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[bookmark: _gbx277ei2yw1]

[bookmark: _hmmcfii2vu0e]Cohort descriptions (OmniExpress)
[bookmark: _azie08dgcm9b]2012-328s_OmniExpressExome,2012-343s_OmniExpressExome, 2014-033s_OmniExpressExome
Cases of TS were recruited by the Tourette Association of America International Consortium for Genetics (TAAICG) from primary sources. First, individuals who met the DSM-5 criteria for Tourette’s syndrome were recruited through email or online channels, utilizing validated web-based phenotypic assessments. Second, individuals were recruited from Tourette’s syndrome specialty clinics in the United States, Canada, the Netherlands, Austria, France, Germany, Greece, Hungary, and Italy. Exclusions were made for subjects with a history of intellectual disability or those presenting with tics or movement disorder phenocopies attributed to genetic or neurological disorders. OCD and ADHD were assessed phenotypically by clinicians with expertise in diagnosing Tourette syndrome, OCD, and ADHD, with diagnoses assigned based either on DSM-5 criteria alone or using standardized structured instruments. Ancestry-matched controls were recruited from Tourette’s syndrome specialty clinics alongside the cases. The ascertainment process was previously detailed in Huang et al.[1]. Genotyping of all samples was conducted on the HumanOmniExpressExome platform in three batches: 2012-328s_OmniExpressExome, 2012-343s_OmniExpressExome, and 2014-033s_OmniExpressExome.
[bookmark: _lqijhriolrt3]Pato_GPC_OmniExp_controls
A total of 1,433 unselected controls, collected as part of the Genomic Psychiatry Cohort (GPC) at the University of Southern California, served as the matching controls. All subjects were genotyped using HumanOmniExpressExome_12v1. The details of the ascertainment are provided in Pato et al.[2]
[bookmark: _fakw29aj64an]TICgenetics_OmniExpressExome
The probands from parent-child trios involved in the Tourette International Collaborative Genetics study (TIC_Genetics) were used as cases in this study. Dietrich et al.[3] previously detailed how these samples were collected. All probands met the criteria for DSM-IV-TR TS or chronic motor or vocal tic disorder and were genotyped on the HumanOmniExpressExome array.
[bookmark: _evdduzm7zz3o]emtics_part1_181PNs_HumanOmniExpress-24v1
Children who participated in the European Multicentre Tics in Children Study (EMTICS) were recruited from various sites across Europe, with details of these samples provided in Tsetsos et al.[4]. All cases met the criteria for Tourette Syndrome (TS) or chronic motor or vocal tic disorders according to DSM-IV-TR or DSM-5. Genotyping of all samples was conducted on the HumanOmniExpress-24 platform in four batches: emtics_part1_181PNs_HumanOmniExpress-24v1, emtics_part1_331PNs_HumanOmniExpress-24v1-2, emtics_part2_1164PNs_HumanOmniExpress-24v1, and emtics_part2_727PNs_HumanOmniExpress-24v1-2.
[bookmark: _wj1tl0dyxq83]emtics_part1_331PNs_OmniExpress-24v1-2
As described in the previous section.
[bookmark: _c6poq3lxwuep]emtics_part2_1164PNs_HumanOmniExpress-24v1-1
As described in the previous section.
[bookmark: _hu7bsm8uyti]emtics_part2_727PNs_OmniEpress-24v1-2
As described in the previous section.
