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1 The analytical expressions for reflectance from the
material.

1.1 Reflectance measured by the Cassegrain objective.
The system consists of an incident medium with permittivity ϵ1 = n2

1 = 1, a substrate
with ℵS = (nS + ikS) and a thin layer of thickness d with permittivity ϵ. The material
is considered to be anisotropic with diagonal complex permittivities ϵX , ϵY = ϵx/α

2
Y ,

and ϵZ = ϵx/α
2
Z . The reflection (rp/s) and transmission (tp/s) of the system can be

written in terms of the transfer matrices as
ts
tp
0
0

 = K−1
2 MK1


as
ap
rs
rp

 (S1)

where as and ap are the TE and TM polarized incident fields. K2 and K1 are the
boundary conditions for material-substrate and material-incident medium interfaces
respectively.

K2/1 =


0 −cosθ 0 cosθ
1 0 1 0

−
√
ϵ2/1
η0

cosθ 0
√
ϵ2/1
η0

cosθ 0

0 −
√
ϵ2/1
η0

0 −
√
ϵ2/1
η0

 (S2)

with η0 =
√

µ0/ϵ0. The transfer matrix for the material can be written as M = eiPh,
with

P = ω


0 0 0 η20 − η20sin

2θ/ϵZ
0 0 −η20 0
0 −ϵY + sin2θ 0 0
ϵX 0 0 0

 (S3)

After matrix exponential, M can be written as
cos(k0dℵX) 0 0 iη0ℵXsin(k0dℵX)

ϵx

0 cos(k0dℵY ) −iη0sin(k0dℵY )
ℵY

0

0 −iℵY sin(k0dℵY )
η0

cos(k0dℵY ) 0

i ϵXsin(k0dℵX)
η0ℵX

0 0 cos(k0dℵX)

 (S4)

Performing the matrix multiplication and rearranging the terms, for n1 = 1 and
n2 = ℵS , one can derive the following explicit relations for the reflectance for P and S
polarizations
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Fig. S1 (a) Schematic of the FTIR microscope setup used for the reflectance spectra measurements.
The angular range of the Cassegrain objective is shown. (b) The schematic representation of a beam
polarized along X, focused at a spot. The reflectance from the spot can be decomposed in two
orthogonal directions X and Y , shown as red and blue in the schematic. The electric field orientation
for the two directions is also shown. Also the conventional orientations of the electric field for P and
S polarizations when the incident plane is along X or Y is demonstrated in the figure.

rP =

[
1− cosθT

ℵScosθ

]
+ i

[
ℵX

ϵX2cosθ − ϵXcosθT
ℵSℵX

]
tan(dk0ℵX)[

1 + cosθT
ℵScosθ

]
− i

[
n1ℵX
ϵXcosθ + ϵXcosθT

ℵSℵX

]
tan(dk0ℵX)

rS =

[
cosθ

ℵScosθT
− 1

]
+ i

[
ℵY

ℵScosθT
− cosθ

ℵY

]
tan(dk0ℵY )[

cosθ
ℵScosθT

+ 1
]
− i

[
ℵY

ℵScosθT
+ cosθ

ℵY

]
tan(dk0ℵY )

(S5)

where ℵX =
√

ϵX − α2
Zsin

2θ and ℵY =
√
ϵY − sin2θ are the effective indices of

the anisotropic material along X and Y axes respectively. The plane of incidence is
considered along X and the angle of incidence is θ with sin (θ) = ℵSsin (θT ).

Fig. S1, shows the schematic of the Cassegrain objective used for the reflectance
measurements. A beam of light focused by such an objective and the electric field
orientations when the incident light is polarized along X is shown in Fig. S1b. The
reflectance measured in this case can be decomposed into two orthogonal planes along
XZ and Y Z. The electric field orientation for the light incident along the XZ plane
is same as P-polarized light in the XZ plane of incidence. So rX,X = rP of Eq. S5.
However, for rX,Y , we need to consider the expression for rS when Y Z is the plane of
incidence. This can be obtained by replacing the ϵY of Eq. S5 by ϵX . Hence the term
ℵY should be replaced by ℵX =

