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Load in packages 

library(dplyr) 

library(MuMIn) 

library(glmnet) 

library(e1071) 

library(ggplot2) 

library(car) 

library(lme4) 

 

Data input 

BBH<-read.csv("brown_bear_hair.csv") 

BBHS<-read.csv("brown_bear_hair_standardized.csv") 

 

The correlation between methylation level and age 

#VGF-1 

cor.test(BBH$age,BBH$VGF_1_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$VGF_1_methylation_rate_ave 

t = 6.249, df = 45, p-value = 1.332e-07 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.4904513 0.8101983 

sample estimates: 

      cor  

0.6816181 

 

VGF1<-ggplot(BBH,aes(x=age,y=VGF_1_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 



scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.68, p<0.001")+  

labs (title="VGF-1")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

#VGF-2 

cor.test(BBH$age,BBH$VGF_2_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$VGF_2_methylation_rate_ave 

t = 7.0905, df = 45, p-value = 7.483e-09 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.5550330 0.8386416 

sample estimates: 

      cor  

0.7264182 

 

VGF2<-ggplot(BBH,aes(x=age,y=VGF_2_methylation_rate_ave))+theme_bw()+ 



geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.73, p<0.001")+  

labs (title="VGF-2")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

#VGF-3 

cor.test(BBH$age,BBH$VGF_3_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$VGF_3_methylation_rate_ave 

t = 8.4627, df = 45, p-value = 7.383e-11 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.6406716 0.8741155 

sample estimates: 



      cor  

0.7836608 

 

VGF3<-ggplot(BBH,aes(x=age,y=VGF_3_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.78, p<0.001")+  

labs (title="VGF-3")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

#KCNK12-1 

cor.test(BBH$age,BBH$KCNK12_1_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$KCNK12_1_methylation_rate_ave 

t = 7.7282, df = 45, p-value = 8.597e-10 



alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.5976185 0.8565876 

sample estimates: 

      cor  

0.7551836 

 

KCNK1<-ggplot(BBH,aes(x=age,y=KCNK12_1_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.76, p<0.001")+  

labs (title="KCNK12-1")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

#KCNK12-2 

cor.test(BBH$age,BBH$KCNK12_2_methylation_rate_ave) 

 



        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$KCNK12_2_methylation_rate_ave 

t = 6.683, df = 45, p-value = 3.012e-08 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.5250188 0.8256123 

sample estimates: 

     cor  

0.705777 

 

KCNK2<-ggplot(BBH,aes(x=age,y=KCNK12_2_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.71, p<0.001")+  

labs (title="KCNK12-2")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 



 

#KCNK12-3 

cor.test(BBH$age,BBH$KCNK12_3_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$KCNK12_3_methylation_rate_ave 

t = 9.2591, df = 45, p-value = 5.478e-12 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.6810019 0.8900012 

sample estimates: 

      cor  

0.8098028 

 

KCNK3<-ggplot(BBH,aes(x=age,y=KCNK12_3_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.81, p<0.001")+  

labs (title="KCNK12-3")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 



 

 

#ELOVL2-1 

cor.test(BBH$age,BBH$ELOVL2_1_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$ELOVL2_1_methylation_rate_ave 

t = 2.6801, df = 45, p-value = 0.01025 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.09384802 0.59480967 

sample estimates: 

      cor  

0.3710159 

 

ELOVL1<-ggplot(BBH,aes(x=age,y=ELOVL2_1_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 



annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.37, p<0.05")+  

labs (title="ELOVL2-1")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

#ELOVL2-2 

cor.test(BBH$age,BBH$ELOVL2_2_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$ELOVL2_2_methylation_rate_ave 

t = 3.4533, df = 45, p-value = 0.001217 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.1963429 0.6583395 

sample estimates: 

      cor  

0.4577029 

 

ELOVL2<-ggplot(BBH,aes(x=age,y=ELOVL2_2_methylation_rate_ave))+theme_bw()+ 

geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 



scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.46, p<0.01")+  

labs (title="ELOVL2-2")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

#ELOVL2-3 

cor.test(BBH$age,BBH$ELOVL2_3_methylation_rate_ave) 

 

        Pearson's product-moment correlation 

 

data:  BBH$age and BBH$ELOVL2_3_methylation_rate_ave 

t = 4.0671, df = 45, p-value = 0.0001892 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.2717354 0.7012156 

sample estimates: 

      cor  

0.5184461 

 

ELOVL3<-ggplot(BBH,aes(x=age,y=ELOVL2_3_methylation_rate_ave))+theme_bw()+ 



geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

labs(x="Age (year)",y="DNA methylation (%)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+ 

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

annotate("text",size=6,x=-Inf,y=Inf,hjust=-.1,vjust=2,label="R=0.52, p<0.001")+  

labs (title="ELOVL2-3")+ 

theme(plot.title=element_text(size=20,hjust = 0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

Age estimation model 【Single regression】 

YS <- BBHS$age 

vgf1S <- BBHS$VGF_1_methylation_rate_ave 

vgf2S <- BBHS$VGF_2_methylation_rate_ave 

vgf3S <- BBHS$VGF_3_methylation_rate_ave 

kcnk1S <- BBHS$KCNK12_1_methylation_rate_ave 

kcnk2S <- BBHS$KCNK12_2_methylation_rate_ave 

kcnk3S <- BBHS$KCNK12_3_methylation_rate_ave 

elovl1S <- BBHS$ELOVL2_1_methylation_rate_ave 

elovl2S <- BBHS$ELOVL2_2_methylation_rate_ave 



elovl3S <- BBHS$ELOVL2_3_methylation_rate_ave 

AGE <- BBH$age 

 

#RemoveOne function 

removeOne <- function(dat,x) { 

if(x<dat){ 

  list=seq(1,dat) 

  x1=x-1;x2=x+1 

  v1=c(list[0:x1]);v2=c(list[x2:dat]) 

  data=c(v1,v2)} 

 else {data=seq(1,dat-1)} 

 return (data)} 

 

Single regression (VGF-3) 
SRM_VGF_3<-lm(formula=YS~vgf3S,data=BBHS) 

coef(SRM_VGF_3) 

 

(Intercept)        vgf3S  

2.127681e-11 7.836608e-01 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SRM_VGF_3_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

dr<-data.frame(BBHS$age[indices],BBHS$VGF_3_methylation_rate_ave[indices]) 

colnames(dr)<-c("age","methylvgf_3") 

bestmodel_SRM_VGF_3_loocv<-lm(age~methylvgf_3,  data=dr) 

newdata<-data.frame(methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z]) 

p<-predict(bestmodel_SRM_VGF_3_loocv,newdata)*sd(AGE)+mean(AGE) 

if (p<0){p=0} 

predict_SRM_VGF_3_loocv[z]<-p} 

 