[bookmark: _ul4glr82z13s]WTCCC2_EGAD22_Duo1M
The data were generated by the Wellcome Trust Case-Control Consortium (WTCCC), which includes 2,930 common controls from the 1958 British Birth Cohort as part of the WTCCC2 project. All samples were genotyped on the Illumina Human1-2M-DuoCustom_v1_A platform. Detailed information about this dataset can be found in WTCCC.[5]
[bookmark: _9g1pngk0qrjx]WTCCC2_EGAD24_Duo1M
The data were generated by the Wellcome Trust Case-Control Consortium (WTCCC), which includes 2,737 common controls from the National Blood Donors (NBS) Cohort as part of the WTCCC2 project. All samples were genotyped on the Illumina Human1-2M-DuoCustom_v1_A platform. Detailed information about this dataset can be found in WTCCC.[5]
[bookmark: _vd9nib8aw6gw]Cohort descriptions (GSA)
[bookmark: _4nnsq1bxngcd]TS_GSA_for_CNV
Cases in TAAICG_GSA were recruited from specialty clinics for Tourette’s syndrome in the United States (N = 209) by the TAAICG, and all were diagnosed with DSM-5 Tourette’s syndrome following a structured interview. Eighteen ancestry-matched controls were recruited alongside the cases. All samples were genotyped using the Infinium Global Screening Array (GSAMD-24v1-0_20011747_A1) bead chip.
[bookmark: _131sutw4zy1d]GSA_UFpharma_controls
A total of 891 participants undergoing left heart catheterization and having CYP2C19 genotyping conducted as part of their clinical care to inform anti-platelet therapy decisions were collected from the University of Florida at Gainesville and the University of Florida at Jacksonville. All participants consented to genome-wide genotyping and data sharing. All subjects were genotyped on the Infinium Global Screening Array (GSAMD-24v1-0_20011747_A1).
[bookmark: _5obawd84pa7h]gpc_pato_gsa_md_v2
Unselected controls, collected as part of the Genomic Psychiatry Cohort (GPC) at the University of Southern California, served as the matched controls. All subjects were genotyped using the Infinium Global Screening Array (GSAMD-24v1-0_20011747_A1). Detailed information is available in Pato et al.[2]
[bookmark: _3uixjvg6agsf]Cohort descriptions (610K)
[bookmark: _fmf1rmg0xbo1]ALZ_610K_ctrls
Participants from the Late-Onset Alzheimer's Disease and National Cell Repository for Alzheimer's Disease Family Study served as controls in this study. All participants were genotyped using the Illumina Human610-Quadv1_B SNP array. Lee et al. previously provided detailed information on this data.[6]
[bookmark: _b1zi1rxb4h3v]TS_GWAS1_610K
The Tourette Association of America International Consortium for Genetics (TAAICG) collected cases and ancestry-matching controls of TS_GWAS1_610K from various sites in the US, Canada, UK, Netherlands, and Israel. The TS Classification Study Group (TSCSG) identified all cases as TS based on the DSM-IV-TR criteria, along with tics observed by a qualified clinician. All samples were genotyped using the Illumina Human610-Quadv1_B SNP array. More detailed information is available in Huang et al.[1]
[bookmark: _7ep8lwjl2t73]Cohort descriptions (external)

[bookmark: _i58aqxpi8iqk]NORDiC 
The NORDiC study has been previously described.[7] All samples were collected in Sweden between 2015 and 2019. This research received approval from the Regional Ethics Committee in Stockholm (REPN Stockholm) and the Institutional Review Board (IRB) at the University of North Carolina at Chapel Hill, with all subjects providing informed consent. The cases have a primary ICD-10 diagnosis of TS/CTD from a multidisciplinary specialist team focusing on OCD and related disorders. All patients were included in the study regardless of psychiatric comorbidity, provided they met the strict diagnostic criteria for TS/CTD. Population controls were sourced from the Swedish LIFEGENE study.[8] Subjects contributed either blood or saliva for DNA extraction. All samples were genotyped using the Illumina Global Screening Array (GSA) at LIFE&BRAIN in Bonn, Germany. Samples were filtered for duplicates (pi_hat ≥ 0.95) and cryptic relatedness (pi_hat ≥ 0.2). CNV calls were extracted from 188 TS cases and 414 unaffected controls, all unrelated and of European ancestry. We created count tables as previously described, dividing the case/control data into two groups: a male-only group (112 cases, 199 controls) and a female-only group (76 cases, 215 controls).