√
ϵX − sin2θ. So the analytical expressions for the

reflectance using the Cassegrain objective is given as RX = (rX,Xr∗X,X + rX,Y r
∗
X,Y )/2

where

3



rX,X =

(
1− cos(θT )

ℵScos(θ)

)
+ i

(
ℵX

ϵXcos(θ) −
ϵXcos(θT )

ℵSℵX

)
tan(dk0ℵX)(

1 + cos(θT )
ℵScos(θ)

)
− i

(
ℵX

ϵXcos(θ) +
ϵXcos(θT )

ℵSℵX

)
tan(dk0ℵX)

rX,Y =

(
cos(θ)

ℵScos(θT ) − 1
)
+ i

(
ℵX

ℵScos(θT ) −
cos(θ)
ℵX

)
tan(dk0ℵX)(

cos(θ)
ℵScos(θT ) + 1

)
− i

(
ℵX

ℵScos(θT ) +
cos(θ)
ℵX

)
tan(dk0ℵX)

(S6)

This is shown in the main article (Eq. 3) for θ = θT = 0. We note that the
θ dependence in Eq. S10 comes from the term ℵX =

√
ϵX − sin2θ. For the FTIR

microscope used, the central angle of incidence is θ ≈ 22◦. For vdW materials, near
the Reststrahlen band, |ϵX | ≫ sin2θ, hence we can consider normal incidence for the
analytical expressions.

1.2 Reflection coefficient for incident light polarized at an
angle Ψ to the X-axis.

We consider an in-plane anisotropic material with effective refractive indices ℵX and
ℵY along X and Y. The reflection matrix in (X,Y) basis can be written as

RXY =

[
rX 0
0 rY

]
(S7)

The reflection matrix in (S,P) basis for incident light polarized at an angle Ψ to X
is written as

RSP = R(Ψ)RXY R−1(Ψ) =

[
rSS rSP

rPS rPP

]
(S8)

where the R is the rotation matrix given as

R(Ψ) =

[
cos(Ψ) − sin(Ψ)
sin(Ψ) cos(Ψ)

]
(S9)

From Eq. S8 we get

rSS = cos2(Ψ)rX + sin2(Ψ)rY
rPP = sin2(Ψ)rX + cos2(Ψ)rY

rSP = rPS = cos(Ψ) sin(Ψ)(rY − rX)
(S10)

For Ψ = 45◦ we get

rSS = rPP =
rX + rY

2
(S11)

This is used in the main article (Eq. 5) to estimate kX with known values of nY

and kY .
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2 Experimental Methods.

2.1 Experimental discrepancies in the measurement of
reflectance spectra.

A typical exfoliated flake of hBN on a gold substrate is shown in Fig. S2a. The cross-
sectional area of such flakes is roughly ∼ 50µm×50µm. We also see that the thickness
(d) of the flake is not uniform over the entire surface of the flake. The thicknesses
used in this work were measured using Atomic Force Microscopy (AFM). A thickness
profile on the hBN flake is shown in Fig. S2b. Two distinct height distributions at
d = 95nm and d = 275nm were observed for this particular flake.

Fig. S2 (a) Microscope image of an hBN flake on gold. (b) Flake thickness d obtained by AFM
along the black dashed line shown in (a). Two distinct thicknesses are observed shown by dashed red
lines. (c) The reflectance spectrum was obtained by FTIR microscopy on two different locations of the
flake (blue lines). The regions are marked in (a) using the same blue lines. The theoretical reflectance
spectra are shown by dashed red lines for d = 275 nm, d = 95nm and for the thickness profile shown
in (b) (black dashed). (d) The difference in reflectance (|∆R|) as a function of frequency for the two
FTIR spectra of (c) (left axis). The maximum |∆R| over the measured spectral range is 0.2. The
frequency difference (|∆ωd|) of the reflectance minima for the same two FTIR spectra (right axis).
|∆ωd| for the two reflectance minima is 2 cm−1.

A standard reflectance spectrum, obtained via FTIR is shown in Fig. S2c, taken
on two different locations of the flake. There is a high reflectance dispersion (|∆R|)
due to the non-uniformity of the flake, which is a typical discrepancy for far-field
measurements in exfoliated vdW flakes. Furthermore, as the lateral dimensions of
the exfoliated flakes are comparable to the wavelength of MLIR light, it results in
significant diffraction and boundary effects.

