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Abstract 

Additive Manufacturing (AM), particularly Laser Powder Bed Fusion (L-PBF), faces critical challenges in defect detection 

due to the scarcity of high-quality training data and severe class imbalance, which significantly degrade the accuracy of deep 

learning models. To address these issues, this study proposes a novel data augmentation framework combining geometric 

transformations with an enhanced Variational Autoencoder-Generative Adversarial Network (VAE-GAN). Traditional 

augmentation techniques (rotation, scaling, flipping) are first applied to alleviate sample imbalance, followed by the 

improved VAE-GAN to synthesize high-fidelity defect images, thereby enriching dataset diversity. Experimental results on 

an L-PBF defect dataset demonstrate significant improvements in detection performance: This study conducted a comparative 

experiment evaluating the performance of YOLOv4, YOLOv7, YOLOv8, SSD, and Faster R-CNN on defect detection tasks 

before and after data augmentation. The results demonstrated significant mAP improvements across all models, with 

YOLOv4 achieving the most substantial enhancement (+20.03%, from 65.18% to 85.21%) despite its lower baseline 

performance. Faster R-CNN attained the highest post-augmentation mAP (87.75%), representing the best overall 

performance. YOLOv8 exhibited an optimal balance between real-time processing and accuracy (67.07%→84.66%, 

+17.59%), approaching Faster R-CNN's performance level. While SSD showed the smallest improvement (+12.34%), it 

maintained a relatively high baseline mAP (73.99%). These results validate the effectiveness of the proposed method in 

overcoming data scarcity and improving defect detection accuracy in AM. 

Keywords: Additive Manufacturing, Data Augmentation, Small-Sample Learning, Defect Detection 

1. Introduction 

Additive Manufacturing (AM) is an advanced 

manufacturing technology that has been widely adopted in 

industries such as aerospace, medical, and automotive. Its 

advantages, including the ability to fabricate complex 

geometric structures, high material utilization, and 

customized production, make it a preferred choice[1].

 However, the complexity and instability of the AM process 

often lead to defects such as porosity, lack of fusion, and 

cracks, which significantly affect the mechanical properties 

and service life of the final product [2]. Among these,

 porosity and cracks are the most common and impactful 

defects. Therefore, developing efficient and accurate defect 

detection methods is of great significance to ensure the 

structural integrity and performance of AM components. 

Traditional defect detection methods can be categorized 

into offline and online approaches. Offline methods, such as 

computed tomography (CT) and ultrasonic testing, offer 

high precision but are costly and time-consuming. Online 

methods, including optical thermography and high-speed X-

ray imaging, enable real-time monitoring but suffer from 

low detection rates and poor environmental adaptability. 

Moreover, these methods typically involve high costs and 

complex data processing procedures [3][4]

With the rapid advancement of deep learning, image-

based defect detection methods have gained considerable 

attention. Convolutional Neural Networks (CNNs) have 

been employed for defect detection in AM, improving 

detection accuracy [5]. However, the performance of CNN 

models heavily depends on the quality and quantity of the 

training data. Since defect data collection is expensive, the 

imbalance between positive and negative samples under 

small-sample conditions makes it challenging for models to 

effectively learn defect features. 
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Data augmentation techniques provide an effective 

solution to address data scarcity and imbalance. Traditional 

data augmentation methods, such as geometric 

transformations (rotation, scaling, flipping) and color 

adjustments (brightness and contrast enhancement), 

increase data diversity but fail to generate entirely new 

samples, thus limiting the expansion of the sample 

distribution [6]. To tackle the small-sample problem, deep

 generative models, such as Generative Adversarial 

Networks (GANs) and Variational Autoencoders (VAEs), 

have demonstrated great potential in data augmentation. 

GANs utilize adversarial training between a generator and a 

discriminator to learn the true data distribution and generate 

high-quality samples. Researchers have leveraged GANs to 

synthesize AM defect images to mitigate data imbalance 

issues. For instance, Jihoon Chung et al.[7]combined GANs

 with classifier optimization strategies to enhance the 

stability and accuracy of anomaly detection. 

However, conventional GANs suffer from mode collapse 

and unstable training, while VAEs, although capable of 

generating images, tend to produce blurry outputs. The 

VAE-GAN[8][9] model integrates the advantages of both 

approaches: VAE employs variational inference to learn the 

latent distribution of data, mitigating the mode collapse 

issue in GANs, while the adversarial training of GAN 

ensures the generated images maintain high quality and 

diversity, thereby achieving a balance between global and 

local features. Yitian Wang et al.[10]successfully applied

 VAE-GAN to augment a wafer dataset, improving 

classifier detection accuracy and validating the 

effectiveness of this approach in small-sample data 

augmentation. 

Despite the promising performance of VAE-GAN in 

image generation tasks, it may struggle to capture fine-

grained details in complex defect images, leading to 

suboptimal image quality and diversity. To address this 

issue, we introduce a Multi-Head Attention (MHA) 

mechanism into VAE-GAN, enabling parallel computation 

across multiple attention heads to learn feature 

representations from different subspaces. This enhancement 

improves the model’s capability to capture detailed image 
features, thereby further enhancing the quality and diversity 

of generated images. 

This study focuses on the detection of porosity and crack 

defects, which are the most prevalent and quality-critical 

defect types in AM. First, we employ conventional data 

augmentation techniques, such as rotation, scaling, flipping, 

and cropping, to expand the existing defect dataset and 

alleviate data imbalance. Subsequently, we utilize the 

improved VAE-GAN to generate high-quality synthetic 

defect images, further increasing sample diversity and 

improving the generalization ability of the detection model. 

Finally, we construct a defect detection model and conduct 

experimental validation on datasets before and after 

augmentation to evaluate the effectiveness of the proposed 

approach. 

The innovations of this study include: (1) Hierarchical 

Augmentation Framework Integrating Geometric and 

Generative Models We propose a novel hierarchical 

framework that synergistically combines geometric 

transformations (e.g., rotation, scaling) with an improved 

VAE-GAN architecture. Unlike conventional methods that 

apply these techniques in isolation, our framework 

leverages geometric transformations to preserve low-level 

defect features (e.g., edge continuity) while utilizing the 

generative model to synthesize high-fidelity defect patterns. 

This dual-stage approach mitigates the limitations of 

traditional augmentation in generating novel defect 

morphologies.(2) To overcome the blurred outputs and 

insufficient feature diversity of standard VAE-GANs, we 

introduce a Multi-Head Attention (MHA) mechanism into 

both the encoder and generator. The MHA module enables 

parallel computation across multiple attention heads, 

dynamically focusing on critical defect regions (e.g., crack 

tips, pore boundaries) at different scales. This design 

enhances the model’s capability to capture fine-grained 

details while maintaining global structural consistency.(3) 

By introducing a scaled latent sampling perturbation 

mechanism in the VAE-GAN framework—namely, using 

low-variance Gaussian noise in the reparameterization 

process—we effectively control the perturbation intensity in 

the latent space. This design significantly enhances the 

model's noise robustness and training stability, leading to 

faster convergence in the early training stages. 

The remainder of this paper is organized as follows: 

Chapter 2 introduces related work, including data 

augmentation methods, defect detection methods, and 

attention mechanisms; Chapter 3 details the proposed data 

augmentation algorithm and defect detection model; 

Chapter 4 validates the effectiveness of the proposed 

method through experiments; and Chapter 5 summarizes the 

research findings and outlines future research directions. 

2.Related work 

2.1. Traditional Data Augmentation Methods 

Data augmentation methods primarily include traditional 

methods and intelligent methods based on generative 

models[11]. Traditional data augmentation techniques

 mainly involve linear transformations to slightly modify 

image data, preserving the original label information while 

increasing the data volume. This improves dataset quality 

and mitigates model overfitting[12][13]. These method

s primarily include operations such as geometric 

transformations, color transformations, and noise 

transformations. For instance, Perez et al. [14] demonstrated

 that these methods primarily alter low-level image statistics 
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(e.g., pixel positions) without creating novel defect patterns, 

leading to limited generalization in complex scenarios such 

as multi-scale porosity clusters. Matsunaga et al.[15]

 validated the effectiveness of test-time augmentation in 

skin lesion classification tasks using geometric 

transformations such as rotation, translation, scaling, and 

flipping.  

In the field of additive manufacturing, Wenyuan Cui et 

al.[16] expanded their dataset by applying traditional data

 augmentation techniques such as random rotation, flipping, 

and cropping to optical images of both normal and defective 

samples. Using a convolutional neural network (CNN) for 

defect detection, their method achieved an accuracy of 

92.1%. Additionally, Choi et al.[17] verified the

 effectiveness of object detection methods in additive 

manufacturing by augmenting defect images through 

transformations such as rotation, downscaling, and shifting. 