[bookmark: _p8dwiadoatsg]EGOS 
The EGOS study has been previously described.[9] EGOS (Epidemiology and Genetics of Obsessive-compulsive Disorder and Chronic Tic Disorders in Sweden) is a large-scale epidemiological study of obsessive-compulsive disorder (OCD) and TS/CTD. All EGOS cases were born between January 1954 and December 1998, with at least two diagnoses of TS/CTD recorded at different time points in the National Patient Register (NPR). A total of 174 unrelated cases of European ancestry with TS/CTD from EGOS and 1,123 population-matched unaffected controls from the aforementioned LIFEGENE study were selected for analysis. Samples underwent prior quality control, and all have clearly definable data-derived sex. CNV calls were made using the CNVision pipeline, which integrates CNV calls from PennCNV, QuantiSNP, and GNOSIS. We required that a CNV call in the CNVision output be supported by both PennCNV and QuantiSNP to be included in the analyses. 

[bookmark: _40so0ilmol2r]BioVU
The BioVU project has been previously described.[1] A total of 93,626 patients from the Vanderbilt BioVU biobank were genotyped using the Illumina Multi-Ethnic Genotyping Array (MEGA EX) for this study. TS/CTD cases were identified through an algorithm that combined TS/CTD billing codes and keywords from electronic health records (EHR). As detailed by Miller-Fleming, [2] assignment to TS/CTD case status required at least two occurrences of the TS/CTD ICD-9 codes (including tics, tic disorder, transient tic disorder, Tourette’s disorder, chronic motor or vocal tic disorder) or the presence of a single TS/CTD keyword (motor tic, vocal tic, Tourette, or tic disorder) in the clinical notes. Individuals flagged by the TS EHR algorithm underwent clinician chart review to confirm their TS/CTD diagnosis. TS/CTD cases were then age- and sex-matched to EHR controls without evidence of tic ICD-9 codes or keywords in their medical records. A total of 303 TS/CTD cases and 1,531 controls from BioVU were included. Samples were genotyped on the Illumina Multi-Ethnic Genotyping Array (MEGA EX), and CNVs were identified using PennCNV with a PFB file and a GC model file generated from 1,200 randomly selected samples.
[bookmark: _k8qoznxv5w92]

[bookmark: _3tb0hj5mi6vs]Filtering qualifying CNVs
We filtered qualifying CNVs using a stepwise process inspired by [3] and employing code adapted from (https://github.com/talkowski-lab/rCNV2). We first defined blacklist loci as one of the following: 1) predefined telomere and centromere regions, with 500kb of padding; 2) poly-N regions in the reference genome GRCh37, derived using (https://github.com/lh3/seqtk); 3) segmental duplication loci [4, 5]; 4) simple repeats, low-complexity regions, and satellite regions from RepeatMasker (RepeatMasker Open-3.0); 5) immunoglobulin and T-cell receptor genes; 6) CNV loci associated with LCL status in EBV-transformed cell lines [6]. We removed any CNV call where over 50% of the call locus overlapped with the union of the loci described above. 
Next, we filtered CNV calls based on heterozygosity summary statistics in the raw intensity data. Specifically, for each sample-level call, we extracted BAFs in the call locus and classified each SNP as heterozygous if the BAF was between 0.2 and 0.8 and homozygous otherwise. Based on these criteria, we only kept deletion calls with no more than 5% of markers that could be deemed heterozygous. For duplications, we only kept calls where at least 5% of markers were heterozygous.
Next, we filtered on CNV frequency using a modified version of a script from the rCNV2 code (https://github.com/talkowski-lab/rCNV2/blob/master/data_curation/CNV/filter_cnv_bed.py). We excluded CNVs from our data that had a reciprocal overlap greater than 0.5 with CNVs from the gnomAD v2.1 “non-neuro” cohort, which had a maximum frequency of 0.01 in at least one subpopulation. After this, we divided the data into groups defined by the 15 input datasets and removed CNVs that appeared at a frequency greater than 0.01 in at least one input dataset.