BBH_predict_SRM_VGF_3_loocv<-cbind(BBH,predict_SRM_VGF_3_loocv) 

MAE_SRM_VGF_3_loocv<-mean(abs(BBH_predict_SRM_VGF_3_loocv$predict_SRM_VGF_3_loocv-

BBH_predict_SRM_VGF_3_loocv$age)) 



MedianAE_SRM_VGF_3_loocv<-

median(abs(BBH_predict_SRM_VGF_3_loocv$predict_SRM_VGF_3_loocv-

BBH_predict_SRM_VGF_3_loocv$age)) 

RMSE_SRM_VGF_3_loocv<-sqrt(mean((BBH_predict_SRM_VGF_3_loocv$predict_SRM_VGF_3_loocv-

BBH_predict_SRM_VGF_3_loocv$age)^2)) 

cat("MAE:", MAE_SRM_VGF_3_loocv, "¥nMed AE:", MedianAE_SRM_VGF_3_loocv, "¥nRMSE:", 

RMSE_SRM_VGF_3_loocv, "¥n") 

 

MAE: 4.137939  

Med AE: 3.127337  

RMSE: 5.353131 

 

g_SRM_VGF_3_loocv<-

ggplot(BBH_predict_SRM_VGF_3_loocv,aes(age,predict_SRM_VGF_3_loocv))+theme_bw()+ 

annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)+4.137939,yend=max(BB

H$age)+4.137939,colour="orchid4",linetype=2, linewidth =0.7)+ 

 annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)-

4.137939,yend=max(BBH$age)-4.137939,colour="orchid4",linetype=2, linewidth =0.7)+ 

 geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

 labs(x="Chronological age (year)",y="Predicted age (year)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

 theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+    

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

 geom_line(aes(y =age), linewidth=1)+ 

labs(title="single regression model")+ 

theme(title=element_text(size=17),plot.title=element_text(hjust=0.5))+ 

scale_y_continuous(limits=c(-5,40))+ 

scale_x_continuous(limits=c(-5,40))+ 

labs(subtitle="VGF-3")+ 

theme(plot.subtitle=element_text(size=15,hjust=0.5))+ 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 



 

 

Single regression (KCNK12-3) 
SRM_KCNK_3<-lm(formula=YS~kcnk3S,data=BBHS) 

coef(SRM_KCNK_3) 

 

  (Intercept)        kcnk3S  

-1.318289e-11  8.098028e-01 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SRM_KCNK_3_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

dr<-data.frame(BBHS$age[indices],BBHS$KCNK12_3_methylation_rate_ave[indices]) 

colnames(dr)<-c("age","methylkcnk_3") 

bestmodel_SRM_KCNK_3_loocv<-lm(age~methylkcnk_3,  data=dr) 

newdata<-data.frame(methylkcnk_3=BBHS$KCNK12_3_methylation_rate_ave[z]) 

p<-predict(bestmodel_SRM_KCNK_3_loocv,newdata)*sd(AGE)+mean(AGE) 

if (p<0){p=0} 

predict_SRM_KCNK_3_loocv[z]<-p} 

 

BBH_predict_SRM_KCNK_3_loocv<-cbind(BBH,predict_SRM_KCNK_3_loocv) 

MAE_SRM_KCNK_3_loocv<-mean(abs(BBH_predict_SRM_KCNK_3_loocv$predict_SRM_KCNK_3_loocv-

BBH_predict_SRM_KCNK_3_loocv$age)) 



MedianAE_SRM_KCNK_3_loocv<-

median(abs(BBH_predict_SRM_KCNK_3_loocv$predict_SRM_KCNK_3_loocv-

BBH_predict_SRM_KCNK_3_loocv$age)) 

RMSE_SRM_KCNK_3_loocv<-sqrt(mean((BBH_predict_SRM_KCNK_3_loocv$predict_SRM_KCNK_3_loocv-

BBH_predict_SRM_KCNK_3_loocv$age)^2)) 

cat("MAE:", MAE_SRM_KCNK_3_loocv, "¥nMed AE:", MedianAE_SRM_KCNK_3_loocv, "¥nRMSE:", 

RMSE_SRM_KCNK_3_loocv, "¥n") 

 

MAE: 3.97837  

Med AE: 3.26955  

RMSE: 5.010119 

 

g_SRM_KCNK_3_loocv<-

ggplot(BBH_predict_SRM_KCNK_3_loocv,aes(age,predict_SRM_KCNK_3_loocv))+theme_bw()+ 

annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)+3.97837,yend=max(BBH

$age)+3.97837,colour="orchid4",linetype=2, linewidth =0.7)+ 

 annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)-

3.97837,yend=max(BBH$age)-3.97837,colour="orchid4",linetype=2, linewidth =0.7)+ 

 geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

 labs(x="Chronological age (year)",y="Predicted age (year)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

 theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+    

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

 geom_line(aes(y =age), linewidth=1)+ 

labs(title="single regression model")+ 

theme(title=element_text(size=17),plot.title=element_text(hjust=0.5))+ 

scale_y_continuous(limits=c(-5,40))+ 

scale_x_continuous(limits=c(-5,40))+ 

labs(subtitle="KCNK12-3")+ 

theme(plot.subtitle=element_text(size=15,hjust=0.5))+ 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 



 

 

Single regression (ELOVL2-3) 
SRM_ELOVL_3<-lm(formula=YS~elovl3S,data=BBHS) 

coef(SRM_ELOVL_3) 

 

(Intercept)      elovl3S  

1.024588e-11 5.184461e-01 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SRM_ELOVL_3_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

dr<-data.frame(BBHS$age[indices],BBHS$ELOVL2_3_methylation_rate_ave[indices]) 

colnames(dr)<-c("age","methylelovl_3") 

bestmodel_SRM_ELOVL_3_loocv<-lm(age~methylelovl_3,  data=dr) 

newdata<-data.frame(methylelovl_3=BBHS$ELOVL2_3_methylation_rate_ave[z]) 

p<-predict(bestmodel_SRM_ELOVL_3_loocv,newdata)*sd(AGE)+mean(AGE) 

if (p<0){p=0} 

predict_SRM_ELOVL_3_loocv[z]<-p} 

 

BBH_predict_SRM_ELOVL_3_loocv<-cbind(BBH,predict_SRM_ELOVL_3_loocv) 

MAE_SRM_ELOVL_3_loocv<-mean(abs(BBH_predict_SRM_ELOVL_3_loocv$predict_SRM_ELOVL_3_loocv-

BBH_predict_SRM_ELOVL_3_loocv$age)) 



MedianAE_SRM_ELOVL_3_loocv<-

median(abs(BBH_predict_SRM_ELOVL_3_loocv$predict_SRM_ELOVL_3_loocv-

BBH_predict_SRM_ELOVL_3_loocv$age)) 

