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Abstract

Additive Manufacturing (AM), particularly Laser Powder Bed Fusion (L-PBF), faces critical challenges in defect detection
due to the scarcity of high-quality training data and severe class imbalance, which significantly degrade the accuracy of deep
learning models. To address these issues, this study proposes a novel data augmentation framework combining geometric
transformations with an enhanced Variational Autoencoder-Generative Adversarial Network (VAE-GAN). Traditional
augmentation techniques (rotation, scaling, flipping) are first applied to alleviate sample imbalance, followed by the
improved VAE-GAN to synthesize high-fidelity defect images, thereby enriching dataset diversity. Experimental results on
an L-PBF defect dataset demonstrate significant improvements in detection performance: This study conducted a comparative
experiment evaluating the performance of YOLOv4, YOLOv7, YOLOVS, SSD, and Faster R-CNN on defect detection tasks
before and after data augmentation. The results demonstrated significant mAP improvements across all models, with
YOLOvV4 achieving the most substantial enhancement (+20.03%, from 65.18% to 85.21%) despite its lower baseline
performance. Faster R-CNN attained the highest post-augmentation mAP (87.75%), representing the best overall
performance. YOLOVS exhibited an optimal balance between real-time processing and accuracy (67.07%—84.66%,
+17.59%), approaching Faster R-CNN's performance level. While SSD showed the smallest improvement (+12.34%), it
maintained a relatively high baseline mAP (73.99%). These results validate the effectiveness of the proposed method in
overcoming data scarcity and improving defect detection accuracy in AM.
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1. Introduction

Additive Manufacturing (AM) is an advanced
manufacturing technology that has been widely adopted in
industries such as aerospace, medical, and automotive. Its
advantages, including the ability to fabricate complex
geometric  structures, high material utilization, and
customized production, make it a preferred choice[l].
However, the complexity and instability of the AM process
often lead to defects such as porosity, lack of fusion, and
cracks, which significantly affect the mechanical properties
and service life of the final product [2]. Among these,
porosity and cracks are the most common and impactful
defects. Therefore, developing efficient and accurate defect
detection methods is of great significance to ensure the
structural integrity and performance of AM components.

Traditional defect detection methods can be categorized

into offline and online approaches. Offline methods, such as
computed tomography (CT) and ultrasonic testing, offer
high precision but are costly and time-consuming. Online
methods, including optical thermography and high-speed X-
ray imaging, enable real-time monitoring but suffer from
low detection rates and poor environmental adaptability.
Moreover, these methods typically involve high costs and
complex data processing procedures [3][4]

With the rapid advancement of deep learning, image-
based defect detection methods have gained considerable
attention. Convolutional Neural Networks (CNNs) have
been employed for defect detection in AM, improving
detection accuracy [5]. However, the performance of CNN
models heavily depends on the quality and quantity of the
training data. Since defect data collection is expensive, the
imbalance between positive and negative samples under
small-sample conditions makes it challenging for models to
effectively learn defect features.



Data augmentation techniques provide an -effective
solution to address data scarcity and imbalance. Traditional
data  augmentation methods, such as geometric
transformations (rotation, scaling, flipping) and color
adjustments  (brightness and contrast enhancement),
increase data diversity but fail to generate entirely new
samples, thus limiting the expansion of the sample
distribution [6]. To tackle the small-sample problem, deep
generative models, such as Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAESs),
have demonstrated great potential in data augmentation.
GAN:Ss utilize adversarial training between a generator and a
discriminator to learn the true data distribution and generate
high-quality samples. Researchers have leveraged GANs to
synthesize AM defect images to mitigate data imbalance
issues. For instance, Jihoon Chung et al.[7]combined GANs
with classifier optimization strategies to enhance the
stability and accuracy of anomaly detection.

However, conventional GANs suffer from mode collapse
and unstable training, while VAEs, although capable of
generating images, tend to produce blurry outputs. The
VAE-GANJ8][9] model integrates the advantages of both
approaches: VAE employs variational inference to learn the
latent distribution of data, mitigating the mode collapse
issue in GANs, while the adversarial training of GAN
ensures the generated images maintain high quality and
diversity, thereby achieving a balance between global and
local features. Yitian Wang et al.[10]successfully applied
VAE-GAN to augment a wafer dataset, improving
classifier ~detection accuracy and validating the
effectiveness of this approach in small-sample data
augmentation.

Despite the promising performance of VAE-GAN in
image generation tasks, it may struggle to capture fine-
grained details in complex defect images, leading to
suboptimal image quality and diversity. To address this
issue, we introduce a Multi-Head Attention (MHA)
mechanism into VAE-GAN, enabling parallel computation
across multiple attention heads to learn feature
representations from different subspaces. This enhancement
improves the model’s capability to capture detailed image
features, thereby further enhancing the quality and diversity
of generated images.

This study focuses on the detection of porosity and crack
defects, which are the most prevalent and quality-critical
defect types in AM. First, we employ conventional data
augmentation techniques, such as rotation, scaling, flipping,
and cropping, to expand the existing defect dataset and
alleviate data imbalance. Subsequently, we utilize the
improved VAE-GAN to generate high-quality synthetic
defect images, further increasing sample diversity and
improving the generalization ability of the detection model.
Finally, we construct a defect detection model and conduct

experimental validation on datasets before and after
augmentation to evaluate the effectiveness of the proposed
approach.

The innovations of this study include: (1) Hierarchical
Augmentation Framework Integrating Geometric and
Generative Models We propose a novel hierarchical
framework that synergistically combines geometric
transformations (e.g., rotation, scaling) with an improved
VAE-GAN architecture. Unlike conventional methods that
apply these techniques in isolation, our framework
leverages geometric transformations to preserve low-level
defect features (e.g., edge continuity) while utilizing the
generative model to synthesize high-fidelity defect patterns.
This dual-stage approach mitigates the limitations of
traditional augmentation in generating novel defect
morphologies.(2) To overcome the blurred outputs and
insufficient feature diversity of standard VAE-GANs, we
introduce a Multi-Head Attention (MHA) mechanism into
both the encoder and generator. The MHA module enables
parallel computation across multiple attention heads,
dynamically focusing on critical defect regions (e.g., crack
tips, pore boundaries) at different scales. This design
enhances the model’s capability to capture fine-grained
details while maintaining global structural consistency.(3)
By introducing a scaled latent sampling perturbation
mechanism in the VAE-GAN framework—namely, using
low-variance Gaussian noise in the reparameterization
process—we effectively control the perturbation intensity in
the latent space. This design significantly enhances the
model's noise robustness and training stability, leading to
faster convergence in the early training stages.

The remainder of this paper is organized as follows:
Chapter 2 introduces related work, including data
augmentation methods, defect detection methods, and
attention mechanisms; Chapter 3 details the proposed data
augmentation algorithm and defect detection model;
Chapter 4 validates the effectiveness of the proposed
method through experiments; and Chapter 5 summarizes the
research findings and outlines future research directions.

2.Related work

2.1. Traditional Data Augmentation Methods

Data augmentation methods primarily include traditional
methods and intelligent methods based on generative
models[11]. Traditional data augmentation techniques
mainly involve linear transformations to slightly modify
image data, preserving the original label information while
increasing the data volume. This improves dataset quality
and mitigates model overfitting[12][13]. These method
s primarily include operations such as geometric
transformations, color transformations, and noise
transformations. For instance, Perez et al. [14] demonstrated
that these methods primarily alter low-level image statistics



(e.g., pixel positions) without creating novel defect patterns,
leading to limited generalization in complex scenarios such
as multi-scale porosity clusters. Matsunaga et al.[15]
validated the effectiveness of test-time augmentation in
skin lesion classification tasks using geometric
transformations such as rotation, translation, scaling, and
flipping.

In the field of additive manufacturing, Wenyuan Cui et
al.[16] expanded their dataset by applying traditional data
augmentation techniques such as random rotation, flipping,
and cropping to optical images of both normal and defective
samples. Using a convolutional neural network (CNN) for
defect detection, their method achieved an accuracy of
92.1%. Additionally, Choi et al.[l17] verified the
effectiveness of object detection methods in additive
manufacturing by augmenting defect images through
transformations such as rotation, downscaling, and shifting.