Although these methods can enhance data diversity and 

quantity while partially mitigating data imbalance or limited 

sample sizes issues, their effectiveness in defect detection 

remains constrained—particularly in scenarios with limited 

sample sizes or severe class imbalance. Since traditional 

augmentation techniques primarily modify existing image 

structures through geometric or photometric 

transformations without generating novel defect patterns, 

they may fail to substantially improve the model’s 
capability to recognize complex or rare defects. 

Consequently, the performance gains in defect detection are 

often marginal, highlighting the need for more advanced 

augmentation strategies tailored to address data scarcity and 

imbalance. 

2.2. Deep Generative Models 

2.2.1 VAE/GAN Fundamental Theories 

Deep generative models such as Variational 

Autoencoders (VAEs) and Generative Adversarial 

Networks (GANs) have emerged as two popular deep 

generative models widely applied in image generation[18],

 image transformation[19], image resolution 

enhancement[20], domain adaptation[21], and anomal

y detection[21]. For instance, Jang Young In et al.[22] 

utilized VAEs to reconstruct synthetic electrocardiogram 

(ECG) signals, thereby improving the consistency of the 

standard deviation of normal-to-normal intervals (SDNN). 

GANs, introduced by Goodfellow in 2014, represent a 

remarkable class of unsupervised generative neural 

networks[23]. Designed as a minimax game between two

 subnetworks—namely, the generator and discriminator—
GANs learn to approximate the data distribution[24].

Numerous researchers have conducted extensive studies 

on the application of Generative Adversarial Networks 

(GANs) for augmenting limited fault sample data. For 

instance, Zhang et al.[25] employed GANs to enhance wind 

turbine vibration signals, addressing data imbalance 

challenges. Yang et al.[26] used Conditional GANs 

(CGANs) to learn the real distribution of bearing fault 

samples, expanding the dataset and improving fault 

diagnosis accuracy using convolutional neural networks 

(CNNs). Ngoc-Trung Tran et al.[27] proposed a GAN

-based data augmentation optimization model and validated 

its superior Fréchet Inception Distance (FID) performance 

on natural and medical datasets. Frid-Adar et al.[28] applied

 GAN-based image synthesis techniques for liver lesion 

classification, significantly improving sensitivity and 

specificity. Furthermore, Hongbin Gao et al.[29] combined

 Deep Convolutional GANs (DCGANs) with traditional 

data augmentation methods to increase training data 

volume, with plans to employ a lightweight CNN model 

based on VGG11(Visual Geometry Group 11-layer) for 

defect classification. 

While both are generative models, their fundamental 

differences lie in Generative Adversarial Networks (GANs) 

offer significant advantages in image generation, they still 

face several challenges in practical applications, such as 

training instability, mode collapse, gradient vanishing, and 

weak controllability of generated data[30]. Unlike GANs,

 Variational Autoencoders (VAEs) optimize the learning 

process through variational inference[31] and generate

 samples by sampling from a random noise distribution. 

However, due to the lack of an adversarial learning 

mechanism in the reconstruction process, the generated 

images often suffer from blurriness. Additionally, the 

optimization of VAE models relies on manually designed 

parameters, which may introduce unavoidable noise and 

degrade the quality of the generated samples. 

2.2.2 Applications in AM 

In additive manufacturing research, the VAE model is 

predominantly employed as a feature extractor. For 

instance, Zihan Wang & Hongyi Xu[32] utilized a

 Variational Autoencoder (VAE) as a feature extractor to 

map 3D metamaterial geometries into a low-dimensional 

latent feature space. This latent feature space was 

simultaneously linked to a discriminator/regressor to predict 

manufacturability metrics and mechanical properties. 

William Frieden Templeton et al.[33] mentioned a VAE

 regression model to extract spatial features, predict fatigue 

life, and identify pore defect characteristics governing 

fatigue behavior. Ertay, D. S. et al.[34] obtained a

 secondary dataset containing the pore space of fabricated 

components via X-ray computed tomography (CT) and 

registered it into a synthetic dataset. Machine learning 

models, namely a Conditional Variational Autoencoder 

(CVAE) and a Convolutional Neural Network (CNN), were 
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then trained based on input features to predict pore 

formation. 

In the field of additive manufacturing, numerous studies 

have leveraged GANs and their variants to generate high-

quality images, thereby addressing data imbalance 

issues.For example, Gobert et al.[35] employed Conditional

 GANs (cGANs) to generate layer-wise images from the 

metal additive manufacturing process. Jihoon Chung et 

al.[36] optimized a standard GAN alongside a classifier to

 stabilize the learning process and applied it to anomaly 

detection in real-world additive manufacturing scenarios. 

Similarly, Zhibo Zhang et al.[37] utilized machine learning

 techniques to predict melt pool size and morphology, 

synthesizing melt pool images via a Melt Pool GAN (MP-

GAN) that achieved a structural similarity index (SSIM) of 

0.91.Gobert et al. [38] employed conditional GANs to

 generate layer-wise images from metal additive 

manufacturing processes. Jihoon Chung et al. developed an 

optimized framework integrating standard GANs with 

classifier techniques for anomaly detection in practical 

additive manufacturing, which successfully identified 

process anomalies even in highly imbalanced datasets. 

2.3. Hybrid VAE-GAN Frameworks 

To address the respective limitations of GANs and 

VAEs, researchers have proposed the VAE-GAN model, 

which combines the representation learning capability of 

VAEs with the adversarial generation ability of GANs. In 

VAE-GAN, the VAE is responsible for learning latent 

representations of the data and generating diverse images, 

while the GAN discriminator optimizes the generated 

samples to enhance image clarity and realism. Yitian Wang 

et al.[10] leveraged the advantages of VAE-GAN to

 achieve high-quality data augmentation and improve wafer 

classification accuracy. Similarly, Sun et al.[39] proposed a

 VAE-GAN-based energy theft detection model to address 

the issue of data imbalance in energy theft detection. Their 

model generated synthetic data that accurately captured real 

energy theft characteristics, which were then used to train 

the detector, effectively mitigating the impact of data 

imbalance. In the field of additive manufacturing, Zheren 

Song et al.[40] proposed a novel hybrid deep generative

 prediction network (HDGPN) that leverages both 

variational autoencoder and generative adversarial network 

is proposed to characterize the complex pore microstructure 

with in-depth representations and predict pore morphology 

under arbitrary processing parameters. By visualizing the 

predicted pore morphology, the complicated interaction 

dynamics between the processing parameters and pore 

microstructure are directly revealed, which may guide the 

optimization of metal AM manufacturing processes to 

fabricate defect-free products. 

Although the VAE-GAN model combines the strengths 

of Variational Autoencoders (VAEs) and Generative 

Adversarial Networks (GANs), it still has certain 

limitations. For instance, the generated images may lack 

fine-grained details, and the model’s ability to capture 
complex dependencies in the data can be limited. These 

shortcomings arise because the VAE-GAN framework does 

not explicitly model the relationships between different 

regions of an image, which can lead to suboptimal feature 

representation and generation quality. To address these 

issues, researchers have turned to attention mechanisms, 

which have shown remarkable success in enhancing model 

performance across various computer vision tasks. 

2.4. Attention Mechanisms 

2.4.1 Fundamental Theory 

The attention mechanism was first introduced by 

Bahdanau et al. in 2014 for neural machine translation 

(NMT). Its core idea is to dynamically assign different 

weights to different parts of the input sequence, thereby 

enhancing the model’s ability to focus on critical 
information. This approach effectively mitigates the 

limitations of traditional sequential models, such as 

recurrent neural networks (RNNs), which struggle to 

capture long-range dependencies[41].

In 2017, Vaswani et al. proposed the multi-head 

attention mechanism (MHA) as a fundamental component 

of the Transformer architecture. MHA enhances 

information capture and improves generalization by 

enabling multiple independent attention heads to compute 

in parallel, allowing the model to learn diverse feature 

representations across different subspaces. The computation 

of MHA consists of the following steps: (1) The input is 

first linearly projected into query (Q), key (K), and value 

(V) matrices. (2) The scaled dot-product attention 

mechanism computes the similarity between queries and 

keys, followed by Softmax normalization to obtain attention 

weights. (3) The attention weights are then used to perform 

a weighted sum over the values, extracting the most 

relevant information. (4) The outputs from multiple 

attention heads are concatenated and projected through a 

linear transformation to produce the final output[42].

Compared to single-head attention, MHA enables the 

model to learn more diverse feature representations, leading 

to improved performance in long-range dependency 

modeling and complex learning tasks. As a result, the 

Transformer model and its variants—such as BERT, GPT, 

and Vision Transformer (ViT)—have achieved remarkable 

success in both natural language processing (NLP) and 

computer vision (CV) applications. 