RMSE_SRM_ELOVL_3_loocv<-

sqrt(mean((BBH_predict_SRM_ELOVL_3_loocv$predict_SRM_ELOVL_3_loocv-

BBH_predict_SRM_ELOVL_3_loocv$age)^2)) 

cat("MAE:", MAE_SRM_ELOVL_3_loocv, "¥nMed AE:", MedianAE_SRM_ELOVL_3_loocv, "¥nRMSE:", 

RMSE_SRM_ELOVL_3_loocv, "¥n") 

 

MAE: 5.524564  

Med AE: 4.359233  

RMSE: 7.278303 

 

g_SRM_ELOVL_3_loocv<-

ggplot(BBH_predict_SRM_ELOVL_3_loocv,aes(age,predict_SRM_ELOVL_3_loocv))+theme_bw()+ 

annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)+5.524564,yend=max(BB

H$age)+5.524564,colour="orchid4",linetype=2, linewidth =0.7)+ 

 annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)-

5.524564,yend=max(BBH$age)-5.524564,colour="orchid4",linetype=2, linewidth =0.7)+ 

 geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

 labs(x="Chronological age (year)",y="Predicted age (year)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

 theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+    

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

 geom_line(aes(y =age), linewidth=1)+ 

labs(title="single regression model")+ 

theme(title=element_text(size=17),plot.title=element_text(hjust=0.5))+ 

scale_y_continuous(limits=c(-5,40))+ 

scale_x_continuous(limits=c(-5,40))+ 

labs(subtitle="ELOVL2-3")+ 

theme(plot.subtitle=element_text(size=15,hjust=0.5))+ 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 



 

 

Age estimation model 【Elastic net regression】 

YS <- BBHS$age 

vgf1S <- BBHS$VGF_1_methylation_rate_ave 

vgf2S <- BBHS$VGF_2_methylation_rate_ave 

vgf3S <- BBHS$VGF_3_methylation_rate_ave 

kcnk1S <- BBHS$KCNK12_1_methylation_rate_ave 

kcnk2S <- BBHS$KCNK12_2_methylation_rate_ave 

kcnk3S <- BBHS$KCNK12_3_methylation_rate_ave 

elovl1S <- BBHS$ELOVL2_1_methylation_rate_ave 

elovl2S <- BBHS$ELOVL2_2_methylation_rate_ave 

elovl3S <- BBHS$ELOVL2_3_methylation_rate_ave 

AGE <- BBH$age 

 

#RemoveOne function 

removeOne <- function(dat,x) { 

if(x<dat){ 

  list=seq(1,dat) 

  x1=x-1;x2=x+1 

  v1=c(list[0:x1]);v2=c(list[x2:dat]) 

  data=c(v1,v2)} 

 else {data=seq(1,dat-1)} 

 return (data)} 



 

Elastic net regression (VGF-1, -2, -3, KCNK12-1, -2, -3, ELOVL2-1, -2, -3) 

XS <- cbind(vgf1S,vgf2S,vgf3S,kcnk1S,kcnk2S,kcnk3S,elovl1S,elovl2S,elovl3S) 

alpha <- seq(0.01, 0.99, 0.01) 

mse.df <- NULL 

for (i in 1:length(alpha)) { 

    m <- cv.glmnet(x = XS, y = YS, family = "gaussian", alpha = alpha[i], standardize = 

FALSE)  

    mse.df <- rbind(mse.df, data.frame(alpha = alpha[i], mse = min(m$cvm))) 

} 

best.alpha <- mse.df$alpha[mse.df$mse == min(mse.df$mse)]  

m <- cv.glmnet(x = XS, y = YS, family = "gaussian", alpha = best.alpha, standardize = 

FALSE)  

best.lambda <- m$lambda.min 

##alpha= 0.04, lambda= 0.4369317 

 

ENM <- glmnet(x = XS, y = YS, family = "gaussian", lambda = best.lambda, alpha = 

best.alpha, standardize = FALSE) 

coef(ENM,s=best.lambda) 

 

10 x 1 sparse Matrix of class "dgCMatrix" 

                      s1 

(Intercept) 1.240302e-11 

vgf1S       1.346730e-01 

vgf2S       9.775300e-02 

vgf3S       1.602995e-01 

kcnk1S      1.212136e-01 

kcnk2S      1.312119e-01 

kcnk3S      1.564545e-01 

elovl1S     .            

elovl2S     2.685446e-02 

elovl3S     1.310693e-01 

 
ENM1 <- glmnet(x = XS, y = YS, family = "gaussian", 

                   lambda = 0.4369317, alpha = 0.04, standardize = FALSE) 

 



#LOOCV 

nSamples<-nrow(BBHS) 

predict_ENM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_2_methyla

tion_rate_ave[indices],BBHS$VGF_3_methylation_rate_ave[indices],BBHS$KCNK12_1_methylatio

n_rate_ave[indices],BBHS$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methylatio

n_rate_ave[indices],BBHS$ELOVL2_1_methylation_rate_ave[indices],BBHS$ELOVL2_2_methylatio

n_rate_ave[indices],BBHS$ELOVL2_3_methylation_rate_ave[indices]) 

colnames(dr)<-

c("age","methylvgf_1","methylvgf_2","methylvgf_3","methylkcnk_1","methylkcnk_2","methylk

cnk_3","methylelovl_1","methylelovl_2","methylelovl_3") 

X1 <-

cbind(BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_2_methylation_rate_ave[indices],

BBHS$VGF_3_methylation_rate_ave[indices],BBHS$KCNK12_1_methylation_rate_ave[indices],BBH

S$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methylation_rate_ave[indices],BBH

S$ELOVL2_1_methylation_rate_ave[indices],BBHS$ELOVL2_2_methylation_rate_ave[indices],BBH

S$ELOVL2_3_methylation_rate_ave[indices]) 

Y1 <- BBHS$age[indices] 

ENM2 <- glmnet(x = X1, y = Y1, family = "gaussian", lambda = 0.4369317, alpha = 0.04, 

standardize = FALSE) 

Xnew <- 

cbind(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_2=BBHS$VGF_2_methylation_

rate_ave[z],methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z],methylkcnk_1=BBHS$KCNK12_1_me

thylation_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2_methylation_rate_ave[z],methylkcnk_3=BB

HS$KCNK12_3_methylation_rate_ave[z],methylelovl_1=BBHS$ELOVL2_1_methylation_rate_ave[z],

methylelovl_2=BBHS$ELOVL2_2_methylation_rate_ave[z],methylelovl_3=BBHS$ELOVL2_3_methylat

ion_rate_ave[z]) 

p<-predict(ENM2,Xnew,s=0.4369317) *sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_ENM_loocv[z]<-p} 

 

BBH_predict_ENM_loocv<-cbind(BBH,predict_ENM_loocv) 

 