Although these methods can enhance data diversity and
quantity while partially mitigating data imbalance or limited
sample sizes issues, their effectiveness in defect detection
remains constrained—particularly in scenarios with limited
sample sizes or severe class imbalance. Since traditional
augmentation techniques primarily modify existing image
structures through geometric or photometric
transformations without generating novel defect patterns,
they may fail to substantially improve the model’s
capability to recognize complex or rare defects.
Consequently, the performance gains in defect detection are
often marginal, highlighting the need for more advanced
augmentation strategies tailored to address data scarcity and
imbalance.

2.2. Deep Generative Models

2.2.1 VAE/GAN Fundamental Theories

Deep generative models such as  Variational
Autoencoders (VAEs) and Generative Adversarial
Networks (GANs) have emerged as two popular deep
generative models widely applied in image generation[18],
image transformation[19], image resolution
enhancement[20], domain adaptation[21], and anomal
y detection[21]. For instance, Jang Young In et al[22]
utilized VAEs to reconstruct synthetic electrocardiogram
(ECQG) signals, thereby improving the consistency of the
standard deviation of normal-to-normal intervals (SDNN).

GANS, introduced by Goodfellow in 2014, represent a
remarkable class of unsupervised generative neural
networks[23]. Designed as a minimax game between two
subnetworks—namely, the generator and discriminator—
GAN:S learn to approximate the data distribution[24].

Numerous researchers have conducted extensive studies
on the application of Generative Adversarial Networks
(GANs) for augmenting limited fault sample data. For

instance, Zhang et al.[25] employed GANSs to enhance wind
turbine vibration signals, addressing data imbalance
challenges. Yang et al[26] used Conditional GANSs
(CGANSs) to learn the real distribution of bearing fault
samples, expanding the dataset and improving fault
diagnosis accuracy using convolutional neural networks
(CNNs). Ngoc-Trung Tran et al.[27] proposed a GAN
-based data augmentation optimization model and validated
its superior Fréchet Inception Distance (FID) performance
on natural and medical datasets. Frid-Adar et al.[28] applied
GAN-based image synthesis techniques for liver lesion
classification, significantly improving sensitivity and
specificity. Furthermore, Hongbin Gao et al.[29] combined
Deep Convolutional GANs (DCGANs) with traditional
data augmentation methods to increase training data
volume, with plans to employ a lightweight CNN model
based on VGGI11(Visual Geometry Group 11-layer) for
defect classification.

While both are generative models, their fundamental
differences lie in Generative Adversarial Networks (GANs)
offer significant advantages in image generation, they still
face several challenges in practical applications, such as
training instability, mode collapse, gradient vanishing, and
weak controllability of generated data[30]. Unlike GANS,
Variational Autoencoders (VAEs) optimize the learning
process through variational inference[31] and generate
samples by sampling from a random noise distribution.
However, due to the lack of an adversarial learning
mechanism in the reconstruction process, the generated
images often suffer from blurriness. Additionally, the
optimization of VAE models relies on manually designed
parameters, which may introduce unavoidable noise and
degrade the quality of the generated samples.

2.2.2 Applications in AM

In additive manufacturing research, the VAE model is
predominantly employed as a feature extractor. For
instance, Zihan Wang & Hongyi Xu[32] utilized a
Variational Autoencoder (VAE) as a feature extractor to
map 3D metamaterial geometries into a low-dimensional
latent feature space. This latent feature space was
simultaneously linked to a discriminator/regressor to predict
manufacturability metrics and mechanical properties.
William Frieden Templeton et al.[33] mentioned a VAE
regression model to extract spatial features, predict fatigue
life, and identify pore defect characteristics governing
fatigue behavior. Ertay, D. S. et al[34] obtained a
secondary dataset containing the pore space of fabricated
components via X-ray computed tomography (CT) and
registered it into a synthetic dataset. Machine learning
models, namely a Conditional Variational Autoencoder
(CVAE) and a Convolutional Neural Network (CNN), were



then trained based on input features to predict pore
formation.

In the field of additive manufacturing, numerous studies
have leveraged GANs and their variants to generate high-
quality images, thereby addressing data imbalance
issues.For example, Gobert ef al.[35] employed Conditional
GANs (cGANSs) to generate layer-wise images from the
metal additive manufacturing process. Jihoon Chung et
al.[36] optimized a standard GAN alongside a classifier to
stabilize the learning process and applied it to anomaly
detection in real-world additive manufacturing scenarios.
Similarly, Zhibo Zhang et al.[37] utilized machine learning
techniques to predict melt pool size and morphology,
synthesizing melt pool images via a Melt Pool GAN (MP-
GAN) that achieved a structural similarity index (SSIM) of
0.91.Gobert et al. [38] employed conditional GANs to
generate layer-wise images from metal additive
manufacturing processes. Jihoon Chung et al. developed an
optimized framework integrating standard GANs with
classifier techniques for anomaly detection in practical
additive manufacturing, which successfully identified
process anomalies even in highly imbalanced datasets.

2.3. Hybrid VAE-GAN Frameworks

To address the respective limitations of GANs and
VAEs, researchers have proposed the VAE-GAN model,
which combines the representation learning capability of
VAEs with the adversarial generation ability of GANSs. In
VAE-GAN, the VAE is responsible for learning latent
representations of the data and generating diverse images,
while the GAN discriminator optimizes the generated
samples to enhance image clarity and realism. Yitian Wang
et al[10] leveraged the advantages of VAE-GAN to
achieve high-quality data augmentation and improve wafer
classification accuracy. Similarly, Sun ef al.[39] proposed a
VAE-GAN-based energy theft detection model to address
the issue of data imbalance in energy theft detection. Their
model generated synthetic data that accurately captured real
energy theft characteristics, which were then used to train
the detector, effectively mitigating the impact of data
imbalance. In the field of additive manufacturing, Zheren
Song et al.[40] proposed a novel hybrid deep generative
prediction network (HDGPN) that leverages both
variational autoencoder and generative adversarial network
is proposed to characterize the complex pore microstructure
with in-depth representations and predict pore morphology
under arbitrary processing parameters. By visualizing the
predicted pore morphology, the complicated interaction
dynamics between the processing parameters and pore
microstructure are directly revealed, which may guide the
optimization of metal AM manufacturing processes to
fabricate defect-free products.

Although the VAE-GAN model combines the strengths
of Variational Autoencoders (VAEs) and Generative
Adversarial Networks (GANs), it still has certain
limitations. For instance, the generated images may lack
fine-grained details, and the model’s ability to capture
complex dependencies in the data can be limited. These
shortcomings arise because the VAE-GAN framework does
not explicitly model the relationships between different
regions of an image, which can lead to suboptimal feature
representation and generation quality. To address these
issues, researchers have turned to attention mechanisms,
which have shown remarkable success in enhancing model
performance across various computer vision tasks.

2.4. Attention Mechanisms

2.4.1 Fundamental Theory

The attention mechanism was first introduced by
Bahdanau er al. in 2014 for neural machine translation
(NMT). Its core idea is to dynamically assign different
weights to different parts of the input sequence, thereby
enhancing the model’s ability to focus on critical
information. This approach effectively mitigates the
limitations of traditional sequential models, such as
recurrent neural networks (RNNs), which struggle to
capture long-range dependencies[41].

In 2017, Vaswani et al. proposed the multi-head
attention mechanism (MHA) as a fundamental component
of the Transformer architecturee. MHA enhances
information capture and improves generalization by
enabling multiple independent attention heads to compute
in parallel, allowing the model to learn diverse feature
representations across different subspaces. The computation
of MHA consists of the following steps: (1) The input is
first linearly projected into query (Q), key (K), and value
(V) matrices. (2) The scaled dot-product attention
mechanism computes the similarity between queries and
keys, followed by Softmax normalization to obtain attention
weights. (3) The attention weights are then used to perform
a weighted sum over the values, extracting the most
relevant information. (4) The outputs from multiple
attention heads are concatenated and projected through a
linear transformation to produce the final output[42].