2.4.2 Applications in Detection 
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Attention mechanisms and multi-head attention 

mechanisms have been widely applied in defect detection 

and object detection research. For instance, in the 

application of attention mechanisms, Wang et al.[43] 

proposed Non-local Neural Networks, leveraging self-

attention to model long-range dependencies, thereby 

improving performance in video classification and object 

detection. Chen et al.[44] introduced Vision Transformer

 (ViT), which partitions images into fixed-size patches and 

treats them as sequential data, applying Transformer-based 

architectures for image classification. ViT has demonstrated 

performance comparable to convolutional neural networks 

(CNNs). Zhang et al.[45] proposed a self-attention-based

 defect detection model that focuses on defect regions, 

enabling precise detection of minute defects, especially in 

complex backgrounds. 

In the application of multi-head attention, An et al.[46]

 proposed Repulsive Attention, which introduces a 

repulsion term to encourage diversity among attention 

heads. Zhang et al.[47] introduced the Mixture of Attention 

Heads mechanism, dynamically selecting the most suitable 

attention head for each input token, thereby improving 

computational efficiency and representational power. Li et 

al.[48] proposed a defect detection method incorporating

 multi-scale attention mechanisms, leveraging multi-head 

self-attention to enhance the recognition of defects at 

different scales. Wang et al.[49] introduced a defect

 detection model based on Vision Transformer, integrating 

the global information modeling capability of self-attention 

with the local feature extraction ability of convolutional 

networks, significantly improving the accuracy of complex 

defect recognition. Zhou et al.[50] proposed a hybrid model

 that combines multi-head self-attention mechanisms with 

convolutional neural networks. By optimizing feature 

extraction through attention mechanisms, this model 

enhances both the accuracy and efficiency of defect 

detection, making it particularly suitable for high-noise 

environments. 

In this paper, the multi-head attention mechanism is 

introduced into the VAE-GAN model to enhance its 

capability of capturing image details and improve the 

quality of generated images. By computing multiple 

attention heads in parallel, the multi-head attention 

mechanism can capture multi-level global and local 

features, addressing the limitations of VAE-GAN in 

modeling complex dependencies. This optimization of 

feature representation and generation further enhances the 

performance of data augmentation and detection tasks. 

2.5. AM-specific Considerations 

In additive manufacturing (AM), porosity and cracks are 

recognized as the two most prevalent process-induced 

defects, with formation mechanisms closely associated with 

material properties, processing parameters, and 

thermodynamic behavior . Porosity primarily originates 

from melt pool instability (e.g., lack-of-fusion pores caused 

by insufficient laser power or excessive scanning speed) or 

gas entrapment in raw materials (e.g., moisture absorption 

in powder feedstock or shielding gas incorporation into the 

melt pool), typically manifesting as spherical or irregularly-

shaped voids [51][52]. 

Extensive research has revealed that pore size 

distribution ranges from micrometer-scale (<10 μm) to 
millimeter-scale, with subcritical pores serving as 

preferential sites for fatigue crack initiation under cyclic 

loading [53]. The spatial distribution of porosity exhibits 

significant anisotropy, with pores tending to accumulate 

along melt pool boundaries or interlayer interfaces, thereby 

forming interconnected defect networks [54]. Furthermore,

 near-surface pores can substantially reduce component 

service life by accelerating oxidation and corrosion 

processes [55]. 

Cracks predominantly result from residual stress 

accumulation induced by rapid cooling, particularly in high-

temperature alloys or brittle materials. These defects can be 

categorized into solidification cracks (caused by 

intergranular liquid film rupture) and interlayer thermal 

stress cracks (resulting from temperature gradient variations 

between deposited layers) . Based on their formation stages, 

cracks are further classified into solidification cracks 

(associated with low-melting-point eutectic phases) and 

solid-state cracks (initiated by stress concentration at 

ductile-to-brittle transition temperatures). Crack 

propagation typically follows columnar grain boundaries or 

fusion lines, ultimately forming through-thickness fracture 

channels [56][57]. Notably, crack orientation demonstrates 

a distinct angular relationship with deposition paths, leading 

to anisotropic mechanical properties in the fabricated 

components [58]. 

3. Methodology 

The entire process of defect detection in the powder bed 

fusion (PBF) process based on data augmentation is 

illustrated in Figure 1. The workflow consists of three main 

steps: 

（1）Data Preprocessing: This is the first step in the 

defect detection process, aimed at cleaning and 

standardizing the raw data while balancing the number of 

defective samples to prevent imbalanced data from 

affecting the detection results. This step lays the foundation 

for subsequent analysis and detection. Let Data_original 

represent the raw dataset, which undergoes several 

operations, including rotation, brightness adjustment, 

contrast enhancement, saturation adjustment, and hue 

modification. 
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These operations ensure data standardization and 

consistency while addressing sample imbalance issues, 

thereby providing high-quality input data for subsequent 

modeling and detection. 

（2）Data Augmentation: After preprocessing, the data 

is fed into the Multi-VAE-GAN model for advanced 

augmentation. Unlike traditional data augmentation 

methods, Multi-VAE-GAN generates realistic and diverse 

defect samples to expand the dataset. Through the 

enhancement of Multi-VAE-GAN, the dataset is enriched 

and optimized, offering an effective solution to the 

challenge of small-sample data imbalance. 

（3）Defect Detection: Various object detection models 

are employed to train and evaluate the data, ultimately 

achieving accurate and efficient defect identification. 

3.1. Data Augmentation Algorithms 

3.1.1 Traditional Data Augmentation 

Traditional data augmentation methods, such as 

geometric transformations, color adjustments, and pixel-

wise modifications, have demonstrated significant 

effectiveness in expanding datasets and enhancing model 

generalization. However, their limitations have become 

increasingly evident. First, these methods rely on manually 

designed rules, making it difficult to capture complex 

structures and semantic information within the data. 

Second, traditional augmentation techniques typically 

generate only limited, low-level image transformations and 

cannot produce entirely new or diverse data samples. 

Consequently, as deep learning models become more 

complex, traditional data augmentation methods can no 

longer meet the demand for high-quality and diverse data. 

3.1.2 Variational Autoencoder (VAE) Model 

The Variational Autoencoder (VAE) [51] is a generative

 model based on probabilistic graphical models that learns 

latent representations of data for generating new samples. 

The fundamental idea of VAE is to model the probability 

distribution of the data, thereby enabling the generation of 

new samples that closely resemble the original data 

distribution. Unlike conventional autoencoders, VAE 

imposes a probabilistic structure on the latent space, 

ensuring both diversity and continuity in the generated data. 

(1)Variational Autoencoder (VAE) Architecture and 

Workflow 

The Variational Autoencoder (VAE) is a generative 

model composed of three core components: the encoder (E), 

latent variable sampling (z), and the decoder (D) [51]: Its 

workflow, as illustrated in Figure 2, can be summarized as 

follows: First, the input image is processed by the encoder 

E, which extracts latent features and maps them to the latent 

variable ZE.Next, latent representations are sampled from 

the learned distribution using the reparameterization trick, 

generating the latent representation ZE.Finally, the  latent 

representation ZE is fed into the generator G, which decodes 

it into a high-dimensional image for reconstruction. 

(2) VAE Model Loss Function [51]

The objective of optimizing the VAE model is to learn 

the model parameters by maximizing the log-likelihood of 

the data, denoted as )(log xp . However, directly 

computing  )(log xp is challenging. To address this, VAE 

employs variational inference and introduces the Evidence 

Lower Bound (ELBO) as the optimization target. The 

ELBO consists of two main components: 

1)Kullback-Leibler (KL) Divergence: The KL divergence 

measures the difference between two probability 

distributions. In VAE, it is used to quantify the discrepancy 

between the approximate posterior distribution q(z∣x) and 

the prior distribution p(z). For two Gaussian distributions  

),()|( 2

qqNxzq = and )1,0()( Nzp = , the KL 

divergence is given by: 


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where d is the dimensionality of the latent variable z, 

q and 
2

q  are the mean and variance of q(z∣ x), 

respectively. 

2)Reconstruction Loss: The reconstruction loss 

quantifies the difference between the reconstructed data 
'x and the original data x .Common reconstruction loss 

functions include Mean Squared Error (MSE) and Cross-

Entropy Loss. For image data, MSE is typically used as the 

reconstruction loss, and its formulation is: 
2

1

'' )(
1
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Where n  is the dimensionality of the data, and x and 

'x represent the i -th elements of the original and 

reconstructed data, respectively. 
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Figure 1. Overall Workflow of the Defect Detection Model 
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Figure 2. VAE Workflow Diagram 

3.1.3 Generative Adversarial Network (GAN) Model 

Generative Adversarial Networks (GANs) introduce an 

adversarial learning framework that significantly improves 

the quality of generated images. A GAN consists of two 

core components: the Generator (G) and the Discriminator 

(D). The generator synthesizes data from random noise, 

while the discriminator evaluates whether the input data is 

real (from the original dataset) or generated by the model. 