MAE_ENM_loocv<-mean(abs(BBH_predict_ENM_loocv$predict_ENM_loocv-

BBH_predict_ENM_loocv$age)) 

MedianAE_ENM_loocv<-median(abs(BBH_predict_ENM_loocv$predict_ENM_loocv-

BBH_predict_ENM_loocv$age)) 

RMSE_ENM_loocv<- sqrt(mean((BBH_predict_ENM_loocv$predict_ENM_loocv-

BBH_predict_ENM_loocv$age)^2)) 

cat("MAE:", MAE_ENM_loocv, "¥nMed AE:", MedianAE_ENM_loocv, "¥nRMSE:", RMSE_ENM_loocv, 

"¥n") 

 

MAE: 3.6273  

Med AE: 3.374564  

RMSE: 4.630456 

 

g_ENM_loocv<-ggplot(BBH_predict_ENM_loocv,aes(age,predict_ENM_loocv))+theme_bw()+ 

annotate("segment",x=0,xend=max(BBH$age),y=3.6273,yend=max(BBH$age)+3.6273,colour="orch

id4",linetype=2,linewidth =0.7)+ 

 annotate("segment",x=0,xend=max(BBH$age),y=-3.6273,yend=max(BBH$age)-

3.6273,colour="orchid4",linetype=2,linewidth =0.7)+ 

 geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

 labs(x="Chronological age (year)",y="Predicted age (year)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 

 theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+    

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

 geom_line(aes(y =age), linewidth=1)+ 

labs(title="elastic net regression model")+ 

theme(title=element_text(size=17),plot.title=element_text(hjust=0.5))+ 

scale_y_continuous(limits=c(-5,40))+ 

scale_x_continuous(limits=c(-5,40))+ 

labs(subtitle=" VGF-1, -2, -3, KCNK12-1, -2, -3, ELOVL2-1, -2, -3")+ 

theme(plot.subtitle=element_text(size=15,hjust=0.5)) + 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 



 

 

Age estimation model 【Support vector regression】 

AGE <- BBH$age 

 

#RemoveOne function 

removeOne <- function(dat,x) { 

if(x<dat){ 

  list=seq(1,dat) 

  x1=x-1;x2=x+1 

  v1=c(list[0:x1]);v2=c(list[x2:dat]) 

  data=c(v1,v2)} 

 else {data=seq(1,dat-1)} 

 return (data)} 

 

Support vector regression (VGF-1, -2, -3, KCNK12-1, -2, -3, ELOVL2-1, -

2, -3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rat

e_ave+KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_r

ate_ave+ELOVL2_1_methylation_rate_ave+ELOVL2_2_methylation_rate_ave+ELOVL2_3_methylation

_rate_ave,data=BBHS, 



ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_2_methylation_rate_ave + VGF_3_methylation_rate_ave + 

KCNK12_1_methylation_rate_ave +  

    KCNK12_2_methylation_rate_ave + KCNK12_3_methylation_rate_ave +  

    ELOVL2_1_methylation_rate_ave + ELOVL2_2_methylation_rate_ave +  

    ELOVL2_3_methylation_rate_ave, data = BBHS, ranges = list(cost = 10^(seq(-4,  

    5, 0.1)), gamma = 10^(seq(-5, 4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

    cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  3.981072  

      gamma:  0.005011872  

    epsilon:  0.1  

 

 

Number of Support Vectors:  36 

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rate_ave

+KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_rate_a

ve+ELOVL2_1_methylation_rate_ave+ELOVL2_2_methylation_rate_ave+ELOVL2_3_methylation_rate

_ave, data=BBHS, 

cost=3.981072,gamma=0.005011872,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 



for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_2_methyla

tion_rate_ave[indices],BBHS$VGF_3_methylation_rate_ave[indices],BBHS$KCNK12_1_methylatio

n_rate_ave[indices],BBHS$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methylatio

n_rate_ave[indices],BBHS$ELOVL2_1_methylation_rate_ave[indices],BBHS$ELOVL2_2_methylatio

n_rate_ave[indices],BBHS$ELOVL2_3_methylation_rate_ave[indices]) 

 colnames(dr)<-

c("age","methylvgf_1","methylvgf_2","methylvgf_3","methylkcnk_1","methylkcnk_2","methylk

cnk_3","methylelovl_1","methylelovl_2","methylelovl_3") 

 bestmodel_SVRM<-

svm(age~methylvgf_1+methylvgf_2+methylvgf_3+methylkcnk_1+methylkcnk_2+methylkcnk_3+methy

lelovl_1+methylelovl_2+methylelovl_3, data=dr, 

cost=3.981072,gamma=0.005011872,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_2=BBHS$VGF_2_methyla

tion_rate_ave[z],methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z],methylkcnk_1=BBHS$KCNK12

_1_methylation_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2_methylation_rate_ave[z],methylkcnk

_3=BBHS$KCNK12_3_methylation_rate_ave[z],methylelovl_1=BBHS$ELOVL2_1_methylation_rate_av

e[z],methylelovl_2=BBHS$ELOVL2_2_methylation_rate_ave[z],methylelovl_3=BBHS$ELOVL2_3_met

hylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.397692  

Med AE: 2.91568  



RMSE: 4.409281 

 

Support vector regression (VGF-1, -2, -3, KCNK12-1, -2, -3, ELOVL2-2, -

3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rat

e_ave+KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_r

ate_ave+ELOVL2_2_methylation_rate_ave+ELOVL2_3_methylation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_2_methylation_rate_ave + VGF_3_methylation_rate_ave + 

KCNK12_1_methylation_rate_ave +  

    KCNK12_2_methylation_rate_ave + KCNK12_3_methylation_rate_ave +  

    ELOVL2_2_methylation_rate_ave + ELOVL2_3_methylation_rate_ave,  

    data = BBHS, ranges = list(cost = 10^(seq(-4, 5, 0.1)), gamma = 10^(seq(-5,  

        4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

        cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  5.011872  

      gamma:  0.003981072  

    epsilon:  0.1  

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rate_ave

+KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_rate_a

ve+ELOVL2_2_methylation_rate_ave+ELOVL2_3_methylation_rate_ave, data=BBHS, 

cost=5.011872,gamma=0.003981072,epsilon=0.1, scale = FALSE) 



 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_2_methyla

tion_rate_ave[indices],BBHS$VGF_3_methylation_rate_ave[indices],BBHS$KCNK12_1_methylatio

n_rate_ave[indices],BBHS$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methylatio

n_rate_ave[indices],BBHS$ELOVL2_2_methylation_rate_ave[indices],BBHS$ELOVL2_3_methylatio

n_rate_ave[indices]) 

 colnames(dr)<-

c("age","methylvgf_1","methylvgf_2","methylvgf_3","methylkcnk_1","methylkcnk_2","methylk

cnk_3","methylelovl_2","methylelovl_3") 

 bestmodel_SVRM<-

svm(age~methylvgf_1+methylvgf_2+methylvgf_3+methylkcnk_1+methylkcnk_2+methylkcnk_3+methy

lelovl_2+methylelovl_3, data=dr, 

cost=5.011872,gamma=0.003981072,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_2=BBHS$VGF_2_methyla

tion_rate_ave[z],methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z],methylkcnk_1=BBHS$KCNK12