Compared to single-head attention, MHA enables the
model to learn more diverse feature representations, leading
to improved performance in long-range dependency
modeling and complex learning tasks. As a result, the
Transformer model and its variants—such as BERT, GPT,
and Vision Transformer (ViT)—have achieved remarkable
success in both natural language processing (NLP) and
computer vision (CV) applications.

2.4.2 Applications in Detection



Attention mechanisms and multi-head attention
mechanisms have been widely applied in defect detection
and object detection research. For instance, in the
application of attention mechanisms, Wang et al.[43]
proposed Non-local Neural Networks, leveraging self-
attention to model long-range dependencies, thereby
improving performance in video classification and object
detection. Chen et al.[44] introduced Vision Transformer
(ViT), which partitions images into fixed-size patches and
treats them as sequential data, applying Transformer-based
architectures for image classification. ViT has demonstrated
performance comparable to convolutional neural networks
(CNNs). Zhang et al.[45] proposed a self-attention-based
defect detection model that focuses on defect regions,
enabling precise detection of minute defects, especially in
complex backgrounds.

In the application of multi-head attention, An et al.[46]
proposed Repulsive Attention, which introduces a
repulsion term to encourage diversity among attention
heads. Zhang et al.[47] introduced the Mixture of Attention
Heads mechanism, dynamically selecting the most suitable
attention head for each input token, thereby improving
computational efficiency and representational power. Li et
al.[48] proposed a defect detection method incorporating
multi-scale attention mechanisms, leveraging multi-head
self-attention to enhance the recognition of defects at
different scales. Wang et al[49] introduced a defect
detection model based on Vision Transformer, integrating
the global information modeling capability of self-attention
with the local feature extraction ability of convolutional
networks, significantly improving the accuracy of complex
defect recognition. Zhou ef al.[50] proposed a hybrid model
that combines multi-head self-attention mechanisms with
convolutional neural networks. By optimizing feature
extraction through attention mechanisms, this model
enhances both the accuracy and efficiency of defect
detection, making it particularly suitable for high-noise
environments.

In this paper, the multi-head attention mechanism is
introduced into the VAE-GAN model to enhance its
capability of capturing image details and improve the
quality of generated images. By computing multiple
attention heads in parallel, the multi-head attention
mechanism can capture multi-level global and local
features, addressing the limitations of VAE-GAN in
modeling complex dependencies. This optimization of
feature representation and generation further enhances the
performance of data augmentation and detection tasks.

2.5. AM-specific Considerations

In additive manufacturing (AM), porosity and cracks are
recognized as the two most prevalent process-induced
defects, with formation mechanisms closely associated with

material ~ properties,  processing  parameters, and
thermodynamic behavior . Porosity primarily originates
from melt pool instability (e.g., lack-of-fusion pores caused
by insufficient laser power or excessive scanning speed) or
gas entrapment in raw materials (e.g., moisture absorption
in powder feedstock or shielding gas incorporation into the
melt pool), typically manifesting as spherical or irregularly-
shaped voids [51][52].

Extensive research has revealed that pore size
distribution ranges from micrometer-scale (<10 pum) to
millimeter-scale, with subcritical pores serving as
preferential sites for fatigue crack initiation under cyclic
loading [53]. The spatial distribution of porosity exhibits
significant anisotropy, with pores tending to accumulate
along melt pool boundaries or interlayer interfaces, thereby
forming interconnected defect networks [54]. Furthermore,
near-surface pores can substantially reduce component
service life by accelerating oxidation and corrosion
processes [55].

Cracks predominantly result from residual stress
accumulation induced by rapid cooling, particularly in high-
temperature alloys or brittle materials. These defects can be
categorized into solidification cracks (caused by
intergranular liquid film rupture) and interlayer thermal
stress cracks (resulting from temperature gradient variations
between deposited layers) . Based on their formation stages,
cracks are further classified into solidification cracks
(associated with low-melting-point eutectic phases) and
solid-state cracks (initiated by stress concentration at
ductile-to-brittle transition temperatures). Crack
propagation typically follows columnar grain boundaries or
fusion lines, ultimately forming through-thickness fracture
channels [56][57]. Notably, crack orientation demonstrates
a distinct angular relationship with deposition paths, leading
to anisotropic mechanical properties in the fabricated
components [58].

3. Methodology

The entire process of defect detection in the powder bed
fusion (PBF) process based on data augmentation is
illustrated in Figure 1. The workflow consists of three main
steps:

(1) Data Preprocessing: This is the first step in the
defect detection process, aimed at cleaning and
standardizing the raw data while balancing the number of
defective samples to prevent imbalanced data from
affecting the detection results. This step lays the foundation
for subsequent analysis and detection. Let Data original
represent the raw dataset, which undergoes several
operations, including rotation, brightness adjustment,
contrast enhancement, saturation adjustment, and hue
modification.



These operations ensure data standardization and
consistency while addressing sample imbalance issues,
thereby providing high-quality input data for subsequent
modeling and detection.

(2) Data Augmentation: After preprocessing, the data
is fed into the Multi-VAE-GAN model for advanced
augmentation. Unlike traditional data augmentation
methods, Multi-VAE-GAN generates realistic and diverse
defect samples to expand the dataset. Through the
enhancement of Multi-VAE-GAN, the dataset is enriched
and optimized, offering an effective solution to the
challenge of small-sample data imbalance.

(3) Defect Detection: Various object detection models
are employed to train and evaluate the data, ultimately
achieving accurate and efficient defect identification.

3.1. Data Augmentation Algorithms

3.1.1 Traditional Data Augmentation

Traditional data augmentation methods, such as
geometric transformations, color adjustments, and pixel-
wise modifications, have demonstrated significant
effectiveness in expanding datasets and enhancing model
generalization. However, their limitations have become
increasingly evident. First, these methods rely on manually
designed rules, making it difficult to capture complex
structures and semantic information within the data.
Second, traditional augmentation techniques typically
generate only limited, low-level image transformations and
cannot produce entirely new or diverse data samples.
Consequently, as deep learning models become more
complex, traditional data augmentation methods can no
longer meet the demand for high-quality and diverse data.

3.1.2 Variational Autoencoder (VAE) Model

The Variational Autoencoder (VAE) [51] is a generative
model based on probabilistic graphical models that learns
latent representations of data for generating new samples.
The fundamental idea of VAE is to model the probability
distribution of the data, thereby enabling the generation of
new samples that closely resemble the original data
distribution. Unlike conventional autoencoders, VAE
imposes a probabilistic structure on the latent space,
ensuring both diversity and continuity in the generated data.

(1)Variational Autoencoder (VAE) Architecture and
Workflow

The Variational Autoencoder (VAE) is a generative
model composed of three core components: the encoder (E),
latent variable sampling (z), and the decoder (D) [51]: Its
workflow, as illustrated in Figure 2, can be summarized as
follows: First, the input image is processed by the encoder
E, which extracts latent features and maps them to the latent
variable Zg.Next, latent representations are sampled from
the learned distribution using the reparameterization trick,
generating the latent representation Zz.Finally, the latent
representation Zg is fed into the generator G, which decodes
it into a high-dimensional image for reconstruction.

(2) VAE Model Loss Function [51]

The objective of optimizing the VAE model is to learn
the model parameters by maximizing the log-likelihood of

the data, denoted as log p(x) . However, directly
computing log p(x)is challenging. To address this, VAE

employs variational inference and introduces the Evidence
Lower Bound (ELBO) as the optimization target. The
ELBO consists of two main components:
1)Kullback-Leibler (KL) Divergence: The KL divergence
measures the difference between two probability
distributions. In VAE, it is used to quantify the discrepancy
between the approximate posterior distribution q(z|x) and
the prior distribution p(z). For two Gaussian distributions

q(z|x)=N(u,,0,) and p(z)=N(0,)1) , the KL
divergence is given by:

Ku«ﬂxwp@»=—%ZM+bg#g—y;ﬂﬁu

i=1

where d is the dimensionality of the latent variable z,

Q)]

M, and Gj are the mean and variance of gz / x),

respectively.
2)Reconstruction Loss: The reconstruction loss
quantifies the difference between the reconstructed data

x and the original data X .Common reconstruction loss
functions include Mean Squared Error (MSE) and Cross-
Entropy Loss. For image data, MSE is typically used as the

reconstruction loss, and its formulation is:
2

1Y .
MSE(x,x)==) (x,~-x,) (2)
noio
Where n is the dimensionality of the data, and X and

x represent the i -th elements of the original and
reconstructed data, respectively.
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Figure 2. VAE Workflow Diagram

3.1.3 Generative Adversarial Network (GAN) Model

Generative Adversarial Networks (GANSs) introduce an
adversarial learning framework that significantly improves
the quality of generated images. A GAN consists of two
core components: the Generator (G) and the Discriminator
(D). The generator synthesizes data from random noise,
while the discriminator evaluates whether the input data is
real (from the original dataset) or generated by the model.
Through an adversarial learning process, the discriminator
provides feedback to guide the generator’s improvement
[60].