Through an adversarial learning process, the discriminator 

provides feedback to guide the generator’s improvement 
[60].

(1) Core Concept and Workflow of the Generative 

Adversarial Network (GAN)  

The core idea of the Generative Adversarial Network 

(GAN) is to optimize the model through adversarial 

learning between the generator (G) and the discriminator 

(D). The GAN model consists of two primary components: 

the generator and the discriminator. The generator produces 

synthetic samples G(z) from random noise z, where z is 

typically sampled from a standard normal distribution 

N(0,1), representing a random point in the latent space. 

Through a multi-layer neural network, the generator maps 

the random noise z into generated data G(z) with a specific 

distribution and structure, aiming to produce samples that 

closely match the distribution of real data Xreal so that the 

discriminator cannot distinguish between real and generated 

data.with a specific distribution and structure, aiming to 

produce samples that closely match the distribution of real 

data Xreal so that the discriminator cannot distinguish 

between real and generated data[60][61]

The discriminator, on the other hand, receives both real 

data Xreal and generated data G(z) as inputs and outputs a 

probability value D(X)∈[0,1], representing the confidence 

that the input sample is real. Specifically, D(X)=1 indicates 

that the input is real data, while D(X)=0 indicates that the 

input is generated data. The objective of the discriminator is 

to distinguish real data from generated data as accurately as 

possible. 

According to the workflow illustrated in Figure 3, the 

main steps of GAN training are as follows: First, the GAN 

takes a random noise vector z as input, which is typically 

sampled from a standard normal distribution N(0,1) and 

serves as the input to the generator. Next, the generator G 

processes the random noise z through a multi-layer neural 

network, mapping it into generated data G(z) with a specific 

distribution and structure, aiming to resemble the real data 

Xreal. Finally, the discriminator  

D receives both real data Xreal and generated data G(z) 

and outputs a probability value representing the confidence 

that the input sample is real. Through this adversarial 

learning process, both the generator and the discriminator 

are continuously optimized. Eventually, the generator is 

capable of producing samples that closely match the real 

data distribution, making it increasingly difficult for the 

discriminator to differentiate between real and generated 

data.



Random vector Generator

Real data（Xreal）

Generated data（Xfake）

Discriminiator Real/Fake

D（X）

G（x）

 

Figure 3.Workflow of the GAN Model 

(2) Adversarial Learning Mechanism  

During the training process, the generator and the 

discriminator engage in a continuous adversarial 

game[60][61]

1）Generator’s Objective: he goal of the generator is to 
deceive the discriminator, making the generated data G(z) 

indistinguishable from real data. The optimization objective 

of the generator is to minimize the discriminator’s ability to 
correctly classify generated samples as fake. 

2）Discriminator’s Objective: The discriminator strives 
to accurately differentiate between real and generated data. 

Its optimization goal is to minimize classification errors for 

real samples while maximizing classification errors for 

generated samples. 

The training objectives of both networks are defined 

through loss functions： 

)))]((1[log()]([logmaxmin ~~ zGDExDE pzzprealx
DG

−+     （3） 

Where The first term represents the discriminator’ s 

prediction loss on real data. The second term corresponds to 

the generator’s attempt to deceive the discriminator. 

3.1.4 VAE-GAN Model 

To combine the advantages of Variational Autoencoders 

(VAE) and Generative Adversarial Networks (GAN), 

researchers proposed the VAE-GAN model. The VAE-

GAN model introduces the adversarial training mechanism 

of GAN into the VAE framework, enabling the generator to 

not only produce diverse samples but also generate high-

quality images. The core idea of the VAE-GAN model is to 

leverage the latent variable model of VAE to learn the 

underlying distribution of the data, while utilizing the 

adversarial training mechanism of GAN to enhance the 

quality of the generated data [62].

(1)Principles and Architecture of the Variational 

Autoencoder-Generative Adversarial Network (VAE-GAN) 

The Variational Autoencoder-Generative Adversarial 

Network (VAE-GAN) seamlessly integrates the advantages 

of Variational Autoencoders (VAE) and Generative 

Adversarial Networks (GAN), aiming to explore the latent 

distribution of data through VAE’s latent variable model 
while leveraging GAN’s adversarial training mechanism to 
enhance the realism of generated data. The VAE-GAN 

model consists of three core components: the encoder (E), 

the generator (G), and the discriminator (D). Its 

collaborative workflow, as illustrated in Figure 4, can be 

summarized as follows [62][10]:First, the model take

s defect image samples as input. The encoder E extracts the 

latent representation ZE, while, to introduce sample 

diversity, a random vector ZP is generated and fed into the 

generator G. The encoder E maps the input image to the 

latent space, generating the feature vector ZE to capture the 

underlying structural information of the image. Meanwhile, 

the random noise vector ZP is used to simulate possible 

defect distributions. The generator G utilizes both ZE and ZP 

to reconstruct or generate images.Finally, the generator G 

produces two types of images: reconstructed images and 

synthetic (fake) images, derived from ZE and ZP, 

respectively. The discriminator D evaluates the output of 

the generator by distinguishing between real and fake 

images while also assessing the quality of reconstructed 

images. The "real/fake" score produced by the discriminator 

serves as the adversarial loss for the GAN, ensuring that the 

generated images become increasingly indistinguishable 

from real samples. 

E ZE

G

Random vector Zp

D Real/Fake
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Figure 4.Workflow Diagram of VAE-GAN

(2) Loss Functions [62][10] 

The training of VAE-GAN combines the reconstruction 

loss of VAE and the adversarial loss of GAN. The loss 

function consists of the following components: 

⚫ Reconstruction Loss: Ensures that the generator can 

accurately reconstruct the input image. 

⚫ Kullback-Leibler (KL) Divergence: Constrains the latent 

distribution generated by the encoder to approximate a 

standard normal distribution. 

⚫ Adversarial Loss: The adversarial loss is used to enhance 

the realism of the generated images. The generator aims 

to minimize the discriminator's probability of correctly 

classifying generated images, while the discriminator 

aims to maximize its probability of correctly classifying 

real images and minimize its probability of classifying 

generated images as real. 

⚫ By jointly optimizing the loss functions of the encoder, 

generator, and discriminator, the model can generate 

high-quality images while accurately capturing defect 

features. 

By jointly optimizing the loss functions of the encoder, 

generator, and discriminator, the model can generate high-

quality images while accurately capturing defect features. 

3.1.5 Multi-VAE-GAN Algorithm 

To further enhance the generative capability of the VAE-

GAN model, this paper proposes an improved model that 

incorporates a multi-head attention mechanism. The multi-

head attention mechanism has demonstrated significant 

advantages in generative models, particularly in capturing 

global dependencies within images. Mathematically, the 

input sequence modeldn
RX

 (where n is the sequence 

length and dmodel is the feature dimension) is first linearly 

projected into three matrices: Query (Q), Key (K), and 

Value (V) through learnable weight matrices: 
VKQ XWVXWKXWQ === ,,         (4) 

where WQ,WK,WV∈Rdmodel×dk are trainable parameters, 

and dk is the dimension of each head. 

The projected matrices are then split into h parallel heads 

along the feature dimension: 

)...2,1)((),(),( hiVSplitVKSplitKQSplitQ iKiQi ====    (5) 

Each head independently computes the scaled dot-product 

attention: 

i

k

T

ii
iii

d

K
VKQAttention )V

,Q
softmax(),,( =     (6) 

where kd  scales the dot products to prevent gradient 

vanishing. 

The outputs of all heads are concatenated and linearly 

transformed to produce the final multi-head attention 

features: 
O

h WheadheadheadConcatVKQMultiHead ),...,,(),,( 21= (7) 

where modelddhO kRW
  is the output projection matrix. 

By computing multiple attention heads in parallel, each 

attention head can independently focus on different regions 

or features of the image, enabling the model to more 

comprehensively understand the semantic information of 

the image. This mechanism not only strengthens the model's 

ability to model global structures but also captures fine-

grained details, allowing the generative model to better 

maintain coherence and consistency when producing high-

quality images. Furthermore, by fusing the outputs of 

multiple attention heads, the multi-head attention 

mechanism effectively integrates visual features at different 

levels, further enhancing the expressive power of the 

generative model. This parallel computation approach not 

only improves the model's efficiency but also makes it more 

flexible and robust when handling complex images, leading 

to outstanding performance in tasks such as image 

generation and image inpainting. The structure of the model 

is illustrated in Figure 5. 

