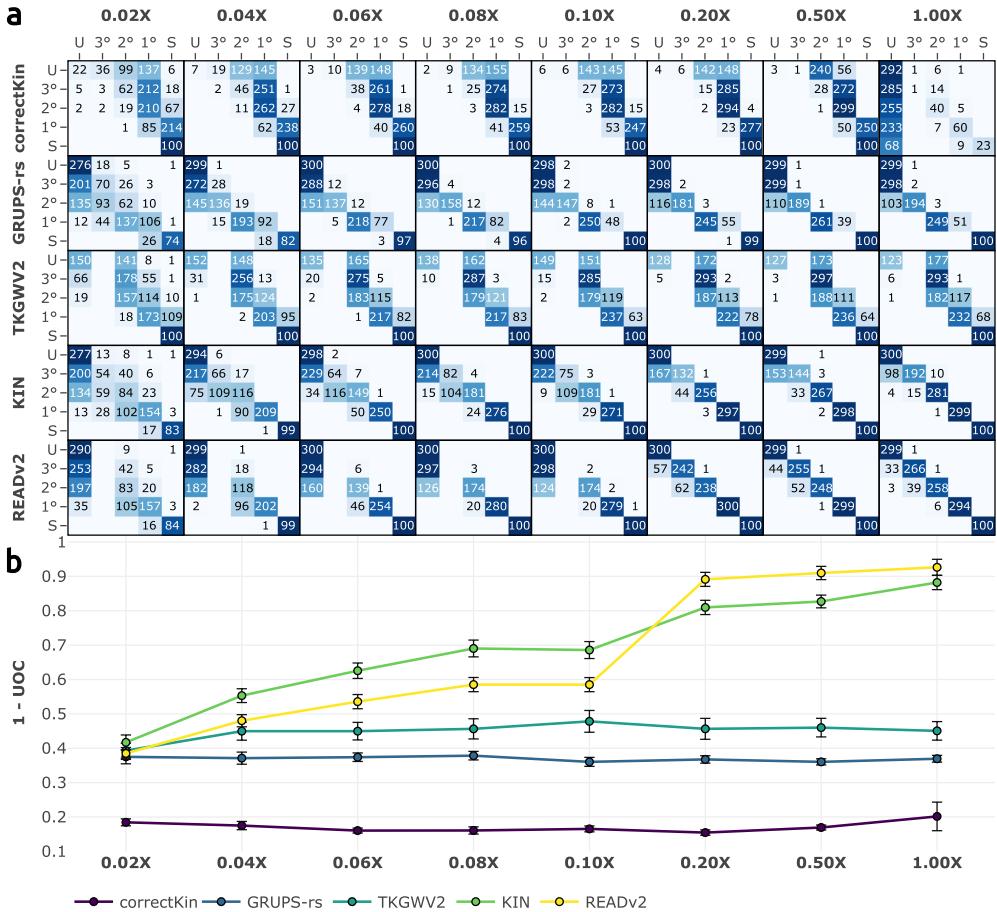
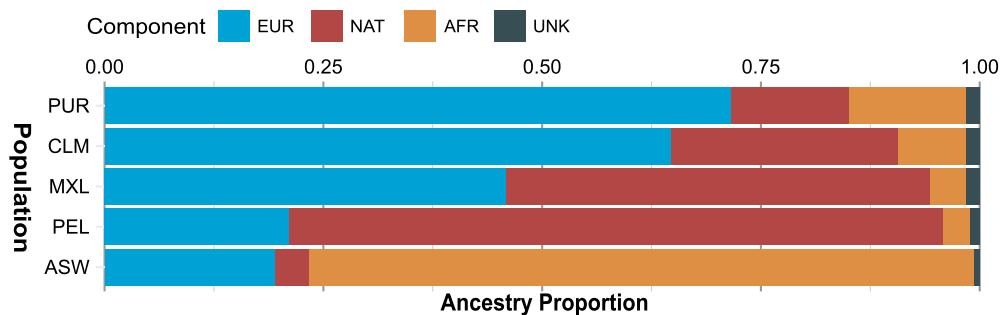

1.10 Figure S10: Full grid of confusion matrices and UOC values across increasing values of contamination (GBR)

Fig. S10: Benchmark results across increasing values of modern human contamination, using the *GBR* population [1] as a source of contaminating individuals. **a:** Confusion matrices of the five tested methods, confronting expected and predicted relationships. Expected and predicted values are displayed in rows and columns, respectively. 1°, 2°, 3° correspond to first-, second-, and third-degree relationships, respectively, *U* corresponds to "unrelated individuals", and *S* to "self" (monozygotic twins). **b:** UOC values summarizing the classification performance of each method for the considered contamination rate. Higher values of $1 - UOC$ indicate higher performance.

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598


599 1.11 Figure S11: Impact of admixture on the accuracy and
600 601 bias of r-coefficients
602 603

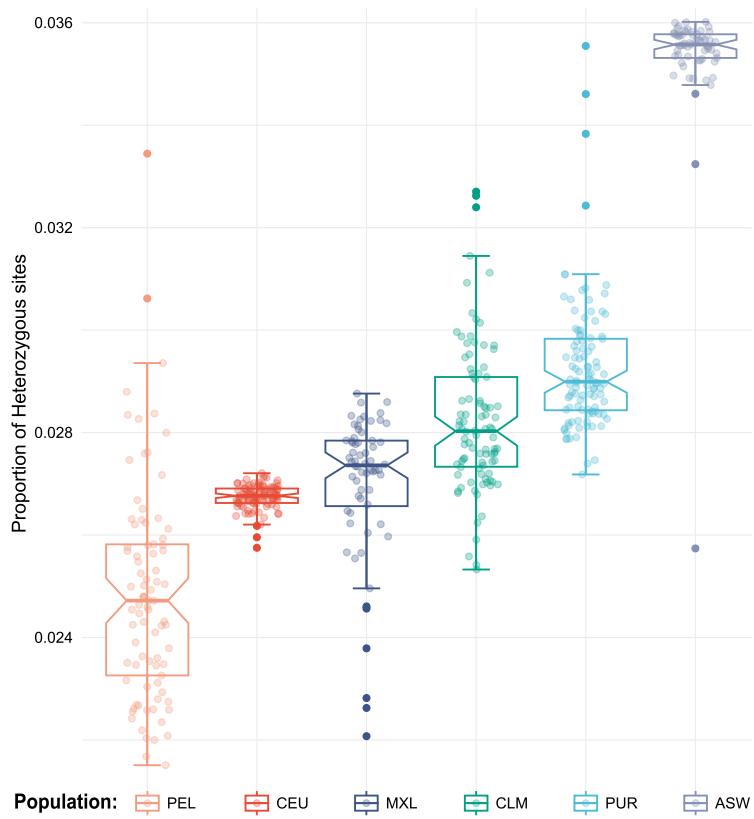
626 Fig. S11: $nRMSE$ (top row) and $nMBE$ (bottom row) estimates, across all eval-
627 uated methods (columns), source populations (bar colours), and expected relatedness
628 coefficients (x-axis ticks), at a simulated sequencing depth of 0.1X. Increasing values
629 of $nRMSE$ indicate lower accuracy when estimating relatedness coefficients. $nMBE$
630 values that deviate furthest from zero indicate higher bias, with positive and nega-
631 tive values highlighting a tendency towards over- or under-estimating r-coefficients,
632 respectively. Error bars represent $CI_{95\%}$ for the given estimate.