(1) Core Concept and Workflow of the Generative
Adversarial Network (GAN)

The core idea of the Generative Adversarial Network
(GAN) is to optimize the model through adversarial
learning between the generator (G) and the discriminator
(D). The GAN model consists of two primary components:
the generator and the discriminator. The generator produces
synthetic samples G(z) from random noise z, where z is
typically sampled from a standard normal distribution
N(0,1), representing a random point in the latent space.
Through a multi-layer neural network, the generator maps
the random noise z into generated data G(z) with a specific
distribution and structure, aiming to produce samples that
closely match the distribution of real data X... so that the
discriminator cannot distinguish between real and generated
data.with a specific distribution and structure, aiming to
produce samples that closely match the distribution of real

data X so that the discriminator cannot distinguish
between real and generated data[60][61]

The discriminator, on the other hand, receives both real
data X, and generated data G(z) as inputs and outputs a
probability value D(X)€/0,1], representing the confidence
that the input sample is real. Specifically, D(X)=1 indicates
that the input is real data, while D(X)=0 indicates that the
input is generated data. The objective of the discriminator is
to distinguish real data from generated data as accurately as
possible.

According to the workflow illustrated in Figure 3, the
main steps of GAN training are as follows: First, the GAN
takes a random noise vector z as input, which is typically
sampled from a standard normal distribution N(0,/) and
serves as the input to the generator. Next, the generator G
processes the random noise z through a multi-layer neural
network, mapping it into generated data G(z) with a specific
distribution and structure, aiming to resemble the real data
Xea- Finally, the discriminator

D receives both real data X..4 and generated data G(z)
and outputs a probability value representing the confidence
that the input sample is real. Through this adversarial
learning process, both the generator and the discriminator
are continuously optimized. Eventually, the generator is
capable of producing samples that closely match the real
data distribution, making it increasingly difficult for the
discriminator to differentiate between real and generated
data.
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(2) Adversarial Learning Mechanism

During the training process, the generator and the
discriminator engage in a continuous adversarial
game[60][61]

1) Generator’s Objective: he goal of the generator is to
deceive the discriminator, making the generated data G(z)
indistinguishable from real data. The optimization objective
of the generator is to minimize the discriminator’s ability to
correctly classify generated samples as fake.

2) Discriminator’s Objective: The discriminator strives
to accurately differentiate between real and generated data.
Its optimization goal is to minimize classification errors for
real samples while maximizing classification errors for
generated samples.

The training objectives of both networks are defined
through loss functions :

min max £, [log D(x)]+E._, [log(1-D(G(z)))] (3D

G D
Where The first term represents the discriminator’ s
prediction loss on real data. The second term corresponds to
the generator’ s attempt to deceive the discriminator.

3.1.4 VAE-GAN Model

To combine the advantages of Variational Autoencoders
(VAE) and Generative Adversarial Networks (GAN),
researchers proposed the VAE-GAN model. The VAE-
GAN model introduces the adversarial training mechanism
of GAN into the VAE framework, enabling the generator to
not only produce diverse samples but also generate high-
quality images. The core idea of the VAE-GAN model is to
leverage the latent variable model of VAE to learn the
underlying distribution of the data, while utilizing the
adversarial training mechanism of GAN to enhance the
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quality of the generated data [62].

(1)Principles and Architecture of the Variational
Autoencoder-Generative Adversarial Network (VAE-GAN)

The Variational Autoencoder-Generative Adversarial
Network (VAE-GAN) seamlessly integrates the advantages
of Variational Autoencoders (VAE) and Generative
Adversarial Networks (GAN), aiming to explore the latent
distribution of data through VAE’s latent variable model
while leveraging GAN’s adversarial training mechanism to
enhance the realism of generated data. The VAE-GAN
model consists of three core components: the encoder (E),
the generator (G), and the discriminator (D). Its
collaborative workflow, as illustrated in Figure 4, can be
summarized as follows [62][10]:First, the model take
s defect image samples as input. The encoder E extracts the
latent representation Z, while, to introduce sample
diversity, a random vector Zp is generated and fed into the
generator G. The encoder E maps the input image to the
latent space, generating the feature vector Zg to capture the
underlying structural information of the image. Meanwhile,
the random noise vector Zp is used to simulate possible
defect distributions. The generator G utilizes both Z¢ and Zp
to reconstruct or generate images.Finally, the generator G
produces two types of images: reconstructed images and
synthetic (fake) images, derived from Zz and Zp,
respectively. The discriminator D evaluates the output of
the generator by distinguishing between real and fake
images while also assessing the quality of reconstructed
images. The "real/fake" score produced by the discriminator
serves as the adversarial loss for the GAN, ensuring that the
generated images become increasingly indistinguishable
from real samples.




Figure 4.Workflow Diagram of VAE-GAN

(2) Loss Functions [62][10]

The training of VAE-GAN combines the reconstruction
loss of VAE and the adversarial loss of GAN. The loss
function consists of the following components:

o Reconstruction Loss: Ensures that the generator can
accurately reconstruct the input image.

« Kullback-Leibler (KL) Divergence: Constrains the latent
distribution generated by the encoder to approximate a
standard normal distribution.

o Adversarial Loss: The adversarial loss is used to enhance
the realism of the generated images. The generator aims
to minimize the discriminator's probability of correctly
classifying generated images, while the discriminator
aims to maximize its probability of correctly classifying
real images and minimize its probability of classifying
generated images as real.

« By jointly optimizing the loss functions of the encoder,
generator, and discriminator, the model can generate
high-quality images while accurately capturing defect
features.

By jointly optimizing the loss functions of the encoder,
generator, and discriminator, the model can generate high-
quality images while accurately capturing defect features.

3.1.5 Multi-VAE-GAN Algorithm

To further enhance the generative capability of the VAE-
GAN model, this paper proposes an improved model that
incorporates a multi-head attention mechanism. The multi-
head attention mechanism has demonstrated significant
advantages in generative models, particularly in capturing
global dependencies within images. Mathematically, the

. nxd, .
input sequence X € R™“™* (where n is the sequence

length and dmodel is the feature dimension) is first linearly
projected into three matrices: Query (Q), Key (K), and
Value (V) through learnable weight matrices:

Q=XWe,K=XWSV=xw" @

where WQ WK WYgRdmodeldk are trainable parameters,
and dy is the dimension of each head.

The projected matrices are then split into h parallel heads
along the feature dimension:
0, =Splity(Q), K, = Split, (K),V, = SplifV')(i =1,2...h) ()
Each head independently computes the scaled dot-product
attention:

. Q,. K/
AttentioQ,, K,,V;) = softmax(——=—-)V, (6)

A

where +/d, scales the dot products to prevent gradient
k p p g

vanishing.
The outputs of all heads are concatenated and linearly
transformed to produce the final multi-head attention

features:
MultiHead Q,K,V') = Concat( head,, head,,...,head, W (7)

where W e R"“*m g the output projection matrix.

By computing multiple attention heads in parallel, each
attention head can independently focus on different regions
or features of the image, enabling the model to more
comprehensively understand the semantic information of
the image. This mechanism not only strengthens the model's
ability to model global structures but also captures fine-
grained details, allowing the generative model to better
maintain coherence and consistency when producing high-
quality images. Furthermore, by fusing the outputs of
multiple attention heads, the multi-head attention
mechanism effectively integrates visual features at different
levels, further enhancing the expressive power of the
generative model. This parallel computation approach not
only improves the model's efficiency but also makes it more
flexible and robust when handling complex images, leading
to outstanding performance in tasks such as image
generation and image inpainting. The structure of the model
is illustrated in Figure 5.