The reflectance from an hBN film of a given thickness, on a gold substrate is cal-
culated by Eq. S12 and the spectra are plotted together on Fig. S2c for d = 95nm
and d = 275 nm (red dashed). The theoretical R corresponding to the experimental
flake’s height variation (Fig. S2b) is also shown (black dashed). The permittivity of
hBN retrieved by the method presented in this article was used for these calculations.
We see that none of the theoretical spectra closely resembles the experimental curves.
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Hence, any attempt to retrieve the optical permittivity of hBN by fitting the exper-
imental reflectance spectra to theoretical calculations is expected to result in large
errors.

However, the spectral positions of the dips in reflectance (ωd), caused by FP reso-
nances, show statistically much less variation with sample location, as seen in Fig. S2c.
The two dips observed in the reflectance spectra correspond closely to hBN thicknesses
of d = 95nm and d = 275 nm. The maximum experimental discrepancy in reflectance
(|∆R|) was found to be 0.2 whereas that for |∆ωd| = 2 cm−1 for both the reflectance
dips (Fig. S2d). Therefore, retrieval of optical permittivity based on ωd rather than
fitting to the entire reflectance spectrum is more robust and precise. This is further
demonstrated for other hBN flakes and α-MoO3 below.

In Fig. S3 we show that even with negligible height dispersions, the experimental
spectra do not match the analytically calculated spectra, more so for larger frequen-
cies. This discrepancy is observed for the absolute value of the reflectance, while the
positions of the reflectance dips closely follow the theoretically calculated ωd. Hence,
the complex permittivity of hBN, obtained by fitting theoretical reflectance spectra to
the measured spectra will not be accurate. This result further confirms the necessity
of our method to extract the complex permittivity from micrometric flakes. The fol-
lowing 11 flakes and the corresponding values of ωd were used to extract the complex
permittivity of hBN.

Fig. S3 Microscope image of hBN flakes of different heights (d) on a gold substrate. The experimental
reflectance spectra (red) for each flake as obtained by the FTIR is shown. The microscope images
of the corresponding flakes is shown as inset along with the thickness of the flake as measured by
AFM. The analytically calculated reflectance spectra is shown as blue dashed lines. The permittivity
of hBN derived during this work was used for the theoretical calculations.
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Fig. S4 (a) Microscope image of α-MoO3 flake on a gold substrate. (b) The thickness of the flake as
measured by AFM. The average thickness of the flake was 920 nm. (c) The experimental reflectance
spectra of the flake with incident polarization along X, measured at two different locations of the
flake. The two measured areas are shown in (b) and marked as A and B. (d) The same as (c) for
incident polarization along Y . (e) The same for incident polarization at 45◦ to the X axis. (f) The
reflectance spectra around the resonance frequency ωd < ωTO. The analytical reflectance spectra
using the permittivity values of α-MoO3 obtained by our method is shown as black dashed lines in
(c), (d), (e) and (f). The dashed red curve in f represents the analytical reflectance when the incident
light is polarized along X.

The experimental discrepancy for α-MoO3 is shown in Fig. S4. The reflectance
spectra were measured at two different areas on the same flake as shown in Fig. S4b.
The reflectance spectra with the incident light polarized along X, Y , and at 45◦ to
X are shown in the figure. We see that as for hBN, the positions of the reflectance
dips do not change significantly between the two measurements, however, the absolute
value of the reflectance has significant variations, mainly for higher frequencies.

The analytical reflectance spectra using the permittivity values obtained by our
method is also shown in Fig. S4. We see that for all the cases, the analytical reflectance
spectra deviates from the measured reflectance spectra in terms of absolute value, but
follows closely the positions of the reflectance dips. This further validates our method
which is based on the identification of the positions of the reflectance dips, rather than
fitting the theoretical reflectance spectra to the measured spectra.