633
634
635
636
637
638
639
640
641
642
643
644

1.12 Figure S12: Confusion matrices and UOC values across increasing values of sequencing depth (ASW)

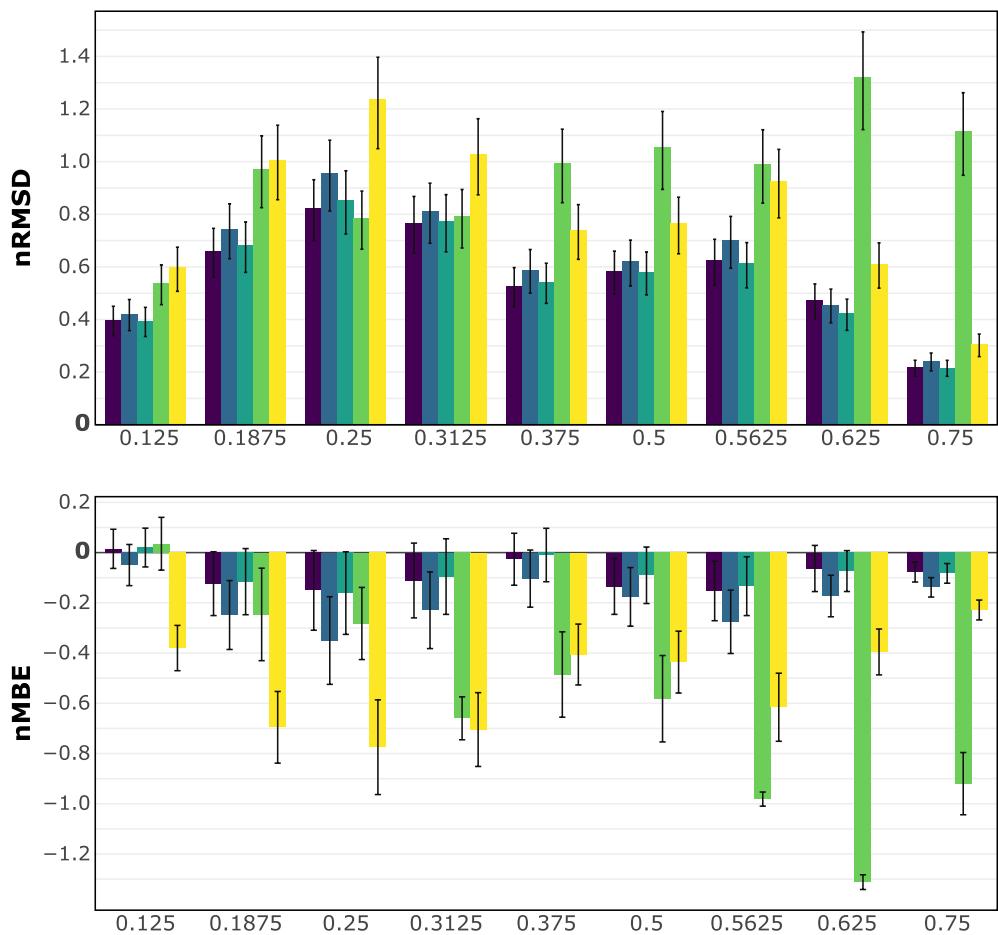
Fig. S12: Benchmark results across increasing values of sequencing depth, using admixed ASW individuals as a source population for pedigree individuals [1]. **a:** Confusion matrices of the five tested methods confronting expected and predicted relationships. Expected and predicted values are displayed in rows and columns, respectively. 1°, 2°, 3° correspond to first-, second-, and third-degree relationships, respectively, U corresponds to "unrelated individuals", and S to "self" (monozygotic twins). **b:** UOC values summarizing the classification performance of each method for the considered sequencing depths. Higher values of $1 - UOC$ indicate higher performance.

691 1.13 Figure S13: Ancestry proportions of admixed American
692
693 populations.



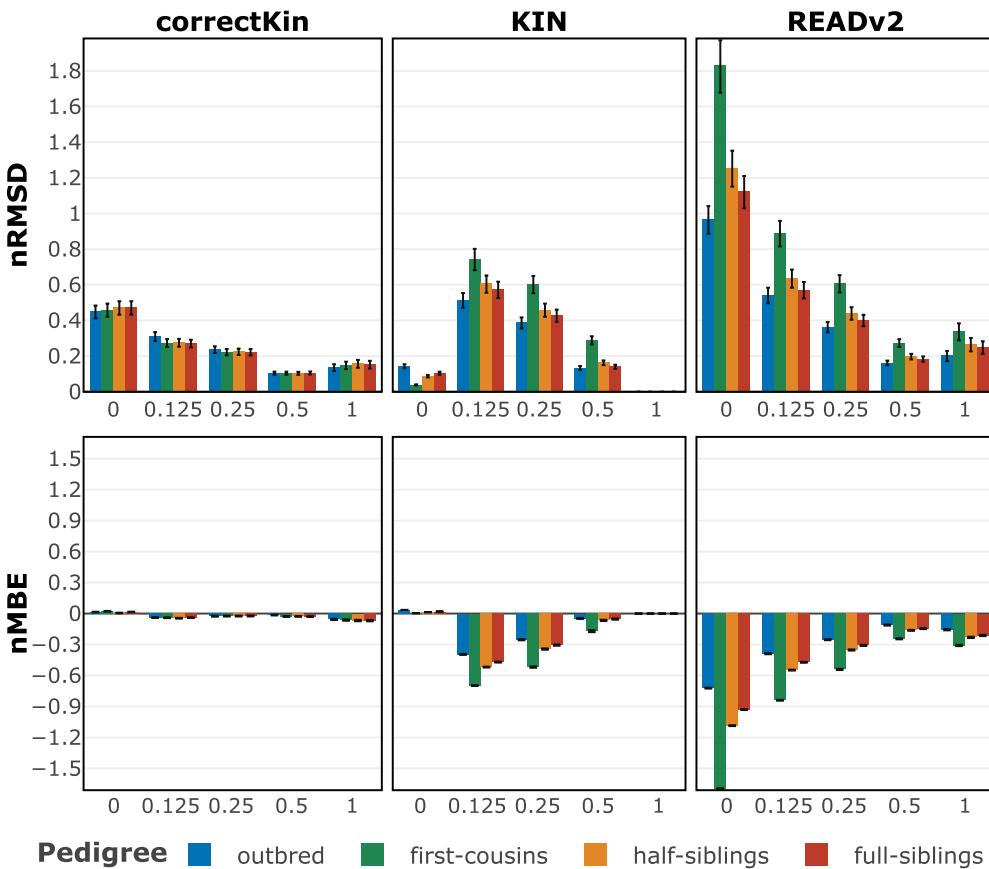
705
706 **Fig. S13:** Ancestry proportions of admixed American populations used during this
707 study. The proportions of this plot were generated using the local ancestry inference
708 results of (Martin et al. 2017) [2] (https://personal.broadinstitute.org/armartin/tgp_admixture). **AFR:** African; **EUR:** European; **NAT:** Native American; **UNK:**
709 Unknown
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736


1.14 Figure S14: Average heterozygosity rate of the European
CEU population, and admixed American populations.

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Fig. S14: Sample-wise distribution of the proportions of heterozygous sites of every 1000g-phase3 sample, according to their assigned population. Per-sample counts and proportions of heterozygous sites were directly calculated from the base dataset of the 1000g-phase3 project, using `bcftools stats` [3]. Note that these counts only take SNPs into account. Boxplot notches represent the 95% confidence interval of the median. Whiskers of each boxplot extend from the maximum to the minimum value found within the range $[Q_1 - 1.5 \cdot IQR; Q_3 + 1.5 \cdot IQR]$


783 1.15 Figure S15: Accuracy and bias of r-coefficients estimates
 784
 785 for pairwise comparisons involving inbred individuals
 786
 787

802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817 **Method** correctKin GRUPS-rs TKGWV2 KIN READv2
 818 **Fig. S15:** $nRMSE$ (top row) and $nMBE$ (bottom column) estimates, obtained when
 819 simulating inbreeding, across all evaluated methods (bar colours) and expected relat-
 820 edness coefficients (x-axis ticks). Increasing values of $nRMSE$ indicate lower accuracy
 821 when estimating relatedness coefficients. $nMBE$ values that deviate furthest from zero
 822 indicate higher bias, with positive and negative values highlighting a tendency towards
 823 over- or under-estimating r-coefficients, respectively. Error bars represent $CI_{95\%}$ for
 824 the given estimate.