In the figure, Linear Q, Linear K, and Linear V
represent linear transformations (fully connected layers)
that map the input sequence X to the query (Query), key
(Key), and value (Value) spaces, respectively. The input X
has a dimension of (nXdmodel), where n is the sequence
length and dmodel is the model dimension. Specifically, the
input sequence is transformed into Q,K, and V matrices
through these three linear transformations. Subsequently,
Split_Q, Split K, and Split V denote the division of the Q,
K, and V matrices along the feature dimension into multiple
heads, with each head responsible for capturing information
from different subspaces of the input sequence. After
division, each head independently computes attention
scores and produces corresponding outputs through the
scaled dot-product attention mechanism. The Concat
operation then concatenates the outputs of all heads,
restoring the original dimension. Finally, Linear out is a
linear transformation layer that further maps the
concatenated result to generate the final output of the multi-
head attention mechanism. The collaborative operation of
these components enables the multi-head attention
mechanism to capture diverse information from the input
sequence in parallel, thereby enhancing the model's
expressive power.

Although multi-head attention enables the model to
attend to different subspaces in parallel and enhances its
expressive power, studies have shown that using too few or
too many heads does not necessarily yield optimal
performance. When the number of heads is fewer than eight
(e.g., 4 - 6), each head receives a higher dimensionality



(dmodet/h), which may lead to a low-rank bottleneck, thereby
limiting representational capacity and potentially degrading
model performance[64]. Conversely, using more than eight
heads (e.g., 12 or 16) can increase subspace redundancy and
parallelism during training. However, extensive empirical
evidence reveals that many of these heads are redundant at
inference time, with only a few contributing significantly to
the final output. These redundant heads can often be pruned
without noticeable loss in performance.

For instance, in the WMT English - Russian translation
task, pruning 38 out of 48 heads resulted in only a 0.15 drop
in BLEU score[65]. Michel et al. also observed that even
after removing most of the 16 heads, the model maintained
near-original performance, stating: “ Even when most
heads are removed at test time, BLEU remains nearly
constant,” and in some layers, a single head was sufficient.

Linear Q —— > Split Q ——»
Input

Linear K —— » Split K ——»

Linear V— Split V. —

This suggests that configurations with more than eight
heads often introduce unnecessary parameters and
computational overhead without improving representational
diversity or generalization.

Moreover, recent studies have proposed mechanisms
such as Grouped Head Attention and Voting-to-Stay, which
aim to identify and prune redundant heads, further
confirming the diminishing returns and prune-ability of
excessive heads[66]. Therefore, using eight heads is often
considered a "sweet spot": it provides sufficient subspace
diversity while avoiding dimensional bottlenecks and
excessive redundancy, making it an empirically optimal
trade-off between performance and efficiency. This
configuration is widely adopted in vision Transformer
models like ViT[67], where it consistently yields strong
results.
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Figure 5.Structure Diagram of the Multi-Head Attention Mechanism

The model proposed in this paper improves upon the
VAE-GAN by incorporating the multi-head attention
mechanism into the encoder and generator, significantly
enhancing the model's performance. As shown in Figure 6,
the overall architecture of the model retains the advantages
of the original VAE-GAN while achieving more effective
feature extraction and image generation through the

introduction of the multi-head attention mechanism.

In the encoder section, the traditional VAE structure
primarily relies on convolutional operations to extract local
features. In contrast, the multi-head attention mechanism
introduced in this paper captures long-range dependencies
between different regions of the input image, thereby better
extracting global features. By computing multiple attention
heads in parallel, the model can simultaneously focus on



different feature subspaces of the image, not only enhancing
the comprehensiveness of feature extraction but also
improving the model's ability to understand complex image
structures.

In the generator section, the introduction of the multi-
head attention mechanism also brings significant
performance improvements. Traditional GAN generators
mainly rely on transposed convolutional operations to
progressively generate images, which can easily result in a
lack of global consistency in the generated images. By

integrating the multi-head attention mechanism into the
generator, the proposed model dynamically adjusts the
relationships  between different regions during the
generation process, thereby producing more realistic and
diverse images. The multi-head attention mechanism
enables the generator to better capture global structural
information in the image, avoiding the common mode
collapse issue in traditional methods while improving the
detail quality and visual realism of the generated images.
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Figure 6.Flowchart of the proposed Multi-VAE-GAN model

3.2. Defect Detection Models

In this study, several mainstream object detection models
were selected for training and testing to comprehensively
evaluate their performance in defect detection tasks. The
specific models chosen include the following:

(1) SSD

SSD is an efficient single-stage object detection model
that generates multi-scale candidate bounding boxes
directly on feature maps and performs classification
simultaneously. It offers high detection speed, making it

particularly suitable for real-time defect detection
applications.
(2) YOLO Series Models

YOLOvV4: YOLOV4 introduces significant improvements
in network architecture optimization, data augmentation
strategies, and training process tuning. It achieves a good
balance between detection accuracy and speed, making it
suitable for defect detection scenarios that require both real-
time performance and accuracy.

YOLOv7: YOLOvV7 further optimizes model efficiency
and detection accuracy, particularly excelling in complex
scenes and small object detection. It is well-suited for defect
detection tasks with high demands for both real-time
performance and precision.

YOLOvVS: YOLOvVS introduces a redefined architecture
that prioritizes scalability and efficiency. It adopts an
anchor-free detection mechanism, streamlined feature
fusion pathways, and adaptive training strategies such as
dynamic label assignment. These innovations enhance both
precision and inference speed across diverse model scales
(from nano to extra-large), making it particularly effective
for defect detection tasks—even in challenging scenarios
involving small or occluded defects.

(3) Faster R-CNN

Faster R-CNN is a two-stage object detection model
based on region proposals. It generates high-quality
candidate bounding boxes through a Region Proposal
Network (RPN) and combines them with a fully
convolutional network (CNN) for precise classification and
regression. Its core advantage lies in its high detection



accuracy, making it suitable for scenarios where detection
results are critical.

During the model training and testing phases, this study
conducts a comprehensive evaluation of the aforementioned
models' performance in defect detection tasks. The
evaluation metrics include Precision, Recall, and mean
Average Precision to meet the requirements of practical
applications.

4. Experiment and Results Analysis

4.1. Experimental Environment and Parameter
Configuration

The experiments were conducted on the AutoDL cloud
computing platform. The hardware configuration of the
cloud environment includes a 64-bit Windows 10 operating
system, an Intel® Xeon® Platinum 8481C CPU @ 2.00
GHz, 16GB of RAM, and an NVIDIA RTX 4090D GPU
with 24GB of dedicated memory. The deep learning
software environment is set up with Python 3.8, utilizing
CUDA 11.8 for GPU acceleration, and implemented using
the PyTorch 2.0.0 framework.

In this section, we apply the algorithmic steps outlined in
Section 3.1 to the defect dataset to evaluate the
effectiveness of the proposed method. Prior to conducting
the experiments, we optimized the VAE-GAN model by
configuring the batch size to 16, the total number of epochs
to 800, and the learning rate to 3e-4, using the Adam
optimizer, as detailed in Table 1.

Table 1. Model Parameter Settings

Parameter settings Details

Batch size =16 Number of batch processes is 16

Epoch =800 Training 800 rounds of data
Learing_rate = 3e-4 Initial learning rate of 3e-4
Adam Optimizer

4.2. Data Collection

To train and validate the model, scanning electron
microscope (SEM) images of additively manufactured
components were utilized. A total of 11 laser powder bed
fusion (L-PBF) Ni939 sample SEM images, each with a
resolution of 1024x960 pixels, were collected from the
SEM image archive. Each of these images contains both
porosity and crack defects. The dataset was randomly
divided into a training set and a test set at a ratio of 7:3.