The final step in our CNV filtering pipeline employed a BAF validation approach adapted from methods in [16]. For each call, we tested the concordance of the BAF distribution with a defined number of possible BAF clusters (2, 3, 4, 5). A non-CNV autosomal locus is expected to have three BAF clusters: 0, 0.5, and 1. A deletion is anticipated to have two clusters (0 and 1), while a duplication is expected to have four (0, 0.33, 0.66, 1) or five (0, 0.25, 0.5, 0.75, 1). For each test, we defined cluster centers using K-means clustering, compared the fit of each by computing silhouette scores for each cluster number, and retained the cluster number that maximized the score. If the call was a deletion and the likely number of clusters was two, we required the centroids to be around BAF values of 0 and 1. If the call was a duplication and the likely number of clusters was four, we required that none of the clusters be centered at a BAF of 0.5.
[bookmark: _bsfxqa8a1nlf]Calibrating CNV call thresholds for analysis
We utilized the control-only genotype array data to determine a minimum CNV size and probe count suitable for comparison across datasets that differ based on array platform and overall data quality. For each array group (OmniExpress, 610K, GSA), since we had at least two datasets that included controls, we established control/control comparisons where we modeled the number of CNVs in specified size bins (30-50kb, 50-100kb, 100-200kb, 200-500kb, 500-1000kb, >1000kb) as a function of sex, sample ancestry cluster, LRR SD metric, and dataset origin. We specifically aimed to address whether small CNVs (<100kb, with a ten probe threshold) exhibited heterogeneity in call rates across control datasets. 
For the OmniExpress group, the available datasets included EMTICS, Pato_GPC_OmniExp_controls, 2012-328s, and WTCCC2. Within the 610K group, only two datasets were available: TS_GWAS1_610K and ALZ_610K_ctrls. The GSA group also included two datasets: GSA_UFpharma_controls and gpc_pato_gsa_md_v2. We conducted these tests using two sets of minimum probe counts: >= 10 and >= 15. CNV call thresholds suitable for our case/control comparison should result in null statistics in a control/control comparison for single array groups, defined here as having no association between CNV count and the individual dataset at Bonferroni P < 0.05 for OmniExpress and uncorrected P < 0.01 for GSA and 610K. We aimed to identify the combination of minimum size and probe count per array group that achieves this outcome. In cases where no such threshold could be established, we examined whether individual datasets contributed to the comparability issues and decided to exclude these datasets from the final analysis.
In the OmniExpress group data, we found that CNVs ranging from 30 to 100 kb with at least ten probes showed evidence of imbalance among the specified control groups (adjusted P = 2.3x10-4). Increasing the minimum probe count to at least 15 did not fully resolve the issue (adjusted P = 0.01). For our subsequent analyses of sample-level data, we therefore only used CNV calls that spanned at least 15 probes and were a minimum of 100 kb in size. Using these call thresholds, none of the dataset groups showed evidence of differences in CNV call rate as described above.

[bookmark: _xu1ahhnactsv]

[bookmark: _i2k3qaqxmqa0]Data processing
[bookmark: _31lzd415ggly]Receiving of raw genotype array data
For one dataset, Illumina GenomeStudio project files were obtained, and we downloaded the canonical cluster file for each array type from Illumina’s website. We then performed one round of clustering for each dataset using Illumina GenomeStudio v2.0 to generate IDAT files for pre-clustering quality control (QC). Each file contained the following columns: Single Nucleotide Polymorphism (SNP) Name, Sample Name, X, Y, B Allele Frequency, and Log R Ratio (LRR). We also generated a PLINK ped/map file for each dataset. Additionally, we converted all marker genomic coordinates for each dataset to a single reference genome build (hg19).