In the figure, Linear_Q, Linear_K, and Linear_V 

represent linear transformations (fully connected layers) 

that map the input sequence X to the query (Query), key 

(Key), and value (Value) spaces, respectively. The input X 

has a dimension of (n×dmodel), where n is the sequence 

length and dmodel is the model dimension. Specifically, the 

input sequence is transformed into Q,K, and V matrices 

through these three linear transformations. Subsequently, 

Split_Q, Split_K, and Split_V denote the division of the Q, 

K, and V matrices along the feature dimension into multiple 

heads, with each head responsible for capturing information 

from different subspaces of the input sequence. After 

division, each head independently computes attention 

scores and produces corresponding outputs through the 

scaled dot-product attention mechanism. The Concat 

operation then concatenates the outputs of all heads, 

restoring the original dimension. Finally, Linear_out is a 

linear transformation layer that further maps the 

concatenated result to generate the final output of the multi-

head attention mechanism. The collaborative operation of 

these components enables the multi-head attention 

mechanism to capture diverse information from the input 

sequence in parallel, thereby enhancing the model's 

expressive power. 

Although multi-head attention enables the model to 

attend to different subspaces in parallel and enhances its 

expressive power, studies have shown that using too few or 

too many heads does not necessarily yield optimal 

performance. When the number of heads is fewer than eight 

(e.g., 4–6), each head receives a higher dimensionality 
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(dmodel/h), which may lead to a low-rank bottleneck, thereby 

limiting representational capacity and potentially degrading 

model performance[64]. Conversely, using more than eight 

heads (e.g., 12 or 16) can increase subspace redundancy and 

parallelism during training. However, extensive empirical 

evidence reveals that many of these heads are redundant at 

inference time, with only a few contributing significantly to 

the final output. These redundant heads can often be pruned 

without noticeable loss in performance. 

For instance, in the WMT English–Russian translation 

task, pruning 38 out of 48 heads resulted in only a 0.15 drop 

in BLEU score[65]. Michel et al. also observed that even 

after removing most of the 16 heads, the model maintained 

near-original performance, stating: “ Even when most 

heads are removed at test time, BLEU remains nearly 

constant,” and in some layers, a single head was sufficient. 

This suggests that configurations with more than eight 

heads often introduce unnecessary parameters and 

computational overhead without improving representational 

diversity or generalization. 

Moreover, recent studies have proposed mechanisms 

such as Grouped Head Attention and Voting-to-Stay, which 

aim to identify and prune redundant heads, further 

confirming the diminishing returns and prune-ability of 

excessive heads[66]. Therefore, using eight heads is often 

considered a "sweet spot": it provides sufficient subspace 

diversity while avoiding dimensional bottlenecks and 

excessive redundancy, making it an empirically optimal 

trade-off between performance and efficiency. This 

configuration is widely adopted in vision Transformer 

models like ViT[67], where it consistently yields strong 

results.

Input

Linear_Q

Linear_K

Linear_V

Split_Q

Split_K

Split_V

Head_3

Head_4

Head_5

Head_6

Head_7

Head_8

Head_2

Head_1

Concat Linear_out Output

 

Figure 5.Structure Diagram of the Multi-Head Attention Mechanism

The model proposed in this paper improves upon the 

VAE-GAN by incorporating the multi-head attention 

mechanism into the encoder and generator, significantly 

enhancing the model's performance. As shown in Figure 6, 

the overall architecture of the model retains the advantages 

of the original VAE-GAN while achieving more effective 

feature extraction and image generation through the 

introduction of the multi-head attention mechanism. 

In the encoder section, the traditional VAE structure 

primarily relies on convolutional operations to extract local 

features. In contrast, the multi-head attention mechanism 

introduced in this paper captures long-range dependencies 

between different regions of the input image, thereby better 

extracting global features. By computing multiple attention 

heads in parallel, the model can simultaneously focus on 
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different feature subspaces of the image, not only enhancing 

the comprehensiveness of feature extraction but also 

improving the model's ability to understand complex image 

structures. 

In the generator section, the introduction of the multi-

head attention mechanism also brings significant 

performance improvements. Traditional GAN generators 

mainly rely on transposed convolutional operations to 

progressively generate images, which can easily result in a 

lack of global consistency in the generated images. By 

integrating the multi-head attention mechanism into the 

generator, the proposed model dynamically adjusts the 

relationships between different regions during the 

generation process, thereby producing more realistic and 

diverse images. The multi-head attention mechanism 

enables the generator to better capture global structural 

information in the image, avoiding the common mode 

collapse issue in traditional methods while improving the 

detail quality and visual realism of the generated images.

C
o

n
v

2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

C
o
n
v
2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

C
o
n
v
2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

M
u

ltiH
ead

S
elfA

tten
tio

n

L
in

ear

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

H
id

d
en

L
in

ear

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

D
ro

p
o

u
t

C
o

n
v

T
ran

sp
o

se2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

C
o

n
v

T
ran

sp
o

se2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

M
u

ltiH
ead

S
elfA

tten
tio

n

C
o

n
v

T
ran

sp
o

se2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

C
o

n
v
T

ran
sp

o
se2

d

T
an

h

Encoder

Decoder/Generator

z_mean

z_logvar

...
...

C
o
n
v
2
d

L
eak

y
R

eL
U

C
o
n
v
2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

C
o
n
v
2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

C
o
n
v
2
d

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

L
in

ear

B
atch

N
o

rm
2

d

L
eak

y
R

eL
U

x

X'

Discrimator

Fake

S
ig

m
o

id

Real

 
Figure 6.Flowchart of the proposed Multi-VAE-GAN model

3.2. Defect Detection Models 

In this study, several mainstream object detection models 

were selected for training and testing to comprehensively 

evaluate their performance in defect detection tasks. The 

specific models chosen include the following: 

(1) SSD 

SSD is an efficient single-stage object detection model 

that generates multi-scale candidate bounding boxes 

directly on feature maps and performs classification 

simultaneously. It offers high detection speed, making it 

particularly suitable for real-time defect detection 

applications. 

(2) YOLO Series Models 

YOLOv4: YOLOv4 introduces significant improvements 

in network architecture optimization, data augmentation 

strategies, and training process tuning. It achieves a good 

balance between detection accuracy and speed, making it 

suitable for defect detection scenarios that require both real-

time performance and accuracy. 

YOLOv7: YOLOv7 further optimizes model efficiency 

and detection accuracy, particularly excelling in complex 

scenes and small object detection. It is well-suited for defect 

detection tasks with high demands for both real-time 

performance and precision. 

YOLOv8: YOLOv8 introduces a redefined architecture 

that prioritizes scalability and efficiency. It adopts an 

anchor-free detection mechanism, streamlined feature 

fusion pathways, and adaptive training strategies such as 

dynamic label assignment. These innovations enhance both 

precision and inference speed across diverse model scales 

(from nano to extra-large), making it particularly effective 

for defect detection tasks—even in challenging scenarios 

involving small or occluded defects. 

(3) Faster R-CNN  

Faster R-CNN is a two-stage object detection model 

based on region proposals. It generates high-quality 

candidate bounding boxes through a Region Proposal 

Network (RPN) and combines them with a fully 

convolutional network (CNN) for precise classification and 

regression. Its core advantage lies in its high detection 
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accuracy, making it suitable for scenarios where detection 

results are critical. 

During the model training and testing phases, this study 

conducts a comprehensive evaluation of the aforementioned 

models' performance in defect detection tasks. The 

evaluation metrics include Precision, Recall, and mean 

Average Precision to meet the requirements of practical 

applications. 

4. Experiment and Results Analysis 

4.1. Experimental Environment and Parameter 

Configuration 

The experiments were conducted on the AutoDL cloud 

computing platform. The hardware configuration of the 

cloud environment includes a 64-bit Windows 10 operating 

system, an Intel® Xeon® Platinum 8481C CPU @ 2.00 

GHz, 16GB of RAM, and an NVIDIA RTX 4090D GPU 

with 24GB of dedicated memory. The deep learning 

software environment is set up with Python 3.8, utilizing 

CUDA 11.8 for GPU acceleration, and implemented using 

the PyTorch 2.0.0 framework. 

In this section, we apply the algorithmic steps outlined in 

Section 3.1 to the defect dataset to evaluate the 

effectiveness of the proposed method. Prior to conducting 

the experiments, we optimized the VAE-GAN model by 

configuring the batch size to 16, the total number of epochs 

to 800, and the learning rate to 3e-4, using the Adam 

optimizer, as detailed in Table 1. 