2.2 Extracting the refractive index from reflectance dip
positions.

The reflectance for normal incidence from Eq. S10 is given as
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rX =

(
1− 1

ℵS

)
+ i

(
1
ℵX

− ℵX

ℵS

)
TeX(

1 + 1
ℵS

)
− i

(
1
ℵX

+ ℵX

ℵS

)
TeX

(S12)

where ℵX = nX + ikX and ℵS = nS + ikS are the complex refractive indices of the
lossy material and the substrate respectively, TeX = tan(dk0ℵX) with k0 = 2π/λ.

From the first and second partial derivatives of Eq. S12 with respect to ω, and
using ℵX = nX, the condition for the minimum reflectance can be derived as [1]

ωd =
1

2d

[
2m+ 1

2nX(ωd)
− 1

2πnX(ωd)
tan−1

{
−2nX(ωd)ks)

nX(ωd)2 − n2
s − k2s

}]
(S13)

This is shown in Fig. S5a for a material following Lorentz dispersion with ωTO =
1361 cm−1, ωLO = 1635 cm−1, γ = 8.75 cm−1 and ϵinf = 4.75 (same as the parameters
of hBN retrieved in this work) for different values of material thickness (d). We see that
in the 1st order (m = 0), we have two possible dips, one close to material resonances
(ωd < ωTO) and other at higher frequencies far from the material resonances ( ωd >
ωLO). This is true if we have the material thickness larger than a cut off value (in Fig.
S5 there are no dips for d = 100 nm). For this work, flake thicknesses were chosen such
that the respective reflectance dips cover a broad range of wavelengths.

For the same material the reflectance was calculated analytically for two different
thicknesses, while considering complex ϵ and also when only Re{ϵ} was considered.
We see that though there is a large variation in R, however ωd is negligibly affected
by Im{ϵ}. Hence, Eq. S13 can be applied for regions outside the RB of the material.

The FTIR microscope is equipped with two knife-edges to chose accurately the
aperture defining the region of interest (ROI) of the spectral measurement. This is
shown in Fig. S6. For each flake, the ROI for the spectral measurement was chosen
such that the thickness is uniform in the ROI. The measured value of thickness in the
respective ROI was used to calculate n by Eq. S13. It should be noted that the signals
have lower signal to noise ratio for smaller ROI and this results in lower precision in
determining ωd and hence n.

For determining k in the Reststrahlen Band (RB), the expression for the reflection
coefficient at Ψ = 45◦ from Eq. S11 can be written as

2r(ω,Ψ = 45◦) =

(
1− 1

ℵS

)
+ i

(
1

ikX
− ikX

ℵS

)
TeX(

1 + 1
ℵS

)
− i

(
1

ikX
+ ikX

ℵS

)
TeX

+

(
1− 1

ℵS

)
+ i

(
1
ℵY

− ℵY

ℵS

)
TeY(

1 + 1
ℵS

)
− i

(
1
ℵY

+ ℵY

ℵS

)
TeY

(S14)
where TeX = tan(idk0kX) and TeY = tan(dk0ℵY). Having predetermined ℵY =

nY+ikY, the only unknown in Eq. S14 is kX. For each flake of thickness d, we calculate
the frequency of the minimum of R(ω,Ψ = 45◦) = |r(ω,Ψ = 45◦)|2 from Eq. S14 for
different values of kX. Comparing this value of the dip position to the experimental
ωd(kX,Ψ = 45◦) we determine the value of kX.
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Fig. S5 (a) Reflectance dip positions (ωd) as a function of incident frequency (ω) for a polar material
on a gold substrate according to Eq. S13. The material thickness is varied from d = 100 nm to
d = 320 nm with steps of 20 nm.The expected positions of the reflectance dips for each d are marked
with black dots. (b) The reflectance calculated analytically for hBN with d = 150 nm and d = 300 nm,
for ϵ being complex (solid lines) or when ϵ is considered to be real (dashed lines).

Fig. S6 (a) The thickness of a hBN flake on gold substrate as measured by AFM. (b) FTIR micro-
scope image of the same flake with the knife edges. The ROI chosen for the measurement is shown
by the red box. The thickness of the flake in the ROI was 305 nm.

2.3 Experimental data for hBN
For hBN, 11 flakes (Fig. S3) were used to obtain the dips in spectral regions outside
the RB. The experimental ωd along with the evaluated n are shown in Table S1. The
same data points (n) are shown in Fig. 4d of the main article.