_1_methylation_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2_methylation_rate_ave[z],methylkcnk

_3=BBHS$KCNK12_3_methylation_rate_ave[z],methylelovl_2=BBHS$ELOVL2_2_methylation_rate_av

e[z],methylelovl_3=BBHS$ELOVL2_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 



 

MAE: 3.341879  

Med AE: 2.914074  

RMSE: 4.328937 

 

Support vector regression (VGF-1, -2, -3, KCNK12-1, -2, -3, ELOVL2-3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rat

e_ave+KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_r

ate_ave+ELOVL2_3_methylation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_2_methylation_rate_ave + VGF_3_methylation_rate_ave + 

KCNK12_1_methylation_rate_ave +  

    KCNK12_2_methylation_rate_ave + KCNK12_3_methylation_rate_ave +  

    ELOVL2_3_methylation_rate_ave, data = BBHS, ranges = list(cost = 10^(seq(-4,  

    5, 0.1)), gamma = 10^(seq(-5, 4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

    cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  39.81072  

      gamma:  0.05011872  

    epsilon:  0.1  

 

 

Number of Support Vectors:  40 

 

SVRM<- 



svm(age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rate_ave

+KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_rate_a

ve+ELOVL2_3_methylation_rate_ave, data=BBHS, 

cost=39.81072,gamma=0.05011872,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_2_methyla

tion_rate_ave[indices],BBHS$VGF_3_methylation_rate_ave[indices],BBHS$KCNK12_1_methylatio

n_rate_ave[indices],BBHS$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methylatio

n_rate_ave[indices],BBHS$ELOVL2_3_methylation_rate_ave[indices]) 

 colnames(dr)<-

c("age","methylvgf_1","methylvgf_2","methylvgf_3","methylkcnk_1","methylkcnk_2","methylk

cnk_3","methylelovl_3") 

 bestmodel_SVRM<-

svm(age~methylvgf_1+methylvgf_2+methylvgf_3+methylkcnk_1+methylkcnk_2+methylkcnk_3+methy

lelovl_3, data=dr, 

cost=39.81072,gamma=0.05011872,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_2=BBHS$VGF_2_methyla

tion_rate_ave[z],methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z],methylkcnk_1=BBHS$KCNK12

_1_methylation_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2_methylation_rate_ave[z],methylkcnk

_3=BBHS$KCNK12_3_methylation_rate_ave[z],methylelovl_3=BBHS$ELOVL2_3_methylation_rate_av

e[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 



RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.254831  

Med AE: 2.511308  

RMSE: 4.138454 

 

Support vector regression (VGF-1, -3, KCNK12-1, -2, -3, ELOVL2-3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_1_methylation_

rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_rate_ave+ELOVL2_3_methylatio

n_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_3_methylation_rate_ave + KCNK12_1_methylation_rate_ave +  

    KCNK12_2_methylation_rate_ave + KCNK12_3_methylation_rate_ave +  

    ELOVL2_3_methylation_rate_ave, data = BBHS, ranges = list(cost = 10^(seq(-4,  

    5, 0.1)), gamma = 10^(seq(-5, 4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

    cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  1.258925  

      gamma:  0.01258925  

    epsilon:  0.1  

 

 



Number of Support Vectors:  37 

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_1_methylation_rate_

ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation_rate_ave+ELOVL2_3_methylation_rat

e_ave, data=BBHS, 

cost=1.258925,gamma=0.01258925,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_3_methyla

tion_rate_ave[indices],BBHS$KCNK12_1_methylation_rate_ave[indices],BBHS$KCNK12_2_methyla

tion_rate_ave[indices],BBHS$KCNK12_3_methylation_rate_ave[indices],BBHS$ELOVL2_3_methyla

tion_rate_ave[indices]) 

 colnames(dr)<-

c("age","methylvgf_1","methylvgf_3","methylkcnk_1","methylkcnk_2","methylkcnk_3","methyl

elovl_3") 

 bestmodel_SVRM<-

svm(age~methylvgf_1+methylvgf_3+methylkcnk_1+methylkcnk_2+methylkcnk_3+methylelovl_3, 

data=dr, 

cost=1.258925,gamma=0.01258925,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_3=BBHS$VGF_3_methyla

tion_rate_ave[z],methylkcnk_1=BBHS$KCNK12_1_methylation_rate_ave[z],methylkcnk_2=BBHS$KC

NK12_2_methylation_rate_ave[z],methylkcnk_3=BBHS$KCNK12_3_methylation_rate_ave[z],methyl

elovl_3=BBHS$ELOVL2_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 



MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.35938  

Med AE: 2.646612  

RMSE: 4.240585 

 

Support vector regression (VGF-1, -3, KCNK12-2, -3, ELOVL2-3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_2_methylation_

rate_ave+KCNK12_3_methylation_rate_ave+ELOVL2_3_methylation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_3_methylation_rate_ave + KCNK12_2_methylation_rate_ave +  

    KCNK12_3_methylation_rate_ave + ELOVL2_3_methylation_rate_ave,  

    data = BBHS, ranges = list(cost = 10^(seq(-4, 5, 0.1)), gamma = 10^(seq(-5,  

        4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

        cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  1.258925  

      gamma:  0.01584893  

    epsilon:  0.1  

 

 



Number of Support Vectors:  42 

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_2_methylation_rate_

ave+KCNK12_3_methylation_rate_ave+ELOVL2_3_methylation_rate_ave, data=BBHS, 

cost=1.258925,gamma=0.01584893,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_3_methyla

tion_rate_ave[indices],BBHS$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methyla

tion_rate_ave[indices],BBHS$ELOVL2_3_methylation_rate_ave[indices]) 

 colnames(dr)<-

c("age","methylvgf_1","methylvgf_3","methylkcnk_2","methylkcnk_3","methylelovl_3") 

 bestmodel_SVRM<-

svm(age~methylvgf_1+methylvgf_3+methylkcnk_2+methylkcnk_3+methylelovl_3, data=dr, 

cost=1.258925,gamma=0.01584893,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_3=BBHS$VGF_3_methyla

tion_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2_methylation_rate_ave[z],methylkcnk_3=BBHS$KC

NK12_3_methylation_rate_ave[z],methylelovl_3=BBHS$ELOVL2_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 



 

MAE: 3.367143  

Med AE: 2.718321  

RMSE: 4.246292 

 

