Supporting Materials Section
BioMatics 1.0: A Wasserstein Distance Approach for Next-Generation Multiple Sequence Alignment
Orkid Coskuner-Weber1*, Yusuf Emre Ari1, Yildiray Efe Berberoglu1, Vladimir N. Uversky2
1Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820, Turkey, 2Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
Email: weber@tau.edu.tr

Datasets
BALiBASE (BAliBASE: Benchmark Alignment Database)16 is a dataset developed for the comparative evaluation of MSA algorithms. BALiBASE consists of expertly curated reference alignments. This database contains both structurally and phylogenetically validated resources and is divided into subsets to test different alignment challenges. BALiBASE v4, which was also used in the testing process of BioMatics 1.0, brought more sequence groups, a wider variety of protein families, and improved alignment annotations compared to its previous versions (e.g. BALiBASE v3). The various subcategories and features found in BALiBASE are as follows:

BAliBASE RV11: The RV11 subset of BALiBASE v4 is designed to test the alignment of homologous proteins with high sequence similarity. The pairwise similarity between sequences is usually above 40% and consists of homologous sequences belonging to the same protein family. It is a test suite to test the ability of algorithms to produce structurally consistent alignments of highly similar sequences.

BAliBASE RV12: The BALiBASE RV12 subset is a subset of the RV1X group. It contains homologous sequences belonging to the same protein family. This reference set, which has a pairwise sequence similarity of over 40%, similar to RV11, has partially truncated or extended sequences at the ends (N-terminal or C-terminal) of most of the sequences, unlike RV11. The aim here is to test the possibility of MSA algorithms to misalign or insert excessive gaps due to truncated or extended ends. This dataset aims to measure the algorithm's gap modeling sensitivity, detection of positions at the ends, and alignment stability of conservative average blocks. In addition, the algorithm's ability to correctly distinguish between structurally conserved internals and missing or redundant end parts is evaluated.

BAliBASE RV20: The BALiBASE RV20 subset is constructed with data collected from different protein families or subfamilies of homologous sequences. Sequence similarity is usually less than 40%. Although sequences are phylogenetically in the same superfamily, they belong to different subfamilies or different structural motif groups. The alignment difficulty is higher than RV11 and RV12 because evolutionarily distant sequences are used.16 It has the feature of being one of the groups that classical MSA methods have the most difficulty in. The algorithm's ability to perform accurate alignments at low similarity, substitution matrix sensitivity and detection of conservative core regions are the features tested in this reference set. The algorithm is expected to be able to detect and align functional similarities despite distant evolutionary ties.

BAliBASE RV30: The BALiBASE RV30 subset is composed of homologous protein sequences with moderate similarity. Sequences usually contain more than one domain (structural/functional domain). Domains may overlap and domain boundaries may be shifted from sequence to sequence. The structural difficulty in this reference set is that the same domain may be present in different positions in different sequences, while the lack of clarity of domain boundaries makes alignment decisions difficult16. The aim is to correctly recognize domain boundaries, correctly align functionally related domains, and distinguish between intra-domain conservation and inter-domain variation. The algorithm is tested for its ability to maintain domain integrity in space placement and to correctly use substitution matrices according to domain structure. It is a reference set that tests the local alignment process rather than global alignment.

BAliBASE RV40: The BALiBASE RV40 subset contains homologous sequences with variable similarity. These sequences contain extended end regions. These end regions are usually located at the N-terminus or C-terminus and are variable in length. That is, they often contain non-conserved, unstructured regions. Extra sequences at the ends may be included in the alignment along with the conservative blocks16. This may cause the algorithms to shift the alignment at the ends or to introduce unnecessary gaps. In this reference set, we test whether the gap opening and extension penalties work correctly at the ends and whether the MSA algorithm can distinguish the conservative central blocks despite the variability at the ends.

BAliBASE RV50: The BALiBASE RV50 subset contains homologous sequences selected from the same protein family, generally with moderate to low sequence similarity. Some of the sequences contain long insertion regions, and these insertion sequences are often structurally non-conserved and occur at different positions within the sequences. They do not have fixed reference positions and may be absent in some sequences16. The challenge with this reference set is that long and non-conserved insertion regions can degrade alignment quality, creating uncertainty about where and how much gap penalties should be applied. The algorithm is tested for its ability to separate conservative blocks from mismatched regions; how accurately gapping and extension strategies work when these insertion regions are included; and its ability to align regions with variation while maintaining fundamental structural consistency.

BAliBASE RV9: BALiBASE Reference Set 9 consists of sequences with generally low and limited sequence similarity. This reference set consists of protein families containing linear motifs (LMs). Linear motifs include important functional regions such as protein interaction domains, cell compartment targeting signals, post-translational modification regions or proteolytic cleavage sites. These regions are usually located in disordered regions that are difficult to align with classical multiple sequence alignment (MSA) methods. Most LMs are 3 to 10 amino acids long and contain mostly variable or wildcard (fully variable) characters. Due to their short and degenerative structures, it is difficult to distinguish real LMs from false positive motifs seen randomly.16 Alignability in non-motif regions is very low and since motifs are small, the risk of shifting, missing or corrupting the alignment is high. The aim of the algorithm is to detect short but meaningful blocks and align them correctly, not to lose motifs when performing global alignment and not to damage small motifs when placing gap penalties.