2.4 Experimental data for α-MoO3

To retrieve the permittivity of α-MoO3 along X, 13 flakes were used, resulting in 24
data points (11 in ωd < ωTO and 13 in ωd > ωLO spectral regions). The spectra are
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Table S1 Experimental results for hBN: 20 data points from the 11 flakes shown in Fig. S3.

d (nm) ωd(< ωTO) cm
−1 n(ωd < ωTO) ωd(> ωLO) cm

−1 n(ωd > ωLO)
117±5 1355±1.8 13.19 - -
125±5 1353±1.8 12.49 - -
130±2 1354±1.8 12.08 - -
133±2 1352±1.8 11.86 - -
155±10 1350±1.8 10.40 6451± 42 2.18
160±10 1348±1.8 10.13 5682±32 2.41
165±3 † 1349±1.8 9.87 5556±50 2.39
168±3 † 1347±1.8 9.76 5618±52 2.34
220±15 1334±1.7 7.70 5025±55 2.05
285±5 1318±1.7 6.15 4124±47 1.97
305±10 1315±1.7 5.79 4032±46 1.89
320±10 1304±1.7 5.58 4000±46 1.82

†: denotes different positions of the same flake.

shown in Fig. S7 (red lines) and the data is tabulated in Table S2. The same data
points are shown in Fig. 5d of the main article.

Table S2 Experimental results for α-MoO3 to retrieve the permittivity along X: 24 data points
from the 13 flakes shown in Fig. S7.

d(nm) ωd(< ωTO)cm
−1 n(ωd < ωTO) ωd(> ωLO)cm

−1 n(ωd > ωLO)
350±10 806.5±3.3 8.29 3333± 60 2.01
480±10 788.6±3.1 6.29 2500± 60 2.03
484±10 788.0±3.1 6.24 2439± 60 1.97
550±10 784.9±3.1 5.54 2174± 55 2.00
566±10 770.4±3.0 5.50 2083± 55 2.03
920±15 716.8±1.6 3.69 1408±50 1.88
1100±30 685.9±2.1 3.24 1329±50 1.67
1200±30 666.7±2.2 3.06 1282±44 1.59
1425±50 627.4±2.0 2.74 1205±42 1.43
1429±50 620.3±2.0 2.77 1124±60 1.53
1500±50 613.5±2.0 2.67 1136±32 1.44
1800±50 - - 1111±32 1.23
2200±50 - - 1036±30 1.08

For the permittivity along Y, we used 9 of the 13 flakes shown in Fig. S7, to get
nY in the spectral region ω > ωLO. The kY was retrieved from 5 of the same 13 flakes.
The data points are shown in Fig. 6b,c of the main article and tabulated in Table S3.
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Table S3 Experimental results for α-MoO3 to retrieve the permittivity along Y: 14 data points
from the 10 flakes shown in Fig. S7.

d (nm) ωd(> ωLO) cm
−1 n(ωd > ωLO) ωd,RB cm−1 k(ωd,RB)

350±10 3175±60 2.11 - -
480±10 2381±60 2.08 - -
484±10 2222±60 2.21 - -
550±10 2160±55 2.01 - -
566±10 2083±55 2.03 - -
920±15 1370±50 1.93 727.3±1.5 2.0
1100±30 - - 693.5±2.1 2.6
1200±30 1299±44 1.57 674.8±2.1 2.86
1429±50 1053±60 1.63 641.0±1.9 3.34
1500±50 1111±40 1.47 633.7±2.0 3.88

Fig. S7 The experimental reflectance spectra for each of the 13 α-MoO3 flakes as obtained by the
FTIR when the incident light is polarized along X (red) and along Y (black). The microscope images
of the corresponding flakes are shown as inset along with the thickness of the flake as measured by
AFM.