Initially, defects were annotated, and based on their
annotated locations, the images were cropped into multiple
128x%128 pixel patches to construct the raw dataset. In the
training set, the number of porosity and crack samples was
1,551 and 545, respectively. All experiments were
conducted on the training set, while the test set remained
unchanged. However, the dataset exhibits a relatively small

sample size and an inherent class imbalance, as the number
of the two defect types differs significantly. In subsequent
steps, various data augmentation techniques will be
employed to mitigate these issues.

4.3. Evaluation Metrics

In this study, a comprehensive evaluation was conducted
to assess both the generative performance of the proposed
Mult-VAE-GAN model and the accuracy of the defect
detection model. The quality of generated defect samples
was measured using commonly adopted objective metrics in
the image generation domain, such as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM),
along with subjective assessment methods focusing on
defect-specific characteristics. Meanwhile, the accuracy of
the defect detection model was evaluated using
classification performance metrics, including accuracy,
precision, and recall. These metrics were used to analyze
the effectiveness of the generated samples in downstream
defect detection tasks and to assess the practical
applicability of the model.

The selection of these evaluation metrics aims to provide
a scientific and comprehensive assessment of image quality,
realism, and the impact of generated images on real-world
defect detection applications.

4.3.1 Data Augmentation Evaluation Metrics

(1) The Peak Signal-to-Noise Ratio (PSNR) is one of the
conventional metrics for assessing imagequality. A higher
PSNR value indicates smaller differences between the
generated image and the reference image, implying better
quality of the generated image. The definition of PSNR is
as follows:

2
PSNR=10-10gIO(L—j (8
MSE
Where L represents the maximum pixel value of the
image (for an 8-bit image, L=255).Mean Squared Error
(MSE) measures the average squared difference between
the generated image and the reference image. It is
calculated as follows:

MSE =15 3 (16,)) - 16, /)

i=l j=1

D)

Where N=H X W, where H and W represent the height
and width of the image, respectively. /(i.]), I (i, j) denote
the pixel values at position (7, i ) - in the reference image

and the generated image, respectively.

(2)The Structural Similarity Index Measure (SSIM) is a
metric used to evaluate the similarity between two images
in terms of luminance, contrast, and structure. It is designed
to more accurately reflect image quality as perceived by the



human visual system. The formula for calculating SSIM is
as follows:

Qup,+C)2o,,+C,)
(/uj + /'62» + Cl)(axz + O'f, +C,)

SSIM = (100

Where £¢ and £¢, represent the mean values of images x
and y, respectively; O'i and Gi denote the variances of

images x and y, respectively; o, is the covariance between

images x and y;C;=(K;L)? and C,=(K,L)? are stabilization
constants, where L is the maximum pixel value, K1 and K2
are small positive numbers used to prevent division by zero.

4.3.2 Evaluation Metrics for Defect Detection

To accurately evaluate the performance of the defect
detection model, this paper adopts Average Precision (AP)
and mean Average Precision (mAP) as evaluation metrics.
AP is a comprehensive metric calculated based on Precision
and Recall, while mAP is the average AP value across all
target categories. These two metrics are widely used in the
field of object detection and can comprehensively reflect
the model's performance in defect detection tasks.

(1) Precision and Recall

Precision and Recall are the foundational concepts for
defining AP and mAP. Their formulas are as follows:

Precision is defined as:

TP

precision = TP+ FP (11)
Recall is defined as:
P
l=—— (12)
T T TPy BN

Where TP (True Positives): The number of samples
correctly predicted as positive.FP (False Positives): The
number of samples incorrectly predicted as positive.FN
(False Negatives): The number of samples incorrectly
predicted as negative.

(2) Average Precision (AP)

AP is obtained by calculating the area under the
Precision-Recall (PR) curve. Its formula is as follows:

AP = r Precision(Re call)d Re call
° (13)

In practical calculations, a discretization method is
typically employed. The precision and recall values are
progressively accumulated based on the confidence scores
of the detection boxes, and the integral value of the curve is
estimated using interpolation. AP can evaluate the detection
performance of the model on a single defect category.

(3) Mean Average Precision (mAP)

mAP is a comprehensive metric obtained by averaging

the AP values across all target categories. The formula is as

follows:
1 <&
mAP = EZ} AP, (14)
Where N: The number of target categories. 4 P : The

average precision of the i -th category.

mARP serves as a comprehensive evaluation criterion for
multi-category detection performance. A higher mAP value
indicates stronger overall detection capability of the model.

4.4 Experimental Results and Discussion

In this section, extensive experiments are conducted to
demonstrate the effectiveness of the proposed Mult-VAE-
GAN algorithm in augmenting additive manufacturing
defect sample data and improving defect detection accuracy.
The key experiments include analyzing the impact of data
preprocessing, evaluating the performance of Mult-VAE-
GAN, and validating the effectiveness of the proposed
method based on SSIM and PSNR. Additionally, multiple
defect detection models are utilized to verify that the data
augmentation approach enhances defect detection accuracy.

4.4.1 Data Preprocessing

In the original dataset, there exists a significant class
imbalance among defect samples, which adversely affects
the performance of defect detection. Specifically, when
using the YOLOv4 algorithm for initial defect detection, the
average precision (AP) for cracks was 39.20%, while for
pores, it reached 90.51%, resulting in an overall mAP of
64.85%. This outcome suggests that the imbalance in data
distribution is a primary factor contributing to the lower
detection performance for cracks.

To mitigate the performance degradation caused by class
imbalance, conventional data augmentation techniques were
applied to expand and balance the dataset. The
augmentation process included 90° and 180° rotations, as
well as adjustments to brightness, contrast, saturation, and
hue. These transformations preserved the original defect
characteristics while increasing data diversity. After
augmentation, the number of pore samples increased to
1,656, and the number of crack samples increased to 1,388,
thereby alleviating the imbalance issue to some extent.

This data preprocessing step significantly improved the
balance of the dataset, providing a more reliable foundation
for subsequent data augmentation and defect detection
model training.

4.4.2 Data Augmentation

During the defect recognition experiments, it was
observed that the imbalance in defect sample distribution
and the limited overall dataset size negatively impacted the
performance and accuracy of the detection model. To



address this issue, an initial dataset balancing process was
conducted to ensure a more even distribution of defect
categories. Additionally, traditional data augmentation
techniques, such as rotation, flipping, and scaling, were
applied. However, when defect detection was performed
using only YOLOv4 after traditional data augmentation, the
detection performance did not improve significantly;
instead, a downward trend was observed. Specifically, the
detection accuracy of YOLOvV4 decreased for both Pore and
Crack defect categories, resulting in an overall mAP of only
59.45%. This decline in performance may be attributed to
the fact that traditional data augmentation methods
potentially damaged defect features, leading to degraded
detection results and affecting the model's learning or
generalization  ability. Moreover, traditional data
augmentation methods may not have effectively enhanced
the diversity of defect features, preventing the model from
sufficiently learning the key characteristics of different
defect types.

To overcome these limitations, we employed the
improved Mult-VAE-GAN data augmentation model to
generate additional high-quality reconstructed images. This
method is designed to enhance the generalization ability of
the detection model and improve overall detection
performance in additive manufacturing.

To assess the quality of the generated reconstructed
images, this study adopted two widely used evaluation
metrics: SSIM and PSNR. The generated images were
evaluated to ensure their quality before being incorporated
into the balanced dataset. Ultimately, high-quality
reconstructed images were selected and integrated into the
dataset to further enrich the data and enhance classification
accuracy.

Table 2 presents the distribution of defect samples
across the original dataset, the dataset after balancing, and
the dataset after augmentation using Mult-VAE-GAN.

Table 2. Defect Sample Distribution

Pore Crack
Raw Data 1551 545
Data Balancing 1656 1388
Mult-VAE-GAN Data 3844 3280

Augmentation

Figure 7 presents the experimental results obtained
using two image quality evaluation metrics: Structural
Similarity Index (SSIM) and Peak Signal-to-Noise Ratio
(PSNR). The left subplot illustrates the PSNR evaluation
results, while the right subplot displays the SSIM evaluation
results.