1.16 Figure S16: Impact of inbreeding on the accuracy and bias of r-coefficients estimates for pairwise comparisons involving outbred individuals

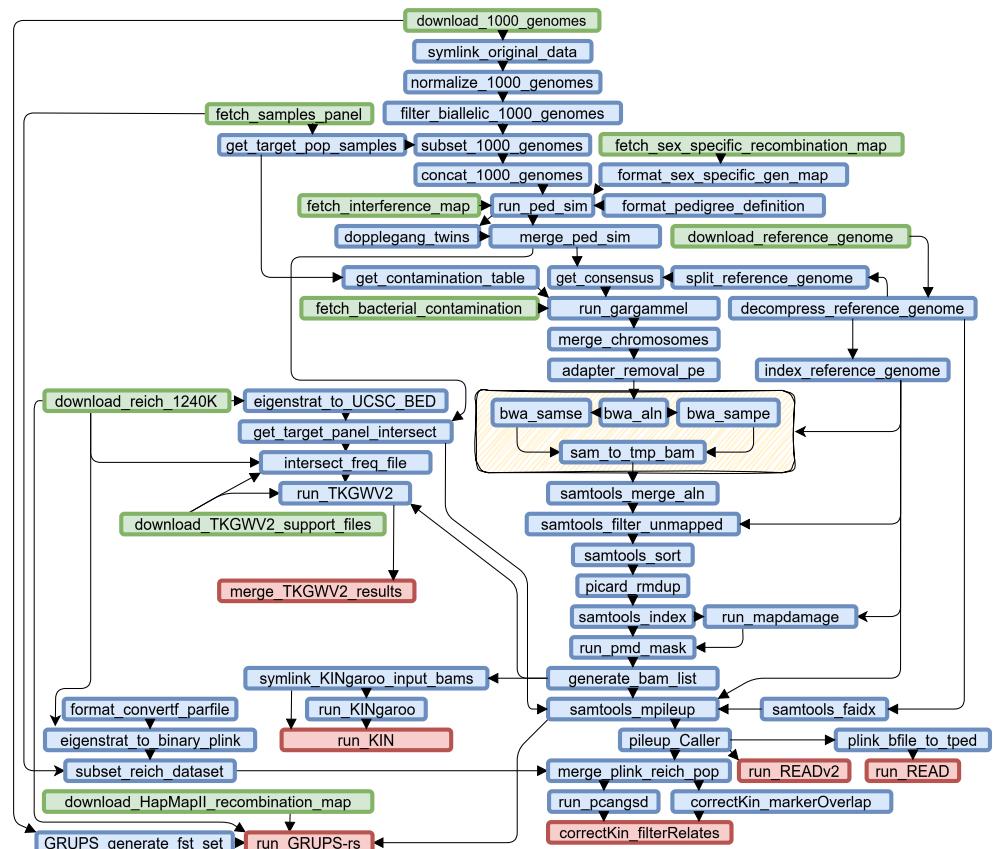
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Fig. S16: $nRMSD$ (top row) and $nMBE$ (bottom column) estimates, obtained when simulating inbreeding, across all evaluated methods (columns), expected relatedness coefficients (x-axis ticks) and pedigree scenarios (bar colours). Increasing values of $nRMSD$ indicate lower accuracy when estimating relatedness coefficients. $nMBE$ values that deviate furthest from zero indicate higher bias, with positive and negative values highlighting a tendency towards over- or under-estimating r-coefficients, respectively. Error bars represent $CI_{95\%}$ for the given estimate.

875 **2 Material and Methods**

876

877 **2.1 Description of BADGER's simulation pipeline**


878

880

881

882

883

910 **Fig. S17:** Complete directed acyclic graph of the BADGER workflow, given the input
 911 and parameters provided throughout this study. Node names follow those of the snake-
 912 make rules found in BADGER's source code. Green nodes represent data entry points
 913 which are automatically downloaded by BADGER. Red nodes represent snakemake
 914 rules that are targeted by BADGER by default. The yellow cluster denotes a grouped
 915 data input for the reference genome.

916

917

918

919

920

2.1.1 1000 genomes dataset pre-processing	921
	922
BADGER first downloads the 1000 genomes phase3-v5b dataset from the EMBL-EBI	923
FTP website [1] (See: Key Resources Table) and proceeds to apply normalization and	924
left-alignment of indels, using <code>bcftools norm</code> . Multi-allelic positions and any lingering	925
unphased genotypes are then filtered out using <code>bcftools view (--phased -m2 -M2)</code> .	926
From the processed dataset, BADGER then generates two data subsets according to	927
the population or super-population label of the samples:	928
	929
	930
	931
	932
	933
	934
• A concatenated VCF file containing all samples belonging to the selected founder	935
population. This file is used as an input to <code>ped-sim</code> when simulating pedigrees, as	936
a source of founder individuals. During this study, the selected founder population	937
was either CEU, to simulate a genetically homogeneous population, or one of the five	938
populations belonging to the admixed American population (ASW, CLM, MXL, PEL,	939
PUR) to simulate an admixed population.	940
	941
	942
	943
• A set of VCF files (one for each autosome), containing all samples belonging to	944
the selected contaminating population is generated. This second dataset is used as	945
input for <code>gargammel</code> when simulating ancient DNA fragments to extract a single	946
contaminating individual, and use its genotype as a source of modern human con-	947
tamination. During this study, we selected either the AFR super-population, or the	948
GBR population as a source to simulate modern human contamination.	949
	950
	951
	952
	953
	954
2.1.2 Pedigree simulations	955
	956
BADGER leverages the software <code>ped-sim</code> to simulate pedigrees in multiple repli-	957
cates, using founder individuals randomly selected from the <code>founder dataset</code> . Here,	958
we parametrized <code>ped-sim</code> to simulate sex-specific recombination rates, as well as a	959
crossover interference model, using the refined genetic map from [4] and the inter-	960
ference parameter estimates of [5], respectively. To maximize the number of possible	961
combinations, and given that BADGER only simulates autosomes, the original genetic	962
	963
	964
	965
	966