11



3 Uncertainty on permittivity estimations.
Separating the real and imaginary parts of the permittivity given by Eq. 1, we write
it as ϵ = ϵrs + iϵis where

ϵrs = ϵinf

[
1 +

(ω2
LO − ω2

TO)(ω
2
TO − ω2)

(ω2
TO − ω2)2 + (ωγ)2

]

ϵis = ϵinf
ωγ(ω2

LO − ω2
TO)

(ω2
TO − ω2)2 + (ωγ)2

(S15)

The partial derivatives of ϵr with respect to the four dielectric parameters are

∂ϵrs
∂ϵinf

=

[
1 +

(ω2
LO − ω2

TO)(ω
2
TO − ω2)

(ω2
TO − ω2)2 + (ωγ)2

]
∂ϵrs
∂ωTO

= ϵinf
2ωTO

(
ω2γ2(ω2

LO + ω2 − 2ω2
TO)− (ω2

LO − ω2)(ω2
TO − ω2)2

)
((ω2

TO − ω2)2 + (ωγ)2)
2

∂ϵrs
∂ωLO

= ϵinf
2ωLO(ω

2
TO − ω2)

(ω2
TO − ω2)2 + (ωγ)2

∂ϵrs
∂γ

= ϵinf
2ω2γ(ω2

LO − ω2
TO)(ω

2
TO − ω2)

((ω2
TO − ω2)2 + (ωγ)2)

2

(S16)

The same for ϵis are

∂ϵis
∂ϵinf

=
ωγ(ω2

LO − ω2
TO)

(ω2
TO − ω2)2 + (ωγ)2

∂ϵis
∂ωTO

= −ϵinf
2γωωTO

(
ω2γ2 − (ω2

TO − ω2)2(ω2
TO + ω2 − 2ω2

LO)
)

((ω2
TO − ω2)2 + (ωγ)2)

2

∂ϵis
∂ωLO

= ϵinf
2ωLOωγ

(ω2
TO − ω2)2 + (ωγ)2

∂ϵis
∂γ

= ϵinf
ω(ω2

LO − ω2
TO)

(
(ω2

TO − ω2)2 − ω2γ2
)

((ω2
TO − ω2)2 + (ωγ)2)

2

(S17)

With the standard errors on the four dielectric permittivities being σϵinf , σωTO
,

σωLO
, σγ , the total uncertainty on permittivity estimation for the real and imaginary

12



parts respectively, is then given as

σ2
ϵrs =

(
∂ϵrs
∂ϵinf

)2

σ2
ϵinf

+

(
∂ϵrs
∂ωTO

)2

σ2
ωTO

+

(
∂ϵrs
∂ωLO

)2

σ2
ωLO

+

(
∂ϵrs
∂γ

)2

σ2
γ

σ2
ϵis =

(
∂ϵis
∂ϵinf

)2

σ2
ϵinf

+

(
∂ϵis
∂ωTO

)2

σ2
ωTO

+

(
∂ϵis
∂ωLO

)2

σ2
ωLO

+

(
∂ϵis
∂γ

)2

σ2
γ

(S18)

when only a single oscillator is considered as in the case of hBN or along the Y
direction of α-MoO3.

When two oscillators are involved like in the case of the X direction of α-MoO3,
we write the permittivity as ϵ = ϵr + iϵi = ϵinf(ϵr1 + iϵi1)(ϵr2 + iϵi2) where

ϵru = 1 +
(ω2

LOu
− ω2

TOu
)(ω2

TOu
− ω2)

(ω2
TOu

− ω2)2 + (ωγu)2

ϵiu = ϵinf
ωγl(ω

2
LOu

− ω2
TOu

)

(ω2
TOu

− ω2)2 + (ωγu)2

(S19)

with u=1,2, the index of the oscillators. Then the partial derivatives with respect to
the dielectric parameters Pu=ωTOu

, ωLOu
,γu and ϵinf are then written as

∂ϵru
∂Pu

=
1

ϵinf

∂ϵrs
∂Pu

∂ϵiu
∂Pu

=
1

ϵinf

∂ϵis
∂Pu

∂ϵru
∂ϵinf

=
∂ϵrs
∂ϵinf

∂ϵiu
∂ϵinf

=
∂ϵis
∂ϵinf

(S20)

The partial derivatives of ϵrs and ϵis are given by Eq. S16 and Eq. S17. The partial
derivatives of ϵr and ϵi with respect to the parameters Pu and ϵinf can then be written
as