From Figure 7, it can be observed that as the data
augmentation process progresses, the values of both PSNR

and SSIM exhibit a steady upward trend, indicating a
continuous improvement in the quality of the reconstructed
images. Notably, during the initial phase of data
augmentation, the PSNR and SSIM values increase rapidly,
suggesting that the Mult-VAE-GAN model can quickly
capture the primary structural and textural information of
the images in the early training stage, thereby generating
images of relatively high quality. This rapid increase may
be attributed to the initialization of model parameters and
the early adjustments made by the optimization algorithm,
allowing the generated images to achieve satisfactory visual
quality within a limited number of iterations.

To quantitatively validate the superiority of the proposed
Mult-VAE-GAN, we compare its performance with the
original VAE-GAN framework. As shown in Table 3, our
model achieves significant improvements, with SSIM and
PSNR values increasing from 0.7365 to 0.8214 (+11.5%)
and from 21.4694 to 22.5437 (+5.0%), respectively. These
results confirm that the multimodal architecture enhances
both structural coherence and pixel-level fidelity compared
to the baseline.

Table 3. Defect Sample Distribution

SSIM PSNR
VAE-GAN 0.7365 21.4694
Mult-VAE-GAN  0.8214 22.5437

As the data generation process continues, the growth rate
of PSNR and SSIM gradually slows down and stabilizes in
the later stages of training. The PSNR value ultimately
stabilizes around 22, while the SSIM value remains
approximately 0.8, indicating that the generated images not
only maintain a high signal-to-noise ratio at the pixel level
but also effectively preserve the semantic information of the
original images in terms of structural perception.
Furthermore, although minor fluctuations in the numerical
values occur in the later training stages, the overall trend
remains stable at a relatively high level. This suggests that
the model is capable of maintaining image quality over
extended training periods and demonstrates a certain degree
of generalization, enabling it to adapt to variations in data
distribution.

To further enhance the quality and balance of the dataset,
we performed quality evaluation-based filtering on the
reconstructed images and incorporated the selected high-
quality samples into the original dataset. This optimization
strategy not only increases the diversity of the dataset but
also provides high-quality input data for subsequent defect
detection model training, thereby effectively improving
classification accuracy and generalization performance.
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Figure 7. Evaluation of Reconstructed Images

4.4.3 Defect Detection

To enhance the generalization capability and detection
accuracy of defect detection models, this study proposes a
Mult-VAE-GAN-based data augmentation method to
generate a more diverse and complex set of defect samples.
Using the augmented dataset, we retrained and validated

five mainstream object detection models: YOLOV7,
YOLOv4, YOLOvVS, SSD, and Faster R-CNN.
Before introducing the Multivariate Variational

Autoencoder Generative Adversarial Network (Mult-VAE-
GAN) for data augmentation, we conducted defect detection
experiments on two defect types—pore and crack—using a
balanced dataset without any augmentation. Table 4
presents the detection performance of various methods at
this stage.

According to the results, SSD achieved the best
performance in crack detection, with an average precision
(AP) of 58.19%, and also showed a competitive AP of

89.78% for pore detection. This resulted in the highest
overall mean average precision (mAP) of 73.99% among all
methods. Faster R-CNN yielded the highest AP for pore
detection (92.07%), but its performance on crack detection
was slightly lower (46.85%), leading to a mAP of 69.46%.
YOLOv7 demonstrated balanced performance across both
defect types, with an AP of 47.26% for crack and 90.86%
for pore, resulting in a mAP of 69.06%. YOLOvVS showed
comparable results, with a mAP of 67.07%. In contrast,
YOLOv4 exhibited the weakest performance on crack
detection (AP of 39.02%), and although it achieved 91.43%
AP for pore detection, its overall mAP was the lowest at
65.18%.

In summary, these baseline detection results provide a
reference for evaluating the effectiveness of the proposed
Mult-VAE-GAN data augmentation technique in enhancing
defect detection performance in subsequent experiments.

Table 4. Defect Detection Results Before Data Augmentation.

AP (9
Method (%) mAP (%)
Pore Crack
Yolov4 91.43% 39.02% 65.18%
Yolov7 90.86% 47.26% 69.06%
Yolov8 90.46% 43.68% 67.07%
SSD 89.78% 58.19% 73.99%
Faster-RCNN 92.07% 46.85% 69.46%

After incorporating the Mult-VAE-GAN  data
augmentation technique, we retrained and tested the same

balanced dataset. The results, presented in Table 5,
indicate that data augmentation significantly improved the
performance of all detection methods compared to the pre-

augmentation results shown in Table 4.

Table 5 reports the average precision (AP) for Pore and
Crack detection, as well as the mean average precision
(mAP) for each method after data augmentation. The key
findings are as follows:

o Faster R-CNN exhibited the most
improvement in overall performance. Its

prominent
average



precision (AP) for Crack detection surged from 46.85% to
84.67%, while Pore detection experienced a slight decline
from 92.07% to 90.82%. Nonetheless, the mean average
precision (mAP) increased significantly from 69.46% to
87.75%, representing an improvement of 18.29
percentage points, indicating a remarkable enhancement
in detection capability.

e SSD also demonstrated a dramatic performance boost,
particularly in Crack detection, where the AP rose from a
previously lowest 50.90% to 83.47%. The AP for Pore
detection remained relatively stable, slightly decreasing
from 89.78% to 89.18%. However, the overall mAP
increased from 73.99% to 86.33%, marking the largest
relative gain among all models (+12.34%).

e YOLOV4 achieved a significant improvement in Crack
detection AP, which rose from 39.02% to 80.69%, nearly
doubling its previous performance. Although its Pore AP
slightly declined from 91.43% to 89.74%, the overall
mAP experienced a sharp increase from 65.18% to
85.21%, an improvement of 20.03 percentage points, the
highest among all models.

e« YOLOvV8 showed consistent performance gains across
both defect categories. The AP for Crack detection
increased from 43.68% to 80.72%, while Pore detection
saw a moderate decline from 90.46% to 88.60%. Despite
this, the overall mAP improved from 67.07% to 84.66%,
resulting in a 17.69% enhancement.

e YOLOv7 maintained robust performance following
augmentation. The AP for Pore increased from 90.86% to
92.22%, whereas the Crack AP slightly decreased from
47.26% to 76.13%. Even so, the model’s mAP improved
from 69.06% to 84.18%, indicating a 15.12%
performance gain.

In summary, the comparative results clearly demonstrate
that the Mult-VAE-GAN data augmentation technique

effectively enhances the performance of defect detection
models. The ability of Mult-VAE-GAN to generate
structurally diverse and representative Crack samples helps
mitigate the challenges posed by insufficient data and
structural variability, thereby significantly improving the
learning capacity and generalization of detection models.

From the perspective of pore defect detection, the
improvements observed are not uniformly significant. One
possible explanation is that the baseline model had already
achieved a relatively high detection accuracy (typically
around 90%) prior to data augmentation, potentially
reaching a performance saturation point. Consequently, the
marginal benefit from further augmentation becomes
limited. As noted by Maayan Frid-Adar et al.[63],
increasing the number of training examples generally
improves performance; however, once saturation is reached,
adding more augmented samples may no longer yield
noticeable gains in classification results. When the
classification performance is already high, the additional
benefits from augmentation tend to be minimal. This
phenomenon does not necessarily indicate the failure of the
augmentation method itself, but rather reflects the presence
of strong intrinsic features in the original pore images,
which diminish the incremental value of augmented data.
Furthermore, the multi-VAE-GAN approach, while
effective in many cases, may introduce subtle artifacts such
as edge blurring or texture distortion when handling fine-
grained defects. These minor variations can present
adaptation challenges for certain models, leading to slight
fluctuations in recognition accuracy.

However, considering the comprehensive metric of mean
Average Precision (mAP), all models exhibit consistent
improvement, further validating the effectiveness and
generalization  capability of the Multi-VAE-GAN
augmentation strategy at a macro level.

Table 5. Defect Detection Results After Data Augmentation.