Table 1. Model Parameter Settings 

Parameter settings Details 

Batch_size = 16 Number of batch processes is 16 

Epoch = 800 Training 800 rounds of data 

Learing_rate = 3e-4 Initial learning rate of 3e-4 

Adam Optimizer 

4.2. Data Collection 

To train and validate the model, scanning electron 

microscope (SEM) images of additively manufactured 

components were utilized. A total of 11 laser powder bed 

fusion (L-PBF) Ni939 sample SEM images, each with a 

resolution of 1024×960 pixels, were collected from the 

SEM image archive. Each of these images contains both 

porosity and crack defects. The dataset was randomly 

divided into a training set and a test set at a ratio of 7:3. 

Initially, defects were annotated, and based on their 

annotated locations, the images were cropped into multiple 

128×128 pixel patches to construct the raw dataset. In the 

training set, the number of porosity and crack samples was 

1,551 and 545, respectively. All experiments were 

conducted on the training set, while the test set remained 

unchanged. However, the dataset exhibits a relatively small 

sample size and an inherent class imbalance, as the number 

of the two defect types differs significantly. In subsequent 

steps, various data augmentation techniques will be 

employed to mitigate these issues. 

4.3. Evaluation Metrics 

In this study, a comprehensive evaluation was conducted 

to assess both the generative performance of the proposed 

Mult-VAE-GAN model and the accuracy of the defect 

detection model. The quality of generated defect samples 

was measured using commonly adopted objective metrics in 

the image generation domain, such as Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index (SSIM), 

along with subjective assessment methods focusing on 

defect-specific characteristics. Meanwhile, the accuracy of 

the defect detection model was evaluated using 

classification performance metrics, including accuracy, 

precision, and recall. These metrics were used to analyze 

the effectiveness of the generated samples in downstream 

defect detection tasks and to assess the practical 

applicability of the model. 

The selection of these evaluation metrics aims to provide 

a scientific and comprehensive assessment of image quality, 

realism, and the impact of generated images on real-world 

defect detection applications. 

4.3.1 Data Augmentation Evaluation Metrics 

(1) The Peak Signal-to-Noise Ratio (PSNR) is one of the 

conventional metrics for assessing imagequality. A higher 

PSNR value indicates smaller differences between the 

generated image and the reference image, implying better 

quality of the generated image. The definition of PSNR is 

as follows: 









=

MSE

L
PSNR

2

10log10                              （8） 

Where L represents the maximum pixel value of the 

image (for an 8-bit image, L=255).Mean Squared Error 

(MSE) measures the average squared difference between 

the generated image and the reference image. It is 

calculated as follows: 


= =

−


=
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MSE
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2

1

)),(ˆ),((
1

          （9） 

Where N=H×W, where H and W represent the height 

and width of the image, respectively. ),(ˆ),.( jiIjiI denote 

the pixel values at position ）（ ji, in the reference image 

and the generated image, respectively. 

(2)The Structural Similarity Index Measure (SSIM) is a 

metric used to evaluate the similarity between two images 

in terms of luminance, contrast, and structure. It is designed 

to more accurately reflect image quality as perceived by the 
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human visual system. The formula for calculating SSIM is 

as follows: 

))((

)2)(2(

2

22

1

22
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CC
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SSIM

yxyx

xyyx

++++
++

=
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
            （10） 

Where x and y represent the mean values of images x 

and y, respectively;
2

x and
2

y denote the variances of 

images x and y, respectively; xy is the covariance between 

images x and y;C1=(K1L)2 and C2=(K2L)2 are stabilization 

constants, where L is the maximum pixel value, K1 and K2 

are small positive numbers used to prevent division by zero. 

4.3.2 Evaluation Metrics for Defect Detection 

To accurately evaluate the performance of the defect 

detection model, this paper adopts Average Precision (AP) 

and mean Average Precision (mAP) as evaluation metrics. 

AP is a comprehensive metric calculated based on Precision 

and Recall, while mAP is the average AP value across all 

target categories. These two metrics are widely used in the 

field of object detection and can comprehensively reflect 

the model's performance in defect detection tasks. 

(1) Precision and Recall 

Precision and Recall are the foundational concepts for 

defining AP and mAP. Their formulas are as follows: 

Precision is defined as: 

 
+

=
FPTP

TP
precision

        
(11) 

Recall is defined as: 

                   FNTP

TP
recall

+
=

                         
(12) 

Where TP (True Positives): The number of samples 

correctly predicted as positive.FP (False Positives): The 

number of samples incorrectly predicted as positive.FN 

(False Negatives): The number of samples incorrectly 

predicted as negative. 

(2) Average Precision (AP)  

AP is obtained by calculating the area under the 

Precision-Recall (PR) curve. Its formula is as follows: 

=
1

0
Re)(RePr calldcallecisionAP

     （13） 

In practical calculations, a discretization method is 

typically employed. The precision and recall values are 

progressively accumulated based on the confidence scores 

of the detection boxes, and the integral value of the curve is 

estimated using interpolation. AP can evaluate the detection 

performance of the model on a single defect category. 

(3) Mean Average Precision (mAP) 

mAP is a comprehensive metric obtained by averaging 

the AP values across all target categories. The formula is as 

follows: 

                      

∑
1=

1
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i

iAP
K

mAP

                             

 (14) 

Where N: The number of target categories.
iAP : The 

average precision of the i -th category. 

mAP serves as a comprehensive evaluation criterion for 

multi-category detection performance. A higher mAP value 

indicates stronger overall detection capability of the model. 

4.4 Experimental Results and Discussion 

In this section, extensive experiments are conducted to 

demonstrate the effectiveness of the proposed Mult-VAE-

GAN algorithm in augmenting additive manufacturing 

defect sample data and improving defect detection accuracy. 

The key experiments include analyzing the impact of data 

preprocessing, evaluating the performance of Mult-VAE-

GAN, and validating the effectiveness of the proposed 

method based on SSIM and PSNR. Additionally, multiple 

defect detection models are utilized to verify that the data 

augmentation approach enhances defect detection accuracy. 

4.4.1 Data Preprocessing 

In the original dataset, there exists a significant class 

imbalance among defect samples, which adversely affects 

the performance of defect detection. Specifically, when 

using the YOLOv4 algorithm for initial defect detection, the 

average precision (AP) for cracks was 39.20%, while for 

pores, it reached 90.51%, resulting in an overall mAP of 

64.85%. This outcome suggests that the imbalance in data 

distribution is a primary factor contributing to the lower 

detection performance for cracks. 

To mitigate the performance degradation caused by class 

imbalance, conventional data augmentation techniques were 

applied to expand and balance the dataset. The 

augmentation process included 90° and 180° rotations, as 

well as adjustments to brightness, contrast, saturation, and 

hue. These transformations preserved the original defect 

characteristics while increasing data diversity. After 

augmentation, the number of pore samples increased to 

1,656, and the number of crack samples increased to 1,388, 

thereby alleviating the imbalance issue to some extent. 

This data preprocessing step significantly improved the 

balance of the dataset, providing a more reliable foundation 

for subsequent data augmentation and defect detection 

model training. 

4.4.2 Data Augmentation 

During the defect recognition experiments, it was 

observed that the imbalance in defect sample distribution 

and the limited overall dataset size negatively impacted the 

performance and accuracy of the detection model. To 
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address this issue, an initial dataset balancing process was 

conducted to ensure a more even distribution of defect 

categories. Additionally, traditional data augmentation 

techniques, such as rotation, flipping, and scaling, were 

applied. However, when defect detection was performed 

using only YOLOv4 after traditional data augmentation, the 

detection performance did not improve significantly; 

instead, a downward trend was observed. Specifically, the 

detection accuracy of YOLOv4 decreased for both Pore and 

Crack defect categories, resulting in an overall mAP of only 

59.45%. This decline in performance may be attributed to 

the fact that traditional data augmentation methods 

potentially damaged defect features, leading to degraded 

detection results and affecting the model's learning or 

generalization ability. Moreover, traditional data 

augmentation methods may not have effectively enhanced 

the diversity of defect features, preventing the model from 

sufficiently learning the key characteristics of different 

defect types. 

To overcome these limitations, we employed the 

improved Mult-VAE-GAN data augmentation model to 

generate additional high-quality reconstructed images. This 

method is designed to enhance the generalization ability of 

the detection model and improve overall detection 

performance in additive manufacturing. 

To assess the quality of the generated reconstructed 

images, this study adopted two widely used evaluation 

metrics: SSIM and PSNR. The generated images were 

evaluated to ensure their quality before being incorporated 

into the balanced dataset. Ultimately, high-quality 

reconstructed images were selected and integrated into the 

dataset to further enrich the data and enhance classification 

accuracy. 

Table 2 presents the distribution of defect samples 

across the original dataset, the dataset after balancing, and 

the dataset after augmentation using Mult-VAE-GAN. 