[bookmark: _vio622g9f8bk]Pre-clustering QC and reclustering
Utilizing the generated intensity files, we identified samples with poor QC metrics and removed them before the subsequent reclustering. Specifically, we eliminated samples with a log R ratio standard deviation (LRR-SD) greater than 0.3 or genotype missingness exceeding 0.02. We then re-clustered the remaining samples separately for each dataset. SNP intensity and PLINK files were generated for these newly re-clustered samples and were utilized as input for all subsequent analyses.
[bookmark: _my6lz567e34f]Merging SNP genotype calls across all available data 
To conduct relatedness checks and subset samples based on genetic ancestry, we merged genotype hard call data across variants into a single file. To achieve this, we first verified that the coordinates in each dataset's SNP map file corresponded to hg19/GRCh37; if they did not, we transformed the coordinates to hg19/GRCh37 using the UCSC Genome liftOver executable. Next, we combined datasets by array, excluding indels or SNPs with missing data greater than 0.02 in any individual dataset, resulting in three genotype dataset groups (Table S1). For the group that included OmniExpress, OmniExpressExome, and Omni1.2M data, we only retained SNPs present on all three chips (N = 496,145 SNPs). We then conducted the final pruning of SNPs with missing data greater than 0.02 within each group and eliminated SNPs showing signs of differential missingness between TS/PTD cases and controls. 
To create a unified genotype file across the three platform-level datasets to identify sample relatedness and determine genetic ancestry, we transformed SNP IDs into the format: ‘chromosome:position:reference allele:alternate allele’. We only included SNPs that were non-ambiguous and assayed in all three platforms. A total of 61,253 SNPs satisfied these criteria. We then merged genotypes for these SNPs in all 17,622 samples (6,391 cases, 11,231 controls) with those from the 1000 Genomes Project Phase 3 (58,576 SNPs were shared between datasets, enabling us to group samples based on ancestry).
[bookmark: _g5jba1ak30js]CNV calling procedure
For each CNV dataset, we generated a population B allele frequency (PFB) file, which PennCNV requires during CNV calling. Next, we produced sample-level intensity files, adjusting LRR values for waviness in fluorescence signals using the PennCNV script ‘genomic_wave.pl’. These wave-adjusted sample-level files were used for CNV calling with two HMM-based callers, PennCNV v1.0.5 and QuantiSNP v2.2. [7, 8] Sample-level CNV calls were defined based on spans of bases with CNV calls of the same type (i.e., both deletions or both duplications) made by both PennCNV and QuantiSNP (intersecting).
[bookmark: _8h7gsmq6fl77]Merging adjacent CNV calls
We merged adjacent CNV calls using the procedure previously described by Huang et al.[9]. For each array group, we utilized the PennCNV function ‘combinseg’ found within the PennCNV utility ‘clean_cnv.pl’ to iteratively merge adjacent CNV calls within single samples, where the --fraction parameter (the maximum allowed fraction of the total length of the gap between two CNV calls) is set at 0.2. After each iteration, we determined whether the total number of calls before and after the run were the same. If they were, we halted further iterations of the procedure. The number of iterations required for each array group was as follows: OmniExpress=29; 610K=5; GSA=3.
[bookmark: _2ujtl2gj1o8b]Cryptic relatedness checks 
Tests for unanticipated cryptic relatedness patterns between samples (i.e., sample duplicates, 1st/2nd-degree relatives) were conducted on the merged genotype call fileset, similar to a standard GWAS. We utilized the merged PLINK file and executed the PLINK command used by Huang et al.[9], but with a more stringent HWE threshold to address merging across multiple array groups, aiming to obtain a set of LD-pruned SNPs with high-quality genotype calls (plink --geno 0.02 --maf 0.01 --hwe 0.001 --indep 50 5 1.5). We calculated pairwise relatedness metrics across a matrix of samples x LD-pruned SNPs using the PLINK -- genome function. We removed instances of cryptic relatedness from all downstream analyses through the following procedure using relatedness estimates from all sample pairs as input: 1) removed any samples with an unusually high mean pairwise relatedness to other samples (defined as phat > 0.025); 2) eliminated all instances of sample duplication (defined as pi hat > 0.95), retaining the sample duplicate with the lowest genotype missingness across included SNPs; 3) removed all instances of lower-level sample cryptic relatedness (defined as pi hat > 0.2), preserving the samples in cryptic relatedness groups that showed the lowest genotype missingness across included SNPs. 