967 sex of the individuals selected as founders was not taken into account to select
 968 founders within the pedigree replicates. Simulation of genotyping errors, opposite
 969 homozygous errors, missingness, and pseudo-haploid rates were all disabled at this
 970 step, to prevent any compounding interactions with the error model of **gargammel**
 971
 972 (–err_rate 0 –err_hom_rate 0 –miss_rate 0 –pseudo_hap 0).
 973
 974 Simulation of monozygotic twins and/or duplicate samples within the pedigree is
 975 performed by merely duplicating the genotype of the selected individuals within the
 976 output VCF of **ped-sim** (See rule *”dopplegang_twins”*, Supplementary Figure [S17](#)).
 977
 978
 979
 980
 981 **2.1.3 Ancient DNA simulations**
 982
 983 Simulation of raw ancient DNA fragments for every pedigree individual is performed
 984 using **gargammel**. As this software requires the use of FASTA-format haplotype
 985 sequences, BADGER first uses **bcftools consensus** to apply the variants from the
 986 output VCF file of **ped-sim** to a reference **.fasta** file, thus generating a consen-
 987 sus sequence for every pedigree individual and, when simulating non-null rates of
 988 modern human contamination, a randomly selected contaminating sample from the
 989 **contaminant dataset**.
 990
 991
 992
 993
 994
 995 Here, note that copy-number variations, two-sided inversions, and insertions of
 996
 997 ALU, LINE1, SVA and Nuclear Mitochondrial elements are filtered out using regular
 998 expressions, to comply with the requirements of **bcftools** (–exclude 'ALT~"CN
 999 [0-9].*>" || ALT~"<INS:.*>" || ALT~"<INV>').
 1000
 1001 For every individual, haplotype sequences are then inserted in the required **endo**
 1002 input directory of **gargammel**. Likewise, when simulating human contamination, the
 1003 input directory of **gargammel**. Likewise, when simulating human contamination, the
 1004 haplotype sequences of the randomly sampled individual are inserted in the optional
 1005 **cont** input directory. BADGER then applies **gargammel** on these input directories,
 1006 using the user-provided misincorporation probability and fragment size frequency pro-
 1007 files. Here, we elected to use the *post-mortem* damage profile of "Chan_Meso": a young
 1008
 1009 adult female individual dated from the Mesolithic period (9137 ± 124 *cal.BP*) and
 1010

exhumed from the "Chan do Lindero" karst system of Pedrafita, Lugo, Spain [6]. This
choice of reference was motivated by the fact that Chan_Meso was sequenced on an
Illumina HiSeq2000 platform – one of the preset sequencing platform model choice for
`gargammel`'s – and exhibits "average" *post-mortem* damage patterns (i.e. an approx-
imate misincorporation rate of 0.22, at the 3'-and 5'-end of reads, and a mode of
approximately 70 base pairs on its fragment size frequency distribution). Note that
while BADGER can be parametrized to handle bacterial contamination from publicly
available databases, this capacity was not leveraged during the present study.

To optimize the I/O throughput and runtime performance of BADGER, generation
of ancient DNA fragments using `gargammel` is applied in parallel for every pedigree
individual, on a per-chromosome basis using a simple scatter-gather approach. Hence,
per-chromosome FASTQ files are merely concatenated using `zcat` and `gzip` UNIX
command-line utilities.

2.1.4 Alignment

The raw paired-end fragments of every individual composing the pedigree are then
trimmed of adapter sequences and collapsed, using `AdapterRemovalv2` [7], requiring a
minimum adapter overlap of 1, read length of 17 and base quality of 20. (`--minlength`
`17 --minquality 20 --minadapteroverlap 1`).

Trimmed fragments are then aligned against the GRCh37 reference genome, using
`bwa aln` [8], following the best practices described in [9] (`-l 1024 -n 0.01 -k 2 -o`
`2`). Note that collapsed single-end sequences and non-collapsed paired-end sequences
are mapped separately, using `bwa samse` and `bwa sampe` respectively, and then merged
using `samtools merge`. Here, a generic read group tag is placed using `samtools`
`addreplacerg` following merging.

1059 **2.1.5 Quality filtering and preprocessing of alignment files**
 1060
 1061 Following alignment and merging, a simple quality filtration step is first applied to
 1062 the raw binary alignment files of every sample using `samtools view`. Hence, the raw
 1063 files are trimmed of any sequence that is either a) unmapped, b) measuring less than
 1064 1065 30 nucleotides, or c) carrying a mapping quality score lower than 20 (PHRED scale)
 1066 1067
 1068 `(-F4 -q20 -e 'length(seq)>30')`.

1069 Alignment files are then sorted using `samtools sort` and removed of any
 1070 1071 optical PCR duplicates using `picard MarkDuplicates (--REMOVE_DUPLICATES true`
 1072
 1073 `--VALIDATION_STRINGENCY LENIENT --ASSUME_SORT_ORDER coordinate)`
 1074
 1075

1076 **2.1.6 Correction of *post-mortem* deaminations**
 1077
 1078 Patterns of *post-mortem* deamination were estimated on every sample alignment file,
 1079 using `mapDamage2`. To estimate the performance impact of applying *post-mortem*
 1080 1081 damage rescaling, two alternative post-processing methods were then applied:
 1082
 1083 • "Rescaled" versions of the alignment files, wherein the base quality scores of putative
 1084 1085 nucleotide misincorporation sites are downscaled, were generated by applying the
 1086
 1087 `--rescale` flag of `mapDamage2`.
 1088 • "Masked" version of the alignment files were generated using the in-house soft-
 1089 1090 ware `pmd-mask` and the misincorporation probability estimates of `mapDamage2`
 1091 1092 (`misincorporation.txt` file). Here, potential C>T and G>A deamination sites are
 1093 1094 masked all together, along the 5' and 3' ends of fragments, respectively, until the
 1095 1096 misincorporation probability is less than 1%.

1097
 1098 **2.1.7 Variant calling**
 1099
 1100 Next, BADGER jointly applies random pseudo-haploid variant calling on every post-
 1101 1102 processed alignment file by first creating a pileup file with `samtools mpileup`. Here,
 1103
 1104 autosomal bi-allelic SNP positions from the AADR "1240K" SNP dataset, version 52.2

were targeted [10], while disabling Base alignment quality (BAQ) recalculation, and filtering out any position with a mapping and/or base quality lower than 20 (-RB -q20 -Q20). This pileup file is then directly given as input to the `pileupCaller` module of `sequenceTools` (<https://github.com/stschiff/sequenceTools>), to generate pseudo-haploid variant calls (--randomHaploid --minDepth 1), in binary PLINK format.

2.1.8 Genetic relatedness estimation

Note that the benchmarked genetic relatedness estimation methods may have differing input data. Hence:

- The random pseudo-haploid variant calls of `pileupCaller` were given as input to READv1 and READv2.
- The joint pileup file of `samtools mpileup` was given as input to GRUPS-rs
- The post-processed binary alignment files of every sample composing a pedigree replicate were given as input to `correctKin`, `KIN` and `TKGWV2`.

correctKin

Following the guidelines of [11], BADGER first generates a subset of the AADR "1240K", to provide `correctKin` with a user-selected set of reference individual genotypes. Here, all samples belonging to the EUR super-population of the 1000g-phase3 dataset and contained within the 1240K dataset were selected as reference individuals for `correctKin` during this study. However, as BADGER also makes use of 1000-genomes samples as a source of founder individuals during pedigree simulations, the pipeline first excludes any sample previously given as an input to `ped-sim`, from the list of reference samples added to the `correctKin` input dataset. BADGER then merges the resulting "1240K" data subset with the pseudo-haploid variant callset of the pedigree replicate, using `plink` (--bmerge --merge-mode 1 --allow-no-sex --keep-allele-order). Still following guidelines, a covariance matrix and a marker overlap fraction matrix are generated from this merged dataset, using `pcangsd` [12]