Support vector regression (VGF-1, -3, KCNK12-2, -3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_2_methylation_

rate_ave+KCNK12_3_methylation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_3_methylation_rate_ave + KCNK12_2_methylation_rate_ave +  

    KCNK12_3_methylation_rate_ave, data = BBHS, ranges = list(cost = 10^(seq(-4,  

    5, 0.1)), gamma = 10^(seq(-5, 4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

    cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  1.995262  

      gamma:  0.01584893  

    epsilon:  0.1  

 

 

Number of Support Vectors:  37 

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_2_methylation_rate_

ave+KCNK12_3_methylation_rate_ave, data=BBHS, 

cost=1.995262,gamma=0.01584893,epsilon=0.1, scale = FALSE) 



 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_3_methyla

tion_rate_ave[indices],BBHS$KCNK12_2_methylation_rate_ave[indices],BBHS$KCNK12_3_methyla

tion_rate_ave[indices]) 

 colnames(dr)<-c("age","methylvgf_1","methylvgf_3","methylkcnk_2","methylkcnk_3") 

 bestmodel_SVRM<-svm(age~methylvgf_1+methylvgf_3+methylkcnk_2+methylkcnk_3, data=dr, 

cost=1.995262,gamma=0.01584893,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_3=BBHS$VGF_3_methyla

tion_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2_methylation_rate_ave[z],methylkcnk_3=BBHS$KC

NK12_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.634067  

Med AE: 3.01526  

RMSE: 4.533188 

 

Support vector regression (VGF-1, -3, KCNK12-3) 
tuneResult<- 



tune(svm,age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_3_methylation_

rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_3_methylation_rate_ave + KCNK12_3_methylation_rate_ave, data = BBHS,  

    ranges = list(cost = 10^(seq(-4, 5, 0.1)), gamma = 10^(seq(-5,  

        4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

        cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  50.11872  

      gamma:  0.006309573  

    epsilon:  0.1  

 

 

Number of Support Vectors:  42 

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_3_methylation_rate_

ave, data=BBHS, 

cost=50.11872,gamma=0.006309573,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 



 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_3_methyla

tion_rate_ave[indices],BBHS$KCNK12_3_methylation_rate_ave[indices]) 

 colnames(dr)<-c("age","methylvgf_1","methylvgf_3","methylkcnk_3") 

 bestmodel_SVRM<-svm(age~methylvgf_1+methylvgf_3+methylkcnk_3, data=dr, 

cost=50.11872,gamma=0.006309573,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_3=BBHS$VGF_3_methyla

tion_rate_ave[z],methylkcnk_3=BBHS$KCNK12_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.191852  

Med AE: 2.188271  

RMSE: 4.238056 

 

g_SVRM_loocv<-ggplot(BBH_SVRM_loocv,aes(age,predict_SVRM_loocv))+theme_bw()+ 

annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)+3.191852,yend=max(BB

H$age)+3.191852,colour="orchid4",linetype=2,linewidth =0.7)+ 

 annotate("segment",x=min(BBH$age),xend=max(BBH$age),y=min(BBH$age)-

3.191852,yend=max(BBH$age)-3.191852,colour="orchid4",linetype=2,linewidth =0.7)+ 

 geom_point(aes(shape=environment,color=sex),size=2,stroke=2)+ 

 labs(x="Chronological age (year)",y="Predicted age (year)")+ 

scale_shape_manual(name="environment",labels=c("C"="captive","W"="wild"),values=c("C"=1

,"W"=3))+ 

scale_color_manual(name="sex",labels=c("F"="female","M"="male"),values=c("F"="firebrick

2","M"="dodgerblue4"))+ 



 theme(axis.text.x=element_text(size=20),axis.text.y=element_text(size=20))+    

theme(axis.title.x=element_text(size=17),axis.title.y=element_text(size=17))+ 

 geom_line(aes(y =age), linewidth=1)+ 

labs(title="SVR model")+ 

theme(title=element_text(size=17),plot.title=element_text(hjust=0.5))+ 

scale_y_continuous(limits=c(-5,40))+ 

scale_x_continuous(limits=c(-5,40))+ 

labs(subtitle="VGF-1, -3, KCNK12-3")+ 

theme(plot.subtitle=element_text(size=15,hjust=0.5))+ 

 guides(shape= guide_legend(order = 1), color= guide_legend(order = 2)) 

 

 

Support vector regression (VGF-3, KCNK12-3) 
tuneResult<- 

tune(svm,age~VGF_3_methylation_rate_ave+KCNK12_3_methylation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_3_methylation_rate_ave +  

    KCNK12_3_methylation_rate_ave, data = BBHS, ranges = list(cost = 10^(seq(-4,  



    5, 0.1)), gamma = 10^(seq(-5, 4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

    cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  0.7943282  

      gamma:  0.03162278  

    epsilon:  0.1  

 

 

Number of Support Vectors:  40 

 

SVRM<- 

svm(age~VGF_3_methylation_rate_ave+KCNK12_3_methylation_rate_ave, data=BBHS, 

cost=0.7943282,gamma=0.03162278,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_3_methylation_rate_ave[indices],BBHS$KCNK12_3_meth

ylation_rate_ave[indices]) 

 colnames(dr)<-c("age","methylvgf_3","methylkcnk_3") 

 bestmodel_SVRM<-svm(age~methylvgf_3+methylkcnk_3, data=dr, 

cost=0.7943282,gamma=0.03162278,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z],methylkcnk_3=BBHS$KCNK12_3_met

hylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 



BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.513377  

Med AE: 2.76578  

RMSE: 4.468467 

 

Support vector regression (VGF-1, -2, -3) 
tuneResult<- 

tune(svm,age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rat

e_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ VGF_1_methylation_rate_ave +  

    VGF_2_methylation_rate_ave + VGF_3_methylation_rate_ave, data = BBHS,  

    ranges = list(cost = 10^(seq(-4, 5, 0.1)), gamma = 10^(seq(-5,  

        4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

        cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  79.43282  

      gamma:  0.07943282  

    epsilon:  0.1  

 



 

Number of Support Vectors:  35 

 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_2_methylation_rate_ave+VGF_3_methylation_rate_ave

, data=BBHS, 

cost=79.43282,gamma=0.07943282,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$VGF_1_methylation_rate_ave[indices],BBHS$VGF_2_methyla

tion_rate_ave[indices],BBHS$VGF_3_methylation_rate_ave[indices]) 

 colnames(dr)<-c("age","methylvgf_1","methylvgf_2","methylvgf_3") 

 bestmodel_SVRM<-svm(age~methylvgf_1+methylvgf_2+methylvgf_3, data=dr, 

cost=79.43282,gamma=0.07943282,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylvgf_1=BBHS$VGF_1_methylation_rate_ave[z],methylvgf_2=BBHS$VGF_2_methyla

tion_rate_ave[z],methylvgf_3=BBHS$VGF_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.461789  