∂ϵr
∂Pu

= ϵinf

[
∂ϵru
∂Pu

ϵrv − ∂ϵiu
∂Pu

ϵiv

]
∂ϵi
∂Pu

= ϵinf

[
∂ϵiu
∂Pu

ϵrv +
∂ϵru
∂Pu

ϵiv

]
∂ϵr
∂ϵinf

= ϵruϵrv − ϵiuϵiv

∂ϵi
∂ϵinf

= ϵiuϵrv + ϵivϵru

(S21)
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with v being the index of the oscillators and v̸=u. The total uncertainty on the
estimation of ϵ (σϵr and σϵi) for the case of two oscillators, can then be calculated
using Eq. S18, considering the standard errors and partial derivatives with respect to
all the dielectric parameters involved.

Fig. S8 Comparing the extracted dielectric function with previous reports. (a,b) Real and
imaginary parts of the dielectric function ϵ(ω) for hBN extracted by our method and those reported
by Giles et al. [2] and Caldwell et al. [3]. (c–f) The same for α-MoO3 along x and y. Extracted values
are compared with literature data from Alvarez-Pérez et al. [4] and Zheng et al. [5]; for all panels,
the uncertainties are shaded in gray.

14



References
[1] Park, K.C.: The Extreme Values of Reflectivity and the Conditions for Zero Reflec-

tion from Thin Dielectric Films on Metal. Applied Optics 3(7), 877–881 (1964)
https://doi.org/10.1364/AO.3.000877

[2] Giles, A.J., Dai, S., Vurgaftman, I., Hoffman, T., Liu, S., Lindsay, L., Ellis, C.T.,
Assefa, N., Chatzakis, I., Reinecke, T.L., Tischler, J.G., Fogler, M.M., Edgar,
J.H., Basov, D.N., Caldwell, J.D.: Ultralow-loss polaritons in isotopically pure
boron nitride. Nature Materials 17(2), 134–139 (2018) https://doi.org/10.1038/
nmat5047

[3] Caldwell, J.D., Kretinin, A.V., Chen, Y., Giannini, V., Fogler, M.M., Francescato,
Y., Ellis, C.T., Tischler, J.G., Woods, C.R., Giles, A.J., Hong, M., Watanabe,
K., Taniguchi, T., Maier, S.A., Novoselov, K.S.: Sub-diffractional volume-confined
polaritons in the natural hyperbolic material hexagonal boron nitride. Nature
Communications 5(1), 5221 (2014) https://doi.org/10.1038/ncomms6221

[4] Álvarez-Pérez, G., Folland, T.G., Errea, I., Taboada-Gutiérrez, J., Duan, J.,
Martín-Sánchez, J., Tresguerres-Mata, A.I.F., Matson, J.R., Bylinkin, A., He, M.,
Ma, W., Bao, Q., Martín, J.I., Caldwell, J.D., Nikitin, A.Y., Alonso-González,
P.: Infrared Permittivity of the Biaxial van der Waals Semiconductor α-MoO3
from Near- and Far-Field Correlative Studies. Advanced Materials 32(29), 1908176
(2020) https://doi.org/10.1002/adma.201908176

[5] Zheng, Z., Xu, N., Oscurato, S.L., Tamagnone, M., Sun, F., Jiang, Y., Ke, Y.,
Chen, J., Huang, W., Wilson, W.L., Ambrosio, A., Deng, S., Chen, H.: A mid-
infrared biaxial hyperbolic van der Waals crystal. Science Advances 5(5), 8690
(2019) https://doi.org/10.1126/sciadv.aav8690

15

https://doi.org/10.1364/AO.3.000877
https://doi.org/10.1038/nmat5047
https://doi.org/10.1038/nmat5047
https://doi.org/10.1038/ncomms6221
https://doi.org/10.1002/adma.201908176
https://doi.org/10.1126/sciadv.aav8690

	The analytical expressions for reflectance from the material. 
	Reflectance measured by the Cassegrain objective. 
	Reflection coefficient for incident light polarized at an angle  to the X-axis.

	Experimental Methods.
	Experimental discrepancies in the measurement of reflectance spectra.
	Extracting the refractive index from reflectance dip positions.
	Experimental data for hBN
	Experimental data for -MoO3

	Uncertainty on permittivity estimations.