1151 and the `markerOverlap` module of `correctKin`. Unrelated individuals were filtered out
1152 using the `filterRelates` module of `correctKin`. Here, note that, a) all pairs of indi-
1153 viduals not found in the resulting output file were considered as unrelated, and b)
1154 1155 pairs of individuals classified as "uncertain" are reclassified as unrelated.
1156

1157

1158

1159 ***GRUPS-rs***

1160 Following the guidelines of [13], BADGER first creates an FSA-encoded dataset of
1161 reference individuals from the raw 1000-genomes phase3 dataset, using the `grups-`
1162 `rs fst` module. This preprocessing step is merely intended to increase the runtime
1163 efficiency of BADGER and the resulting fsa-encoded 1000g-phase3 dataset is used as
1164 an input throughout all pedigree replicates. For every pedigree replicate, BADGER
1165 1166 then directly applies `grups-rs pedigree-sims` on the pileup file described in 2.1.7,
1167 while requesting 1000 simulation replicates, and using samples from the 1000g-phase3
1168 1169 EUR super-population as reference individuals (`--reps 1000 --pedigree-pop EUR`
1170 1171 `--min-depth 1 --seq-error-rate 0.0`).

1172 Since GRUPS-rs requires the use of a user-constructed template pedigree to per-
1173 1174 form its simulations, we provided the software with the same template throughout this
1175 1176 study (Supplementary Figure S18). Note that this simple pre-constructed template is
1177 1178 made available as an example within the software's documentation, contains a pair of
1179 1180 siblings, half-siblings and first-cousins, and uses these comparisons to estimate first-,
1181 1182 second- and third-degree relationships, respectively.
1183

1184

1185

1186

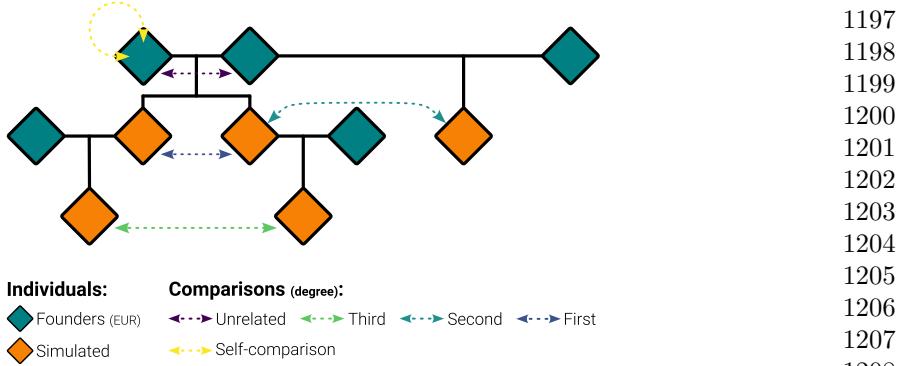
1187

1188

1189

1190

1191


1192

1193

1194

1195

1196

Fig. S18: Diagram of the input template pedigree definition file provided to the GRUPS-rs method throughout this study.

KIN

BADGER first applies the KINgaroo module on the post-processed binary alignment files of all individuals composing a pedigree replicate. Bi-allelic autosomal SNPs from the "1240K" dataset are targeted during this preprocessing step (`--bedfile`), while disabling contamination correction (`--contam_parameter 0`). The main KIN module is then applied on the output of KINgaroo using default parameters. From the final output of KIN, a coefficient of relatedness r is deduced for all tested pairs of individuals, using the provided Cotterman coefficient estimates for every given pair, i.e.: $r = k_1/2 + k_2$.

READv1

The pseudo-haploid variant callset of pileupCaller described in section 2.1.7 is given as input to READ, with default arguments (normalization statistic: median, sliding window size: 10^6 bp).

From the final output of READv1, the relatedness coefficient r of every tested pair of individuals is derived from the normalized \bar{P}_0 estimates of a given pair, using the following equation: $r = 2(1 - \bar{P}_0)$.

1243 ***READv2***
1244
1245 Likewise, for every pedigree replicate, the pseudo-haploid variant dataset produced
1246 by `pileupCaller` in section 2.1.7 is provided to `READv2` by BADGER, using the
1247 default parameters (`--norm_method median`). Contrary to `READv1`, the coefficient
1248 of relatedness r is directly obtained from the final output results of the software.
1249
1250
1251
1252
1253 ***TKG WV2***
1254
1255 BADGER applies `TKG WV2` on every tested pair of post-processed alignment files, using
1256
1257 the support 1000g-phase3 EUR population bed files and allele frequencies provided in
1258 [14] (1000GP3_22M_noFixed_noChr.bed and 1000GP3_EUR_1240K.frq, respectively).
1259
1260 Here, note that providing `TKG WV2` with a pre-defined dataset of allele frequencies incurs
1261
1262 the risk of targeting positions that were not simulated by `ped-sim` during a particular
1263 run, as BADGER makes successive use of pedigree simulations using a pre-processed
1264 1000g dataset, followed by the creation of consensus sequences (which will naturally
1265
1266 exclusively contain reference alleles). Hence, to alleviate this potential source of ref-
1267
1268 erence bias, we first filter the provided 1000GP3_EUR_1240K.frq file by removing any
1269 position that was not found within the raw output VCF file previously emitted by `ped`
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281 **2.2 Statistical analysis and benchmark using `badger.plots`**
1282
1283 Following the application of BADGER in multiple replicates, the statistical analysis
1284
1285 and performance estimation of each method is handled using `badger.plots` : a com-
1286
1287 mand line interface, written as a companion software to BADGER. This software thus
1288 sequentially performs :

1. The deserialization and consolidation of the results of each genetic relatedness estimation software, across all BADGER simulation replicates and sets of studied biological parameters.	1289 1290 1291 1292 1293
2. The calculation of summary statistics regarding the classification performance of each method, for each biological parameter studied.	1294 1295 1296
3. The estimation of the average accuracy and bias of each method's r-coefficient calculation for each degree of relationship.	1297 1298 1299
4. The generation of interactive plots summarizing these performance statistics.	1300 1301 1302 1303 1304
2.2.1 Estimation of classification performance	1305 1306
For every biological condition and method, we constructed confusion matrices confronting the predicted degrees of relationship for all pairwise comparisons, against the "true" degrees of relationship, defined by the topology of the template pedigree originally given as an input for BADGER. From these confusion matrices – one for every pedigree replicate – we calculated the Uniform Ordinal Classification Index (UOC) as a measure of a method's overall classification performance [15]. Briefly, this performance metric, adapted from the ordinal classification index of Cardoso and Sousa [16], is bound between 0 and 1 (0 implying perfectly accurate classification), insensitive to class-imbalance, and markedly takes into account the inherent relative order, and ranking distance separating two degrees of relationship. As such, the ordinal nature of estimating genetic relatedness is retained when estimating performance (e.g. misclassifying an "Unrelated" pairs of individuals as "First-degree" is more penalized than misclassifying them as "Second-degree"). Here, our implementation of the UOC metric was incorporated into <code>badger.plots</code> by adapting the pseudo-code found in [16], and source code provided in [17]. For every method and biological condition, the average UOC of every pedigree replicate is then calculated and plotted as a final aggregate summary statistic. 95% confidence intervals are directly estimated from the	1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

1335 distribution of UOC values across all simulation replicates, using normal approxima-
1336 tion. When applicable, estimates for the area under the curve (AUC) of UOC values
1337 of every method were obtained through trapezoidal integration, using the R package
1338 `pracma` version 2.4.4, and its associated function `trapz`.
1340

1341

1342

1343 **2.2.2 Average accuracy and bias of relatedness coefficients** 1344

1345 For every simulated degree of relationship, and across all tested methods and biological
1346 conditions, we calculate the average Root Mean Square Deviation (RMSD) and (Mean
1347 1348 Bias Error) between the *calculated* and the *expected* relatedness coefficients (r), in
1349 1350 an effort to gain insight regarding the average accuracy and bias of each method.
1351

1352 Note that, as many of the methods tested here do not *directly* compute r-coefficients,
1353 1354 `badger.plots` must first derives this metric from the raw output of every method.