Med AE: 2.438894  



RMSE: 5.019953 

 

Support vector regression (KCNK12-1, -2, -3) 
tuneResult<- 

tune(svm,age~KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methyl

ation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 

 

Call: 

best.tune(METHOD = svm, train.x = age ~ KCNK12_1_methylation_rate_ave +  

    KCNK12_2_methylation_rate_ave + KCNK12_3_methylation_rate_ave,  

    data = BBHS, ranges = list(cost = 10^(seq(-4, 5, 0.1)), gamma = 10^(seq(-5,  

        4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

        cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  1.258925  

      gamma:  0.03162278  

    epsilon:  0.1  

 

 

Number of Support Vectors:  39 

 

SVRM<- 

svm(age~KCNK12_1_methylation_rate_ave+KCNK12_2_methylation_rate_ave+KCNK12_3_methylation

_rate_ave, data=BBHS, 

cost=1.258925,gamma=0.03162278,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 



predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$KCNK12_1_methylation_rate_ave[indices],BBHS$KCNK12_2_m

ethylation_rate_ave[indices],BBHS$KCNK12_3_methylation_rate_ave[indices]) 

 colnames(dr)<-c("age","methylkcnk_1","methylkcnk_2","methylkcnk_3") 

 bestmodel_SVRM<-svm(age~methylkcnk_1+methylkcnk_2+methylkcnk_3, data=dr, 

cost=1.258925,gamma=0.03162278,epsilon=0.1, scale = FALSE) 

 newdata<-

data.frame(methylkcnk_1=BBHS$KCNK12_1_methylation_rate_ave[z],methylkcnk_2=BBHS$KCNK12_2

_methylation_rate_ave[z],methylkcnk_3=BBHS$KCNK12_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 3.844654  

Med AE: 3.214305  

RMSE: 4.909006 

 

Support vector regression (ELOVL2-1, -2, -3) 
tuneResult<- 

tune(svm,age~ELOVL2_1_methylation_rate_ave+ELOVL2_2_methylation_rate_ave+ELOVL2_3_methyl

ation_rate_ave,data=BBHS, 

ranges=list(cost=10^(seq(-4,5,0.1)),gamma=10^(seq(-5,4,0.1))), 

tunecontrol = tune.control(sampling = "cross", cross = 10), scale = FALSE) 

 

tunedModel <- tuneResult$best.model 



 

Call: 

best.tune(METHOD = svm, train.x = age ~ ELOVL2_1_methylation_rate_ave +  

    ELOVL2_2_methylation_rate_ave + ELOVL2_3_methylation_rate_ave,  

    data = BBHS, ranges = list(cost = 10^(seq(-4, 5, 0.1)), gamma = 10^(seq(-5,  

        4, 0.1))), tunecontrol = tune.control(sampling = "cross",  

        cross = 10), scale = FALSE) 

 

 

Parameters: 

   SVM-Type:  eps-regression  

 SVM-Kernel:  radial  

       cost:  251.1886  

      gamma:  0.001584893  

    epsilon:  0.1  

 

 

Number of Support Vectors:  41 

 

SVRM<- 

svm(age~ELOVL2_1_methylation_rate_ave+ELOVL2_2_methylation_rate_ave+ELOVL2_3_methylation

_rate_ave, data=BBHS, 

cost=251.1886,gamma=0.001584893,epsilon=0.1, scale = FALSE) 

 

#LOOCV 

nSamples<-nrow(BBHS) 

predict_SVRM_loocv<-numeric(nSamples) 

for (z in 1:nSamples){ 

indices<-removeOne(nSamples,z) 

 dr<-

data.frame(BBHS$age[indices],BBHS$ELOVL2_1_methylation_rate_ave[indices],BBHS$ELOVL2_2_m

ethylation_rate_ave[indices],BBHS$ELOVL2_3_methylation_rate_ave[indices]) 

 colnames(dr)<-c("age","methylelovl_1","methylelovl_2","methylelovl_3") 

 bestmodel_SVRM<-svm(age~methylelovl_1+methylelovl_2+methylelovl_3, data=dr, 

cost=251.1886,gamma=0.001584893,epsilon=0.1, scale = FALSE) 



 newdata<-

data.frame(methylelovl_1=BBHS$ELOVL2_1_methylation_rate_ave[z],methylelovl_2=BBHS$ELOVL2

_2_methylation_rate_ave[z],methylelovl_3=BBHS$ELOVL2_3_methylation_rate_ave[z]) 

 p<-predict(bestmodel_SVRM,newdata)*sd(AGE)+mean(AGE) 

 if (p<0){p=0} 

 predict_SVRM_loocv[z]<-p} 

 

BBH_SVRM_loocv<-cbind(BBH,predict_SVRM_loocv) 

 

MAE_SVRM_loocv<-mean(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

MedianAE_SVRM_loocv<-median(abs(BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)) 

RMSE_SVRM_loocv<- sqrt(mean((BBH_SVRM_loocv$predict_SVRM_loocv-BBH$age)^2)) 

cat("MAE:", MAE_SVRM_loocv, "¥nMed AE:", MedianAE_SVRM_loocv, "¥nRMSE:", 

RMSE_SVRM_loocv, "¥n") 

 

MAE: 5.047747  

Med AE: 3.864458  

RMSE: 7.259932 

 

Influences of interaction among age, sex, and growth 

environment 

Support vector regression (VGF-1, -3 , KCNK12-3) 
SVRM3<- 

svm(age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_3_methylation_rate_

ave, data=BBHS,cost=50.11872,gamma=0.006309573,epsilon=0.1, scale = FALSE) 

 

predict_SVRM3_s <- predict(SVRM3) 

  

#Δage 

deltaage_SVRM3<- predict_SVRM3_s-BBHS$age 

modeldelta_SVRM3<-lm(formula =deltaage_SVRM3~BBHS$age*BBHS$sex*BBHS$environment) 

options(na.action = "na.fail") 

modellist_SVRM3<-dredge(modeldelta_SVRM3,rank="AIC") 

bestmodel_SVRM3<- get.models(dredge(modeldelta_SVRM3,rank="AIC"),subset=1) 



bestmodel_SVRM3 

 

$`4` 

 

Call: 

lm(formula = deltaage_SVRM3 ~ BBHS$age + BBHS$environment + 1) 

 

Coefficients: 

      (Intercept)           BBHS$age  BBHS$environmentW   

          0.07009           -0.21261           -0.20370   

 

 

attr(,"rank") 

function (x)  

do.call("rank", list(x)) 

<environment: 0x0000025fb7262648> 

attr(,"call") 

AIC(x) 

attr(,"class") 

[1] "function"     "rankFunction" 

attr(,"beta") 

[1] "none" 

 

summary(lm(formula = deltaage_SVRM3 ~ BBHS$age + BBHS$environment + 1)) 