Table 2. Defect Sample Distribution 

 Pore Crack 

Raw Data 1551 545 

Data Balancing 1656 1388 

Mult-VAE-GAN Data 

Augmentation 

3844 3280 

Figure 7 presents the experimental results obtained 

using two image quality evaluation metrics: Structural 

Similarity Index (SSIM) and Peak Signal-to-Noise Ratio 

(PSNR). The left subplot illustrates the PSNR evaluation 

results, while the right subplot displays the SSIM evaluation 

results. 

From Figure 7, it can be observed that as the data 

augmentation process progresses, the values of both PSNR 

and SSIM exhibit a steady upward trend, indicating a 

continuous improvement in the quality of the reconstructed 

images. Notably, during the initial phase of data 

augmentation, the PSNR and SSIM values increase rapidly, 

suggesting that the Mult-VAE-GAN model can quickly 

capture the primary structural and textural information of 

the images in the early training stage, thereby generating 

images of relatively high quality. This rapid increase may 

be attributed to the initialization of model parameters and 

the early adjustments made by the optimization algorithm, 

allowing the generated images to achieve satisfactory visual 

quality within a limited number of iterations. 

To quantitatively validate the superiority of the proposed 

Mult-VAE-GAN, we compare its performance with the 

original VAE-GAN framework. As shown in Table 3, our 

model achieves significant improvements, with SSIM and 

PSNR values increasing from 0.7365 to 0.8214 (+11.5%) 

and from 21.4694 to 22.5437 (+5.0%), respectively. These 

results confirm that the multimodal architecture enhances 

both structural coherence and pixel-level fidelity compared 

to the baseline. 

Table 3. Defect Sample Distribution 

 SSIM PSNR 

VAE-GAN 0.7365 21.4694 

Mult-VAE-GAN 0.8214 22.5437 

As the data generation process continues, the growth rate 

of PSNR and SSIM gradually slows down and stabilizes in 

the later stages of training. The PSNR value ultimately 

stabilizes around 22, while the SSIM value remains 

approximately 0.8, indicating that the generated images not 

only maintain a high signal-to-noise ratio at the pixel level 

but also effectively preserve the semantic information of the 

original images in terms of structural perception. 

Furthermore, although minor fluctuations in the numerical 

values occur in the later training stages, the overall trend 

remains stable at a relatively high level. This suggests that 

the model is capable of maintaining image quality over 

extended training periods and demonstrates a certain degree 

of generalization, enabling it to adapt to variations in data 

distribution. 

To further enhance the quality and balance of the dataset, 

we performed quality evaluation-based filtering on the 

reconstructed images and incorporated the selected high-

quality samples into the original dataset. This optimization 

strategy not only increases the diversity of the dataset but 

also provides high-quality input data for subsequent defect 

detection model training, thereby effectively improving 

classification accuracy and generalization performance. 



 

Figure 7. Evaluation of Reconstructed Images

4.4.3 Defect Detection 

To enhance the generalization capability and detection 

accuracy of defect detection models, this study proposes a 

Mult-VAE-GAN-based data augmentation method to 

generate a more diverse and complex set of defect samples. 

Using the augmented dataset, we retrained and validated 

five mainstream object detection models: YOLOv7, 

YOLOv4, YOLOv8, SSD, and Faster R-CNN. 

Before introducing the Multivariate Variational 

Autoencoder Generative Adversarial Network (Mult-VAE-

GAN) for data augmentation, we conducted defect detection 

experiments on two defect types—pore and crack—using a 

balanced dataset without any augmentation. Table 4 

presents the detection performance of various methods at 

this stage. 

According to the results, SSD achieved the best 

performance in crack detection, with an average precision 

(AP) of 58.19%, and also showed a competitive AP of 

89.78% for pore detection. This resulted in the highest 

overall mean average precision (mAP) of 73.99% among all 

methods. Faster R-CNN yielded the highest AP for pore 

detection (92.07%), but its performance on crack detection 

was slightly lower (46.85%), leading to a mAP of 69.46%. 

YOLOv7 demonstrated balanced performance across both 

defect types, with an AP of 47.26% for crack and 90.86% 

for pore, resulting in a mAP of 69.06%. YOLOv8 showed 

comparable results, with a mAP of 67.07%. In contrast, 

YOLOv4 exhibited the weakest performance on crack 

detection (AP of 39.02%), and although it achieved 91.43% 

AP for pore detection, its overall mAP was the lowest at 

65.18%. 

In summary, these baseline detection results provide a 

reference for evaluating the effectiveness of the proposed 

Mult-VAE-GAN data augmentation technique in enhancing 

defect detection performance in subsequent experiments.

Table 4. Defect Detection Results Before Data Augmentation. 

Method 
AP（%） 

mAP（%） 
Pore Crack 

Yolov4 91.43% 39.02% 65.18% 

Yolov7 90.86% 47.26% 69.06% 

Yolov8 90.46% 43.68% 67.07% 

SSD 89.78% 58.19% 73.99% 

Faster-RCNN 92.07% 46.85% 69.46% 

After incorporating the Mult-VAE-GAN data 

augmentation technique, we retrained and tested the same 

balanced dataset. The results, presented in Table 5, 

indicate that data augmentation significantly improved the 

performance of all detection methods compared to the pre-

augmentation results shown in Table 4. 

Table 5 reports the average precision (AP) for Pore and 

Crack detection, as well as the mean average precision 

(mAP) for each method after data augmentation. The key 

findings are as follows: 

⚫ Faster R-CNN exhibited the most prominent 

improvement in overall performance. Its average 
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precision (AP) for Crack detection surged from 46.85% to 

84.67%, while Pore detection experienced a slight decline 

from 92.07% to 90.82%. Nonetheless, the mean average 

precision (mAP) increased significantly from 69.46% to 

87.75%, representing an improvement of 18.29 

percentage points, indicating a remarkable enhancement 

in detection capability. 

⚫ SSD also demonstrated a dramatic performance boost, 

particularly in Crack detection, where the AP rose from a 

previously lowest 50.90% to 83.47%. The AP for Pore 

detection remained relatively stable, slightly decreasing 

from 89.78% to 89.18%. However, the overall mAP 

increased from 73.99% to 86.33%, marking the largest 

relative gain among all models (+12.34%). 

⚫ YOLOv4 achieved a significant improvement in Crack 

detection AP, which rose from 39.02% to 80.69%, nearly 

doubling its previous performance. Although its Pore AP 

slightly declined from 91.43% to 89.74%, the overall 

mAP experienced a sharp increase from 65.18% to 

85.21%, an improvement of 20.03 percentage points, the 

highest among all models. 

⚫ YOLOv8 showed consistent performance gains across 

both defect categories. The AP for Crack detection 

increased from 43.68% to 80.72%, while Pore detection 

saw a moderate decline from 90.46% to 88.60%. Despite 

this, the overall mAP improved from 67.07% to 84.66%, 

resulting in a 17.69% enhancement. 

⚫ YOLOv7 maintained robust performance following 

augmentation. The AP for Pore increased from 90.86% to 

92.22%, whereas the Crack AP slightly decreased from 

47.26% to 76.13%. Even so, the model’s mAP improved 
from 69.06% to 84.18%, indicating a 15.12% 

performance gain. 

In summary, the comparative results clearly demonstrate 

that the Mult-VAE-GAN data augmentation technique 

effectively enhances the performance of defect detection 

models. The ability of Mult-VAE-GAN to generate 

structurally diverse and representative Crack samples helps 

mitigate the challenges posed by insufficient data and 

structural variability, thereby significantly improving the 

learning capacity and generalization of detection models. 

From the perspective of pore defect detection, the 

improvements observed are not uniformly significant. One 

possible explanation is that the baseline model had already 

achieved a relatively high detection accuracy (typically 

around 90%) prior to data augmentation, potentially 

reaching a performance saturation point. Consequently, the 

marginal benefit from further augmentation becomes 

limited. As noted by Maayan Frid-Adar et al.[63], 

increasing the number of training examples generally 

improves performance; however, once saturation is reached, 

adding more augmented samples may no longer yield 

noticeable gains in classification results. When the 

classification performance is already high, the additional 

benefits from augmentation tend to be minimal. This 

phenomenon does not necessarily indicate the failure of the 

augmentation method itself, but rather reflects the presence 

of strong intrinsic features in the original pore images, 

which diminish the incremental value of augmented data. 

Furthermore, the multi-VAE-GAN approach, while 

effective in many cases, may introduce subtle artifacts such 

as edge blurring or texture distortion when handling fine-

grained defects. These minor variations can present 

adaptation challenges for certain models, leading to slight 

fluctuations in recognition accuracy. 

However, considering the comprehensive metric of mean 

Average Precision (mAP), all models exhibit consistent 

improvement, further validating the effectiveness and 

generalization capability of the Multi-VAE-GAN 

augmentation strategy at a macro level. 

Table 5. Defect Detection Results After Data Augmentation. 