1355 Hence:

1356

1357 • As KIN estimates the Jacquard genetic identity coefficients of every pairwise rela-
1358 tionship [18], we derived an r-coefficient from the provided k_1 and k_2 values, i.e.:
1359 1360

$$1361 r = \frac{k_1}{2} + k_2$$

1362

1363 • for READ and READv2, an r-coefficient can be calculated from the normalized $\overline{P_0}$
1364 1365 of a given pair, using the following formula: $r = 2 \cdot (1 - \overline{P_0})$

1366 • for GRUPS-rs, an r-coefficient can be derived by first calculating normalized
1367 1368 estimates of the $PWD_{i,j}^{obs}$ metric of a given pair i, j , which is obtained by divid-
1369 1370 ing this raw estimate by the average expected distribution of unrelated pairs
1371 1372 $(\widehat{PWD}_{i,j,unrelated}^{sim})$. It follows that the r-coefficient can be derived using the following
1373 equation: $r = 2(1 - \frac{PWD_{i,j}^{obs}}{\widehat{PWD}_{i,j,unrelated}^{sim}})$

1374 • Finally, as both correctKin and TKGWV2 compute a kinship coefficient (ϕ), the
1375 1376 r-coefficient is simply obtained by multiplying this estimate by 2: $r = 2 \cdot \phi$

1377

1378 Here, it must be noted that the distance separating the expected r-coefficient of a
1379 1380 given degree of relationship from neighbouring distributions varies with the degree of

relatedness, and is effectively halved for each additional degree separating two individuals. This implies that a given deviation from the expected average can have a greatly differing impact on the general accuracy, depending on the degree for which it is observed (e.g. a standard deviation of 0.1 for the r-coefficient between two individuals is insignificant when considering first-degree relationships, but would consistently cause misclassifications in the case of third-degree relationships).

Thus, to properly compare the accuracy and bias, both across a given method and degree of relatedness, we propose to first normalize the RMSD and MBE of a given relationship by the range of its theoretical distribution. This can be done by dividing the RMSD of MBE value by the distance separating the two midpoints found between the mean of a given relationship k and its neighbouring ones ($k - 1$ and $k + 1$).

$$nRMSD_{m,k} = \frac{\sqrt{\frac{\sum_{i=1}^{i=N} (\hat{r}_k - r_{m,k,i})^2}{N}}}{\frac{\hat{r}_{k+1} - \hat{r}_{k-1}}{2}} \quad (1)$$

$$nMBE_{m,k} = \frac{\frac{\sum_{i=1}^{i=N} (r_{m,k,i} - \hat{r}_k)}{N}}{\frac{\hat{r}_{k+1} - \hat{r}_{k-1}}{2}} \quad (2)$$

where m and k represent a given method and degree of relatedness, respectively. \hat{r}_k is the expected relatedness coefficient of relationship k ; $r_{m,k,i}$, the calculated relatedness coefficient for the i^{th} pair of individuals, and N , the total amount of observations of a given relationship k ($k = 0, 0.125, 0.25, 0.5, 1$). 95% confidence intervals for these metrics were calculated using the principles and methods described in [19, 20], i.e.:

$$nRMSD_{m,k} \in \left[nRMSD_{m,k} \left(1 - \sqrt{1 - \frac{1.96\sqrt{2}}{\sqrt{N-1}}} \right); nRMSD_{m,k} \left(\sqrt{1 + \frac{1.96\sqrt{2}}{\sqrt{N-1}}} - 1 \right) \right] \quad (3)$$

$$1427 \\ 1428 \quad nMBE_{m,k} \in \left[nMBE_{m,k} \pm \frac{1.96 \cdot \sigma_{m,k}}{\sqrt{N}} \right] \quad (4) \\ 1429 \\ 1430$$

1431 where $\sigma_{m,k}$ is the population standard deviation of the relatedness coefficients
 1432 obtained from method m , and belonging to relationship k .
 1433

1434

1435 **2.3 Key Resources Table**
 1436

1438	Reagent or Resource	Source	Identifier
1439 Deposited data			
1440	1000g-phase3-v20130502	IGSR [1]	https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
1441	HapMapII	IHMP [21]	http://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/
1442	GRCh37-release113	Church et al. [22]	http://ftp.ensembl.org/pub/grch37/release-113/fasta/homo_sapiens/dna/
1443	Cross-over interference model	Campbell et al. [5]	https://raw.githubusercontent.com/williamslab/ped-sim/refs/heads/master/interfere/nu_p_campbell.tsv
1444	Sex-specific genetic maps	Bhére et al. [4]	https://github.com/cbherer/Bherer_etal_SexualDimorphismRecombination/
1445	AADR dataset v52.2	Mallick et al. [10]	https://reichdata.hms.harvard.edu/pub/datasets/amh_repo/curated_releases/V52/V52.2/SHARE/public.dir/
1446	TKGWV2 support files	Fernandes et al. [14]	https://github.com/danimfernandes/tkgwv2
1447 Softwares and algorithms			
1448	AdapterRemoval-v2.3.3	Schubert et al. [7]	RRID:SCR_011834
1449	ANGSD-v0.939	Korneliussen et al. [23]	RRID:SCR_021865
1450	BADGER-v0.5.1	This study	https://github.com/MaelLefevre/badger/tree/v0.5.1
1451	bcftools-1.15	Li [3]	RRID:SCR_005227
1452	conda-23.1.0	Conda contributors [24]	RRID:SCR_018317
1453	correctKin	Nyerki et al. [11]	RRID:SCR_026952
1454	gargammel-1.1.4	Renaud et al. [25]	RRID:SCR_026953
1455			

grups-rs-0.3.2	Lefevre et al. [13]	RRID:SCR_026954	1473
kin-3.1.3	Popli et al. [26]	RRID:SCR_026955	1474
mapDamage-v2.2.1	Jónsson et al. [27]	RRID:SCR_001240	1475
pcangsd-0.99	Meisner and Albrechtsen [12]	RRID:SCR_026956	1476
ped-sim-v1.4	Caballero et al. [28]	RRID:SCR_026957	1477
picard-v2.27.4	Broad Institute [29]	RRID:SCR_006525	1478
plink-v1.9	Chang et al. [30]	RRID:SCR_001757	1479
pmd-mask-v0.3.2	This study	https://github.com/MaelLefevre/pmd-mask/tree/v0.3.2	1480
READ-v1.0	Kuhn et al. [31]	RRID:SCR_026958	1481
READv2-v2.00	Alaçamlı et al. [32]	RRID:SCR_026959	1482
samtools-v1.15	Li [3]	RRID:SCR_002105	1483
sequenceTools-v1.5.2	Schiffels [33]	https://github.com/stschiff/sequenceTools/tree/v1.5.2	1484
snakemake-7.20.0	Mölder et al. [34]	RRID:SCR_003475	1485
TKGWV2	Fernandes et al. [14]	RRID:SCR_026960	1486
python-3.11.0	Python Software Foundation	RRID:SCR_008394	1487
R-v4.1.2	R Development Core Team	RRID:SCR_001905	1488
			1489
			1490
			1491
			1492
			1493
			1494
			1495
			1496
			1497
			1498
			1499
			1500
			1501
			1502
			1503
			1504
			1505
			1506
			1507
			1508
			1509
			1510
			1511
			1512
			1513
			1514
			1515
			1516
			1517
			1518