OXBENCH

OXBench is a high-quality reference dataset that enables structural-based evaluation of multiple sequence alignment (MSA) methods. This dataset contains structurally aligned protein sequences, with accuracy assessments based on high-resolution protein structures obtained by X-ray crystallography or NMR. The OXBench dataset is organized based on the SCOP (Structural Classification of Proteins) hierarchy and is based on structural homology between proteins. The sequences in the dataset can be both single-domain and multi-domain. It also contains homologous protein sequences grouped according to different similarity levels. These sequences generally have sequence similarities ranging from 10% to 80%. This diversity is crucial for measuring how MSA algorithms perform in both high-similarity and low-similarity scenarios. The key feature of OXBench is that it is a structural accuracy-based dataset.

PREFAB (Pairwise REFerence Alignments with Added Benchmarking Sequences)

PREFAB is an automated, large-scale benchmark dataset developed to evaluate the accuracy of multiple sequence alignment (MSA) algorithms. This dataset contains pairwise structural reference alignments and updated versions of these reference alignments with additional sequences. PREFAB is initially based on highly accurate aligned pairwise structural alignments from the FSSP (Fold classification based on Structure–Structure alignment of Proteins) and BAliBASE databases. Each of these reference pairs is supplemented with approximately 20 randomly selected homologous sequences from the UniRef90 database, creating multi-sequence scenarios that better reflect real-world conditions. The PREFAB dataset allows for the comparative evaluation of both sequence- and structure-based methodologies of MSA algorithms. The evaluation focuses not only on the correctness of reference alignments, but also on the ability to maintain the alignment of the inserted sequences without breaking. This enables PREFAB to measure the algorithm performance in terms of both sensitivity and robustness to noise.

The following code snippets provide complete implementations for evaluating alignment quality using Column Score (CS) and Sum-of-Pairs Score (SPS), respectively. These Python scripts are intended for execution in Google Colab and accept aligned FASTA files as input.CS Score Calculation:
!pip install biopython

from Bio import SeqIO
from Bio.Align import substitution_matrices
from google.colab import files

AA_ORDER = "ARNDCQEGHILKMFPSTWYV"
AA_INDEX = {aa: i for i, aa in enumerate(AA_ORDER)}

def compute_cs_score_blosum_cppstyle(aligned_seqs, similarity_threshold=-3.0):
 n = len(aligned_seqs)
 if n == 0: return 0.0
 L = len(aligned_seqs[0])
 if any(len(seq) != L for seq in aligned_seqs): return 0.0

 blosum = substitution_matrices.load("BLOSUM62")
 match_count = 0

 for i in range(L):
 ref = aligned_seqs[0][i]
 if ref == '-' or ref not in AA_INDEX:
 continue

 similar = True
 for j in range(1, n):
 cj = aligned_seqs[j][i]
 if cj == '-' or cj not in AA_INDEX:
 similar = False
 break

 try:
 score = blosum[ref, cj]
 except:
 score = -4

 if score < similarity_threshold:
 similar = False
 break

 if similar:
 match_count += 1

 return match_count / L

uploaded = files.upload()
file_name = next(iter(uploaded))
aligned_seqs = [str(record.seq) for record in SeqIO.parse(file_name, "fasta")]

cs_score = compute_cs_score_blosum_cppstyle(aligned_seqs, similarity_threshold=-3.0)
print(f"Conservation Score (CS): {cs_score:.3f}")

SPS Score Calculation:
!pip install biopython

from Bio import SeqIO
from Bio.Align import substitution_matrices
from google.colab import files

AA_ORDER = "ARNDCQEGHILKMFPSTWYV"
AA_INDEX = {aa: i for i, aa in enumerate(AA_ORDER)}

def compute_sps_score(aligned_seqs, threshold=-3.0, use_blosum=True, debug=False):
 n = len(aligned_seqs)
 if n < 2:
 return 0.0
 L = len(aligned_seqs[0])
 if any(len(seq) != L for seq in aligned_seqs):
 print("Sequences are not aligned.")
 return 0.0

 total_pairs = 0
 matching_pairs = 0

 if use_blosum:
 blosum = substitution_matrices.load("BLOSUM62")

 for col in range(L):
 for i in range(n):
 a = aligned_seqs[i][col]
 if a == '-' or a not in AA_INDEX:
 continue

 for j in range(i + 1, n):
 b = aligned_seqs[j][col]
 if b == '-' or b not in AA_INDEX:
 continue

 total_pairs += 1

 if use_blosum:
 try:
 score = blosum[a, b]
 except:
 score = -4
 if score >= threshold:
 matching_pairs += 1
 else:
 if a == b:
 matching_pairs += 1

 if total_pairs == 0:
 return 0.0
 if debug:
 print(f"Matched pairs: {matching_pairs}, Total pairs: {total_pairs}")
 return matching_pairs / total_pairs

uploaded = files.upload()
file_name = next(iter(uploaded))
aligned_seqs = [str(record.seq) for record in SeqIO.parse(file_name, "fasta")]

sps_score = compute_sps_score(aligned_seqs, threshold=-3.0, use_blosum=True, debug=False)
print(f"SPS Score : {sps_score:.3f}")