Method 
AP（%） 

mAP（%） 
Pore Crack 

Yolov4 89.74% 80.69% 85.21% 

Yolov7 92.22% 76.13% 84.18% 

Yolov8 88.60% 80.72% 84.66% 

SSD 89.18% 83.47% 86.33% 

Faster-RCNN 90.82% 84.67% 87.75% 

By comparing Table 4 and Table 5, it is evident that 

data augmentation effectively enhances the accuracy of 

defect detection models while also improving the 

robustness of different detection methods. This provides 

strong technical support for high-precision defect 

detection in real-world applications. 

To further evaluate the impact of the Mult-VAE-GAN 

data augmentation technique on defect detection 

performance, we conducted predictions on selected test 

samples and generated corresponding detection result 

images. These visualizations provide a clear depiction of 

each model’s ability to detect Pore and Crack defects. 
(1) YOLOv7 Detection Results 

YOLOv7 exhibited the superior performance after 

data augmentation. As shown in Figure 8, the model 

accurately locates and identifies both Pore and Crack 

defects with minimal false positives or false negatives. 

Notably, YOLOv7 demonstrated strong robustness in 
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detecting cracks within complex backgrounds, maintaining 

high precision even in challenging scenarios. 

 

Figure 8. YOLOv7 Detection Results 

(2) YOLOv4 Detection Results 

YOLOv4 showed noticeable improvement following 

data augmentation; however, its detection results indicate 

that some minor cracks were still missed. As illustrated in 

Figure 9, while YOLOv4 effectively detects Pore defects, 

its performance in detecting fine cracks is slightly inferior 

to YOLOv7. Nevertheless, compared to the pre-

augmentation results, YOLOv4’s overall detection accuracy 
has improved significantly. 

 

Figure 9. YOLOv4 Detection Results 

(3) SSD Detection Results 

Among all models, SSD exhibited the most substantial 

improvement after data augmentation, particularly in Crack 

detection. As depicted in Figure 10, SSD effectively 

identifies Crack defects, and its false detection rate is 

significantly reduced. However, compared to YOLOv7 and 

YOLOv4, SSD still experiences missed detections in Pore 

detection, especially when the Pores are small or densely 

distributed. 

 

Figure 10. SSD Detection Results. 

(4) Faster R-CNN Detection Results 

Faster R-CNN also showed performance enhancements 

following data augmentation. As presented in Figure 11, 

the model accurately detects Pore and Crack defects. 

However, in complex backgrounds, a few false detections 

still occur, particularly in Crack detection. 

 

Figure 11. Faster R-CNN Detection Results 

(5) Yolov8 Detection Results 

The implementation of data augmentation has led to an 

enhancement in the overall performance of YOLOv8. As 

illustrated in Figure 12, the model demonstrates high 

accuracy in detecting hole and crack defects. Nevertheless, 

in complex backgrounds, minor false positives may still 

occur, particularly for small pores and fine cracks. 
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Figure 12. Yolov8 Detection Results 

Overall, the Mult-VAE-GAN data augmentation 

technique significantly improves defect detection 

performance,. These findings further confirm the 

effectiveness of this augmentation approach in improving 

defect detection accuracy and robustness across different 

models. 

4.5 Performance Evaluation of Mult-VAE-GAN Using 

the NEU-DET Public Dataset 

The NEU-DET dataset, developed by the research team 

led by Kechen Song at Northeastern University, is 

specifically designed for the detection and recognition of 

steel surface defects. This dataset comprises 1,800 images 

covering six common types of steel surface defects: Crazing, 

Inclusion, Patches, Pitted Surface, Rolled-in Scale, and 

Scratches, as illustrated in Figure 13. 

 
Figure 13. NEU-DET datasets 

The validation experiments on the NEU-DET dataset 

adopted essentially the same parameters as those for the 

AM dataset. Nevertheless, given NEU-DET's larger data 

volume, the training converged stably at 400 epochs 

without requiring the 800 epochs needed for AM. See Table 

5 for parameter configurations. 

Table 5. NEU-DET dataset experimental parameters 

Parameter settings Details 

Batch_size = 16 Number of batch processes is 16 

Epoch = 400 Training 400 rounds of data 

Learing_rate = 3e-4 Initial learning rate of 3e-4 

Adam Optimizer 

Based on the experimental records and Figure 14, the 

SSIM values remained stable within the range of 0.76–

0.77, peaking at 0.79, while the PSNR consistently ranged 

between 27–28, reaching a maximum of 30. Compared 

with the experimental results on the AM dataset, although 

the SSIM values showed a slight decrease, the PSNR 

exhibited a significant improvement of 5 points. These 

findings demonstrate that the Mult-VAE-GAN model is not 

only effective for the AM dataset but also demonstrates 

strong generalization capability across other domain-

specific datasets. 

 
Figure 15. NEU-DET Generated Image Evaluation 

Figure 15 demonstrates the synthetic images produced by 

the proposed Mult-VAE-GAN framework, exhibiting 

realistic defect patterns consistent with the training 

distribution. 

 
Figure 14. NEU-DET Generated Image 

5. Conclusion 
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This study proposes a data augmentation method based 

on Mult-VAE-GAN, aimed at enhancing the generalization 

ability and detection accuracy of defect detection models in 

the context of additive manufacturing (AM). Due to the 

complex physical and chemical interactions in the AM 

process, defect patterns exhibit high variability and 

randomness. Traditional defect datasets are often limited in 

scale and suffer from imbalanced sample distributions, 

negatively impacting model performance. To address this 

challenge, this study utilizes Mult-VAE-GAN to generate 

defect samples with greater diversity and complexity, 

thereby improving the performance of detection models 

across different defect types. 

Notably, although this study primarily focuses on the 

field of additive manufacturing, Mult-VAE-GAN, as a 

general data augmentation method, is equally applicable to 

other defect detection scenarios, such as semiconductor 

manufacturing, welding quality inspection, and defect 

detection in aerospace composite materials. Its key 

advantage lies in its ability to effectively expand datasets 

and improve model generalization across various defect 

patterns. 

In the experimental evaluation, five state-of-the-art 

object detection models—YOLOv4, YOLOv7, YOLOv8, 

SSD, and Faster R-CNN—were employed to assess the 

effectiveness of the proposed Multi-VAE-GAN data 

augmentation technique on the detection of Pore and Crack 

defects. The results demonstrate that the augmented data 

significantly enhances detection performance across all 

models, particularly in terms of average precision (AP) and 

mean average precision (mAP). Specifically, YOLOv4 

achieved a mAP improvement from 65.18% to 85.21%, 

with Crack detection AP increasing from 39.02% to 

80.69%. YOLOv7 and YOLOv8 recorded mAP gains of 

15.12 and 17.69 percentage points, respectively, with 

YOLOv8 showing a remarkable 37.04 percentage-point 

increase in Crack detection. SSD exhibited the most 

substantial relative improvement, with mAP rising from 

73.99% to 86.33%. Faster R-CNN achieved the highest 

post-augmentation mAP of 87.75%, up from 69.46%. These 

results indicate that the Multi-VAE-GAN effectively 

addresses challenges associated with limited and 

imbalanced datasets by generating diverse defect 

representations, thereby improving model generalization, 

reducing false detections, and enhancing overall detection 

robustness. 

This study contributes both theoretically and practically. 

From a theoretical perspective, it integrates the VAE-GAN 

generative model with defect detection tasks, providing a 

novel data-driven solution for defect detection in additive 

manufacturing. From a practical perspective, the 

experimental results confirm that this method effectively 

enhances the performance of mainstream object detection 

models, particularly in cases with insufficient or imbalanced 

datasets, significantly improving their generalization ability. 

Despite the remarkable improvements achieved by the 

Mult-VAE-GAN data augmentation method in defect 

detection, several challenges remain. First, the training 

process requires substantial computational resources, 

affecting its efficiency in industrial applications. Second, 

the quality and diversity of generated samples still have 

room for further optimization. Future research directions 

include: (1) optimizing the training process of Mult-VAE-

GAN to enhance the quality and diversity of generated 

samples; (2) integrating transfer learning or few-shot 

learning techniques to reduce computational costs and 

improve data utilization efficiency; and (3) exploring real-

time defect detection and augmentation by incorporating 

Mult-VAE-GAN into online defect detection systems, 

enabling real-time defect data generation to enhance 

detection efficiency in industrial production processes. 

In conclusion, the proposed Mult-VAE-GAN data 

augmentation method provides an effective data generation 

strategy for defect detection in additive manufacturing and 

has been experimentally validated to improve detection 

accuracy and generalization ability. Future research will 

focus on enhancing computational efficiency, optimizing 

the quality of generated samples, and exploring multimodal 

data fusion to further advance defect detection technology 

in additive manufacturing. 
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