1519 **3 Description of the pmd-mask command line utility**

1520

1521 **3.1 Rationale, behaviour and workflow description**

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

</

by setting candidate nucleotides to ‘N’ and their base-quality to 0. Note that the default threshold is here defined as a misincorporation rate of 0.01, but may be modified at leisure by the user, using the **--threshold** argument. Note that, in its current state, the **pmd-mask** algorithm only considers the misincorporation rate found at a given position, and the genotype found in the *reference* genome. Therefore, nucleotides at the extremities of a read are masked, regardless of the actual genotype observed at a given position (Supplementary Figure S19). Pseudo-code snippets, summarizing the main loop of the program can be read in Algorithm-1. Here, the devised approach is one that i) is expected to incur less potential bias than when applying PMD-rescaling through mapDamage2 (i.e. using its provided **--rescale** flag), and ii) carries the benefit of mitigating the loss of information usually displayed when applying hard-clipping, by instead specifically targeting potential C>T and G>A transition sites on both the 5' and 3' end of the read, respectively. In other terms, this method may be regarded as a conservative compromise between *post-mortem* damage rescaling methods such as mapDamage2, PMDtools, or ATLAS [27, 35, 36] and hard-clipping methods such as the trimBam module of the bamUtil software [37]. Required inputs for **pmd-mask** are as follows:

- **--bam**: An input **.bam** file (SAM, BAM, and CRAM formats are accepted). **pmd-mask** can either read from a file (using **-b|--bam**) or from the standard input, through shell piping.
- **--misincorporation**: A mapDamage2 **misincorporation.txt** file. This file provides strand-specific PMD frequency estimates, which are used to compute the threshold at which masking should be performed. Evidently, this file must have been generated from the input BAM file to provide a sound estimate.
- **--reference**: A reference genome, in the form of a **.fasta** file. This genome must of course be identical to the one used to align the input BAM file.

1611 Additional instructions regarding the installation and usage of `pmd-mask`, as well
1612 as its source code is made publicly available at <https://github.com/MaelLefevre/>
1613
1614 `pmd-mask`, under GPL-v3.0 licencing.
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

3.2 Pseudo-code describing the main algorithm of pmd-mask

Algorithm 1 Pseudo-code describing the main algorithm of pmd-mask.

```

Ensure: :  $args.threshold \in [0.00, 1.00]$ 
1:  $bam \leftarrow bam\_reader(args.bam\_path);$  1657
2:  $refseq \leftarrow fasta\_reader(args.reference\_path)$  1658
3:  $misincorporation \leftarrow misincorporation\_reader(args.misincorporation\_path)$  1659
4: 1660
5: if  $args.threshold$  is not null then 1661
6:    $threshold \leftarrow args.threshold$  1662
7: else 1663
8:    $threshold \leftarrow 0.01$  1664
9: 1665
10: function MASK(read, position) 1666
11:    $read.nucleotide[position] \leftarrow 'N';$  1667
12:    $read.quality[position] \leftarrow 0$  1668
13: 1669
14:  $output\_bam \leftarrow bam.copy\_header()$  1670
15: for  $read \in bam$  do 1671
16:    $\triangleright$  Extract read length, coordinate and strand information 1672
17:    $n \leftarrow read.length$  1673
18:    $chr \leftarrow read.chromosome$  1674
19:    $pos \leftarrow read.position$  1675
20:    $strand \leftarrow read.strand$  1676
21:    $\triangleright$  Mask 5' Cytosines 1677
22:   for  $mask5' : (i = 0; i < n; i++)$  do 1678
23:     if  $misincorporation['C' > T'][chr][strand][i] \leq args.threshold$  then 1679
24:        $\triangleright$  1680
25:       break  $mask5'$  1681
26:       else if  $reference.get(chr, pos + i) == 'C'$  then 1682
27:          $\triangleright$  1683
28:         MASK(read, i) 1684
29:        $\triangleright$  Mask 3' Guanines 1685
30:     for  $mask3' : (i = n; i > 0; i--)$  do 1686
31:       if  $misincorporation['G' > A'][chr][strand][i] \leq args.threshold$  then 1687
32:          $\triangleright$  1688
33:         break  $mask3'$  1689
34:         else if  $reference.get(chr, pos + i) == 'G'$  then 1690
35:            $\triangleright$  1691
36:           MASK(read, i) 1692
37:          $\triangleright$  Store masked read 1693
38:          $output\_bam += read$  1694
39:        $\triangleright$  1695
40:     return ( $output\_bam$ ) 1696
41: 1697
42: 1698
43: 1699
44: 1700
45: 1701
46: 1702

```

1703 **References**

1704

1705

1706

1707

1708 [1] The 1000 Genomes Project Consortium. A global reference for human genetic
1709 variation. *Nature*. 2015 Oct;526(7571):68–74. Number: 7571. [https://doi.org/10.](https://doi.org/10.1038/nature15393)

1710

1711

1712

1713

1714 [2] Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al.
1715

1716 Human Demographic History Impacts Genetic Risk Prediction across Diverse
1717

1718 Populations. *The American Journal of Human Genetics*. 2017 Apr;100(4):635–
1719

1720 <https://doi.org/10.1016/j.ajhg.2017.03.004>.

1721

1722

1723 [3] Li H. A statistical framework for SNP calling, mutation discovery, associa-
1724

1725 tion mapping and population genetical parameter estimation from sequencing
1726

1727 data. *Bioinformatics*. 2011 Nov;27(21):2987–2993. <https://doi.org/10.1093/bioinformatics/btr509>.

1728

1729 [4] Bhérer C, Campbell CL, Auton A. Refined genetic maps reveal sexual dimorphism
1730

1731 in human meiotic recombination at multiple scales. *Nature Communications*.
1732

1733 2017 Apr;8(1):14994. Number: 1. <https://doi.org/10.1038/ncomms14994>.

1734

1735 [5] Campbell CL, Furlotte NA, Eriksson N, Hinds D, Auton A. Escape from
1736

1737 crossover interference increases with maternal age. *Nature Communications*. 2015
1738 Feb;6(1):6260. Number: 1. <https://doi.org/10.1038/ncomms7260>.

1739

1740

1741 [6] González-Fortes G, Jones ER, Lightfoot E, Bonsall C, Lazar C, Grandal-
1742

1743 d'Anglade A, et al. Paleogenomic Evidence for Multi-generational Mixing between
1744

1745 Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin.
1746

1747 *Current Biology*. 2017 Jun;27(12):1801–1810.e10. <https://doi.org/10.1016/j.cub.2017.05.023>.