AP (%)

1)
Method Tore Crack mAP (%)
Yolov4 89.74% 80.69% 85.21%
Yolov7 92.22% 76.13% 84.18%
Yolov8 88.60% 80.72% 84.66%
SSD 89.18% 83.47% 86.33%
Faster-RCNN 90.82% 84.67% 87.75%

By comparing Table 4 and Table 5, it is evident that
data augmentation effectively enhances the accuracy of
defect detection models while also improving the
robustness of different detection methods. This provides
strong technical support for high-precision defect
detection in real-world applications.

To further evaluate the impact of the Mult-VAE-GAN
data augmentation technique on defect detection
performance, we conducted predictions on selected test

samples and generated corresponding detection result
images. These visualizations provide a clear depiction of
each model’s ability to detect Pore and Crack defects.

(1) YOLOV7 Detection Results

YOLOvV7 exhibited the superior performance after
data augmentation. As shown in Figure 8, the model
accurately locates and identifies both Pore and Crack
defects with minimal false positives or false negatives.
Notably, YOLOv7 demonstrated strong robustness in



detecting cracks within complex backgrounds, maintaining YOLOv4, SSD still experiences missed detections in Pore
high precision even in challenging scenarios. detection, especially when the Pores are small or densely
' B . : distributed.

Figure 8. YOLOvV7 Detection Results

(2) YOLOvV4 Detection Results Figure 10. SSD Detection Results.

YOLOv4 showed noticeable improvement following
data augmentation; however, its detection results indicate
that some minor cracks were still missed. As illustrated in
Figure 9, while YOLOV4 effectively detects Pore defects,
its performance in detecting fine cracks is slightly inferior
to YOLOv7. Nevertheless, compared to the pre-
augmentation results, YOLOv4’s overall detection accuracy
has improved significantly.

(4) Faster R-CNN Detection Results

Faster R-CNN also showed performance enhancements
following data augmentation. As presented in Figure 11,
the model accurately detects Pore and Crack defects.
However, in complex backgrounds, a few false detections
still occur, particularly i

] Figure 11. Faster R-CNN Detection Results
Figure 9. YOLOv4 Detection Results (5) Yolov8 Detection Results

(3) SSD Detection Results The implementation of data augmentation has led to an

) Among all models, SSD exhibit.ed the rnpst Substantial enhancement in the overall performance of YOLOVS. As
improvement after data augmentation, particularly in Crack illustrated in Figure 12, the model demonstrates high
detection. As depicted in Figure 10, SSD effectively accuracy in detecting hole and crack defects. Nevertheless,

identifies Crack defects, and its false detection rate is in complex backgrounds, minor false positives may still
significantly reduced. However, compared to YOLOvV7 and occur, particularly for small pores and fine cracks.



Figure 12. Yolov8 Detection Results

Overall, the Mult-VAE-GAN data augmentation
technique significantly improves defect detection
performance,. These findings further confirm the
effectiveness of this augmentation approach in improving
defect detection accuracy and robustness across different
models.

4.5 Performance Evaluation of Mult-VAE-GAN Using
the NEU-DET Public Dataset

The NEU-DET dataset, developed by the research team
led by Kechen Song at Northeastern University, is
specifically designed for the detection and recognition of
steel surface defects. This dataset comprises 1,800 images
covering six common types of steel surface defects: Crazing,
Inclusion, Patches, Pitted Surface, Rolled-in Scale, and
Scratches, as illustrated in Figure 13.

Figure 13. NEU-DET datasets
The validation experiments on the NEU-DET dataset
adopted essentially the same parameters as those for the
AM dataset. Nevertheless, given NEU-DET's larger data
volume, the training converged stably at 400 epochs

without requiring the 800 epochs needed for AM. See Table
5 for parameter configurations.
Table 5. NEU-DET dataset experimental parameters

Parameter settings Details

Batch_size =16 Number of batch processes is 16

Epoch =400 Training 400 rounds of data
Learing rate = 3e-4 Initial learning rate of 3e-4
Adam Optimizer

Based on the experimental records and Figure 14, the
SSIM values remained stable within the range of 0.76 -
0.77, peaking at 0.79, while the PSNR consistently ranged
between 27 - 28, reaching a maximum of 30. Compared
with the experimental results on the AM dataset, although
the SSIM values showed a slight decrease, the PSNR
exhibited a significant improvement of 5 points. These
findings demonstrate that the Mult-VAE-GAN model is not
only effective for the AM dataset but also demonstrates
strong generalization capability across other domain-
specific datasets.

PSNR SSIM
—— PSNR Max 081 — ssiM Max

0 100 200 300 400 0 100 200 300 400

Figure 15. NEU-DET Generated Image Evaluation
Figure 15 demonstrates the synthetic images produced by
the proposed Mult-VAE-GAN framework, exhibiting
realistic defect patterns consistent with the training
distribution.

Figure 14. NEU-DET Generated Image

5. Conclusion



This study proposes a data augmentation method based
on Mult-VAE-GAN, aimed at enhancing the generalization
ability and detection accuracy of defect detection models in
the context of additive manufacturing (AM). Due to the
complex physical and chemical interactions in the AM
process, defect patterns exhibit high variability and
randomness. Traditional defect datasets are often limited in
scale and suffer from imbalanced sample distributions,
negatively impacting model performance. To address this
challenge, this study utilizes Mult-VAE-GAN to generate
defect samples with greater diversity and complexity,
thereby improving the performance of detection models
across different defect types.

Notably, although this study primarily focuses on the
field of additive manufacturing, Mult-VAE-GAN, as a
general data augmentation method, is equally applicable to
other defect detection scenarios, such as semiconductor
manufacturing, welding quality inspection, and defect
detection in aerospace composite materials. Its key
advantage lies in its ability to effectively expand datasets
and improve model generalization across various defect
patterns.

In the experimental evaluation, five state-of-the-art
object detection models—YOLOv4, YOLOv7, YOLOVS,
SSD, and Faster R-CNN—were employed to assess the
effectiveness of the proposed Multi-VAE-GAN data
augmentation technique on the detection of Pore and Crack
defects. The results demonstrate that the augmented data
significantly enhances detection performance across all
models, particularly in terms of average precision (AP) and
mean average precision (mAP). Specifically, YOLOv4
achieved a mAP improvement from 65.18% to 85.21%,
with Crack detection AP increasing from 39.02% to
80.69%. YOLOvV7 and YOLOvVS8 recorded mAP gains of
15.12 and 17.69 percentage points, respectively, with
YOLOvVS showing a remarkable 37.04 percentage-point
increase in Crack detection. SSD exhibited the most
substantial relative improvement, with mAP rising from
73.99% to 86.33%. Faster R-CNN achieved the highest
post-augmentation mAP of 87.75%, up from 69.46%. These
results indicate that the Multi-VAE-GAN effectively
addresses challenges associated with limited and
imbalanced datasets by generating diverse defect
representations, thereby improving model generalization,
reducing false detections, and enhancing overall detection
robustness.

This study contributes both theoretically and practically.
From a theoretical perspective, it integrates the VAE-GAN
generative model with defect detection tasks, providing a
novel data-driven solution for defect detection in additive
manufacturing. From a practical perspective, the
experimental results confirm that this method effectively
enhances the performance of mainstream object detection

models, particularly in cases with insufficient or imbalanced
datasets, significantly improving their generalization ability.

Despite the remarkable improvements achieved by the
Mult-VAE-GAN data augmentation method in defect
detection, several challenges remain. First, the training
process requires substantial computational resources,
affecting its efficiency in industrial applications. Second,
the quality and diversity of generated samples still have
room for further optimization. Future research directions
include: (1) optimizing the training process of Mult-VAE-
GAN to enhance the quality and diversity of generated
samples; (2) integrating transfer learning or few-shot
learning techniques to reduce computational costs and
improve data utilization efficiency; and (3) exploring real-
time defect detection and augmentation by incorporating
Mult-VAE-GAN into online defect detection systems,
enabling real-time defect data generation to enhance
detection efficiency in industrial production processes.

In conclusion, the proposed Mult-VAE-GAN data
augmentation method provides an effective data generation
strategy for defect detection in additive manufacturing and
has been experimentally validated to improve detection
accuracy and generalization ability. Future research will
focus on enhancing computational efficiency, optimizing
the quality of generated samples, and exploring multimodal
data fusion to further advance defect detection technology
in additive manufacturing.
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