 

Call: 

lm(formula = deltaage_SVRM3 ~ BBHS$age + BBHS$environment + 1) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1.06505 -0.28872 -0.01493  0.20515  1.08435  

 

Coefficients: 

                  Estimate Std. Error t value Pr(>|t|)    

(Intercept)        0.07009    0.07242   0.968  0.33846    

BBHS$age          -0.21261    0.06354  -3.346  0.00169 ** 



BBHS$environmentW -0.20370    0.14417  -1.413  0.16470    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.4276 on 44 degrees of freedom 

Multiple R-squared:  0.2491,    Adjusted R-squared:  0.215  

F-statistic: 7.299 on 2 and 44 DF,  p-value: 0.00183 

 

#|Δage| 

absdeltaage_SVRM3<- abs(predict_SVRM3_s-BBHS$age) 

modeldelta_absSVRM3<-glm(absdeltaage_SVRM3 ~ age*sex*environment, data = BBHS, family = 

Gamma(link = "log")) 

options(na.action = "na.fail") 

modellist_absSVRM3<-dredge(modeldelta_absSVRM3,rank="AIC") 

bestmodel_absSVRM3<- get.models(dredge(modeldelta_absSVRM3,rank="AIC"),subset=1) 

bestmodel_absSVRM3 

 

$`1` 

 

Call:  glm(formula = absdeltaage_SVRM3 ~ 1, family = Gamma(link = "log"),  

    data = BBHS) 

 

Coefficients: 

(Intercept)   

     -1.041   

 

Degrees of Freedom: 46 Total (i.e. Null);  46 Residual 

Null Deviance:      43.54  

Residual Deviance: 43.54        AIC: -0.525 

 

attr(,"rank") 

function (x)  

do.call("rank", list(x)) 

<environment: 0x0000025fb22acc08> 

attr(,"call") 

AIC(x) 



attr(,"class") 

[1] "function"     "rankFunction" 

attr(,"beta") 

[1] "none" 

 

How to apply to the models 

HMD <- read.csv("hair_measurement_data.csv") 

HMD[,2] <- (HMD[,2] - 5.6163) / 2.6814 

HMD[,3] <- (HMD[,3] - 7.0590) / 4.0436 

HMD[,4] <- (HMD[,4] - 10.572) / 5.4001 

HMD[,5] <- (HMD[,5] - 11.605) / 6.0872 

HMD[,6] <- (HMD[,6] - 14.020) / 5.9832 

HMD[,7] <- (HMD[,7] - 17.529) / 7.3715 

HMD[,8] <- (HMD[,8] - 18.322) / 5.7400 

HMD[,9] <- (HMD[,9] - 45.225) / 9.0431 

HMD[,10] <- (HMD[,10] - 36.266) / 10.283 

 

write.csv(HMD, "hair_measurement_data_standardized.csv", row.names = FALSE) 

HMDS <- read.csv("hair_measurement_data_standardized.csv") 

 
BBHS<-read.csv("brown_bear_hair_standardized.csv") 

SD <- 8.2771 

MEAN <- 12.149 

 

The file “hair_measurement_data.csv” is a template file, available in Dryad; doi: 

10.5061/dryad.h44j0zpzc. Write the sample IDs and measured methylation levels on it. 

The “hair_measurement_data_standardized.csv” file contains values of standardized methylation 

levels of “hair_measurement_data.csv”. 

The standardized values are calculated by the following equation. 

“standardized value” = (“original value” − “mean of training data”) ÷ “standard deviation of training 

data”) 

 

Single regression (KCNK12-3) 

SRM <-lm(formula=age~KCNK12_3_methylation_rate_ave,data=BBHS) 



predicted_age_SRM <- predict(SRM,HMDS)*SD+MEAN  

predicted_age_SRM[predicted_age_SRM < 0] <- 0 

 

data.frame(Sample_ID = HMDS$Sample_ID, Predicted_Age = predicted_age_SRM) 

 

Elastic net regression (VGF-1, -2, -3, KCNK12-1, -2, -3, ELOVL2-1, -2, -3) 

library(glmnet) 

ENM <- glmnet(x = cbind(BBHS$VGF_1_methylation_rate_ave,BBHS$VGF_2_methylation_rate_ave, 

BBHS$VGF_3_methylation_rate_ave,BBHS$KCNK12_1_methylation_rate_ave,BBHS$KCNK12_2_methyla

tion_rate_ave,BBHS$KCNK12_3_methylation_rate_ave,BBHS$ELOVL2_1_methylation_rate_ave,BBHS

$ELOVL2_2_methylation_rate_ave,BBHS$ELOVL2_3_methylation_rate_ave), 

 y = BBHS$age, family = "gaussian", lambda = 0.4369317, alpha = 0.04, standardize = 

FALSE) 

HMDS_ENM <- cbind(HMDS$VGF_1_methylation_rate_ave,HMDS$VGF_2_methylation_rate_ave, 

HMDS$VGF_3_methylation_rate_ave,HMDS$KCNK12_1_methylation_rate_ave,HMDS$KCNK12_2_methyla

tion_rate_ave,HMDS$KCNK12_3_methylation_rate_ave,HMDS$ELOVL2_1_methylation_rate_ave,HMDS

$ELOVL2_2_methylation_rate_ave,HMDS$ELOVL2_3_methylation_rate_ave) 

predicted_age_ENM <- c(predict(ENM,HMDS_ENM,s=0.4369317)*SD+MEAN) 

predicted_age_ENM[predicted_age_ENM < 0] <- 0 

 

data.frame(Sample_ID = HMDS$Sample_ID, Predicted_Age = predicted_age_ENM) 

 

Support vector regression (VGF-1, -3, KCNK12-3) 
library(e1071) 

SVRM<- 

svm(age~VGF_1_methylation_rate_ave+VGF_3_methylation_rate_ave+KCNK12_3_methylation_rate_

ave,data=BBHS, cost=50.11872, gamma=0.006309573, epsilon=0.1, scale = FALSE) 

predicted_age_SVRM<-predict(SVRM,HMDS)*SD+MEAN 

predicted_age_SVRM[predicted_age_SVRM < 0] <- 0 

 

data.frame(Sample_ID = HMDS$Sample_ID, Predicted_Age = predicted_age_SVRM) 

 

Output to a csv file 
sample_ID <- HMDS[, 1, drop = FALSE] 

predicted_age<-cbind(sample_ID,predicted_age_SRM,predicted_age_ENM,predicted_age_SVRM) 

write.csv(predicted_age, "predicted_age_result.csv", row.names = FALSE) 



 

At this point, two files, “hair_measurement_data_standardized.csv” and “predicted_age_result.csv”, 

should have been generated. Leaving them as they are may cause errors in subsequent runs, so please 

either rename the files or move them to a different folder. 

 