1748

[7] Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. *BMC Research Notes*. 2016 Feb;9(1):88. <https://doi.org/10.1186/s13104-016-1900-2>. 1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

[8] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England)*. 2009 Jul;25(14):1754–1760. Number: 14. <https://doi.org/10.1093/bioinformatics/btp324>. 1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

[9] Oliva A, Tobler R, Cooper A, Llamas B, Souilmi Y. Systematic benchmark of ancient DNA read mapping. *Briefings in Bioinformatics*. 2021 Sep;22(5):bbab076. <https://doi.org/10.1093/bib/bbab076>. 1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

[10] Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. *Scientific Data*. 2024 Feb;11(1):182. <https://doi.org/10.1038/s41597-024-03031-7>. 1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

[11] Nyerki E, Kalmár T, Schütz O, Lima RM, Neparáczki E, Török T, et al. correctKin: an optimized method to infer relatedness up to the 4th degree from low-coverage ancient human genomes. *Genome Biology*. 2023 Feb;24(1):38. Number: 1. <https://doi.org/10.1186/s13059-023-02882-4>. 1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

[12] Meisner J, Albrechtsen A. Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data. *Genetics*. 2018 Oct;210(2):719–731. <https://doi.org/10.1534/genetics.118.301336>. 1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

[13] Lefevre M, Martin MD, Jay F, Marsolier MC, Bon C. GRUPS-rs, a high-performance ancient DNA genetic relatedness estimation software relying on pedigree simulations. *Human Population Genetics and Genomics*. 2024 Jan;4(1). <https://doi.org/10.47248/hpgg2404010001>. 1787
1788
1789
1790
1791
1792
1793
1794

1795 [14] Fernandes DM, Cheronet O, Gelabert P, Pinhasi R. TKGWV2: an ancient
1796 DNA relatedness pipeline for ultra-low coverage whole genome shotgun data.
1797
1798 Scientific Reports. 2021 Oct;11(1):21262. Number: 1. <https://doi.org/10.1038/s41598-021-00581-3>.
1800
1801
1802 [15] Silva W, Pinto JR, Cardoso JS. A Uniform Performance Index for Ordinal Clas-
1803 sification with Imbalanced Classes. In: 2018 International Joint Conference on
1804 1805 Neural Networks (IJCNN); 2018. p. 1–8. ISSN: 2161-4407.
1806
1807
1808 [16] Cardoso JS, Sousa R. Measuring the performance of ordinal classification.
1809
1810 International Journal of Pattern Recognition and Artificial Intelligence. 2011
1811 Dec;25(08):1173–1195. <https://doi.org/10.1142/S0218001411009093>.
1812
1813
1814 [17] Albuquerque T, Cruz R, Cardoso JS. Ordinal losses for classification of cervical
1815 cancer risk. PeerJ Computer Science. 2021 Apr;7:e457. <https://doi.org/10.7717/peerj-cs.457>.
1816
1817
1818
1819
1820 [18] Jacquard A. Genetic Information Given by a Relative. Biometrics.
1821
1822 1972;28(4):1101–1114. <https://doi.org/10.2307/2528643>.
1823
1824 [19] Nicholls A. Confidence limits, error bars and method comparison in molec-
1825 ular modeling. Part 1: The calculation of confidence intervals. Journal of
1826 1827 Computer-Aided Molecular Design. 2014 Sep;28(9):887–918. <https://doi.org/10.1007/s10822-014-9753-z>.
1828
1829
1830
1831
1832 [20] Nicholls A. Confidence limits, error bars and method comparison in molecular
1833 modeling. Part 2: comparing methods. Journal of Computer-Aided Molecular
1834 1835 Design. 2016 Feb;30(2):103–126. <https://doi.org/10.1007/s10822-016-9904-5>.
1836
1837 [21] Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A
1838
1839 second generation human haplotype map of over 3.1 million SNPs. Nature. 2007
1840

Oct;449(7164):851–861. <https://doi.org/10.1038/nature06258>. 1841

[22] Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, et al. Modernizing Reference Genome Assemblies. PLOS Biology. 2011 Jul;9(7):e1001091. <https://doi.org/10.1371/journal.pbio.1001091>. 1842

[23] Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics. 2014 Nov;15(1):356. <https://doi.org/10.1186/s12859-014-0356-4>. 1843

[24] Conda contributors.: conda: A system-level, binary package and environment manager running on all major operating systems and platforms. Available from: <https://docs.conda.io/projects/conda/>. 1844

[25] Renaud G, Hanghøj K, Willerslev E, Orlando L. gargammel: a sequence simulator for ancient DNA. Bioinformatics. 2017 Feb;33(4):577–579. Number: 4. <https://doi.org/10.1093/bioinformatics/btw670>. 1845

[26] Popli D, Peyrégne S, Peter BM. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biology. 2023 Jan;24(1):10. Number: 1. <https://doi.org/10.1186/s13059-023-02847-7>. 1846

[27] Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013 Jul;29(13):1682–1684. Number: 13. <https://doi.org/10.1093/bioinformatics/btt193>. 1847

[28] Caballero M, Seidman DN, Qiao Y, Sannerud J, Dyer TD, Lehman DM, et al. Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLOS Genetics. 2019 Dec;15(12):e1007979. Number: 12. <https://doi.org/10.1371/journal.pgen.1007979>. 1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887 [29] Broad Institute.: Picard: A set of command line tools (in Java) for manipulating
1888 high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM
1889 and VCF. Broad Institute. Available from: <http://broadinstitute.github.io/picard>.
1890
1891
1892
1893
1894 [30] Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ.
1895 Second-generation PLINK: rising to the challenge of larger and richer
1896 datasets. GigaScience. 2015 Dec;4(1):s13742-015-0047-8. <https://doi.org/10.1186/s13742-015-0047-8>.
1897
1898
1899
1900
1901
1902 [31] Kuhn JMM, Jakobsson M, Günther T. Estimating genetic kin relationships in
1903 prehistoric populations. PLOS ONE. 2018 Apr;13(4):e0195491. Number: 4. <https://doi.org/10.1371/journal.pone.0195491>.
1904
1905
1906
1907
1908 [32] Alaçamli E, Naidoo T, Güler MN, Sağlıcan E, Aktürk S, Mapelli I, et al.
1909 READv2: advanced and user-friendly detection of biological relatedness in
1910 archaeogenomics. Genome Biology. 2024 Aug;25(1):216. <https://doi.org/10.1186/s13059-024-03350-3>.
1911
1912
1913
1914
1915 [33] Schiffels S.: sequenceTools. Available from: <https://github.com/stschiff/sequenceTools>.
1916
1917
1918
1919 [34] Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V,
1920 et al.: Sustainable data analysis with Snakemake. F1000Research. Available from:
1921 <https://f1000research.com/articles/10-33>.
1922
1923
1924
1925 [35] Skoglund P, Northoff BH, Shunkov MV, Derevianko AP, Pääbo S, Krause J,
1926 et al. Separating endogenous ancient DNA from modern day contamination in
1927 a Siberian Neandertal. Proceedings of the National Academy of Sciences. 2014
1928 Feb;111(6):2229-2234. <https://doi.org/10.1073/pnas.1318934111>.
1929
1930
1931
1932

[36] Link V, Kousathanas A, Veeramah K, Sell C, Scheu A, Wegmann D.: ATLAS: Analysis Tools for Low-depth and Ancient Samples. *bioRxiv*. Pages: 105346 Section: New Results. Available from: <https://www.biorxiv.org/content/10.1101/105346v2>. 1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978

[37] Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population scale DNA sequence data. *Genome Research*. 2015 Apr;p. gr.176552.114. Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab. <https://doi.org/10.1101/gr.176552.114>. 1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978