[bookmark: _hdcb1j7t76dj]Louvain clustering procedure
Louvain clustering was conducted using the R packages Seurat (v4.1.0) and umap (v0.2.7.0). A matrix of samples by principal components (PCs) 1-6 was input into the Seurat function ‘FindNeighbors’ to create a shared nearest neighbor graph across the network of samples. This network was then used as input for the Seurat function ‘FindClusters,’ with the resolution parameter set to 0.1. We projected the selected principal components and cluster classifications onto a 2D space by applying the umap function ‘umap’ to the samples by PC matrix and the vector of sample cluster classifications.  
[bookmark: _bd1mvdnb5lfc]Filtering qualifying CNVs
We filtered qualifying CNVs using a stepwise process inspired by [3] and employing code adapted from (https://github.com/talkowski-lab/rCNV2). We first defined blacklist loci as one of the following: 1) predefined telomere and centromere regions, with 500kb of padding; 2) poly-N regions in the reference genome GRCh37, derived using (https://github.com/lh3/seqtk); 3) segmental duplication loci [4, 5]; 4) simple repeats, low-complexity regions, and satellite regions from RepeatMasker (RepeatMasker Open-3.0); 5) immunoglobulin and T-cell receptor genes; 6) CNV loci associated with LCL status in EBV-transformed cell lines [6]. We removed any CNV call where over 50% of the call locus overlapped with the union of the loci described above. 
Next, we filtered CNV calls based on heterozygosity summary statistics in the raw intensity data. Specifically, for each sample-level call, we extracted BAFs in the call locus and classified each SNP as heterozygous if the BAF was between 0.2 and 0.8 and homozygous otherwise. Based on these criteria, we only kept deletion calls with no more than 5% of markers that could be deemed heterozygous. For duplications, we only kept calls where at least 5% of markers were heterozygous.
Next, we filtered on CNV frequency using a modified version of a script from the rCNV2 code (https://github.com/talkowski-lab/rCNV2/blob/master/data_curation/CNV/filter_cnv_bed.py). We excluded CNVs from our data that had a reciprocal overlap greater than 0.5 with CNVs from the gnomAD v2.1 “non-neuro” cohort, which had a maximum frequency of 0.01 in at least one subpopulation. After this, we divided the data into groups defined by the 15 input datasets and removed CNVs that appeared at a frequency greater than 0.01 in at least one input dataset.
The final step in our CNV filtering pipeline employed a BAF validation approach adapted from methods in [16]. For each call, we tested the concordance of the BAF distribution with a defined number of possible BAF clusters (2, 3, 4, 5). A non-CNV autosomal locus is expected to have three BAF clusters: 0, 0.5, and 1. A deletion is anticipated to have two clusters (0 and 1), while a duplication is expected to have four (0, 0.33, 0.66, 1) or five (0, 0.25, 0.5, 0.75, 1). For each test, we defined cluster centers using K-means clustering, compared the fit of each by computing silhouette scores for each cluster number, and retained the cluster number that maximized the score. If the call was a deletion and the likely number of clusters was two, we required the centroids to be around BAF values of 0 and 1. If the call was a duplication and the likely number of clusters was four, we required that none of the clusters be centered at a BAF of 0.5.
[bookmark: _57tayurd0p8u]Calibrating CNV call thresholds for analysis
We utilized the control-only genotype array data to determine a minimum CNV size and probe count suitable for comparison across datasets that differ based on array platform and overall data quality. For each array group (OmniExpress, 610K, GSA), since we had at least two datasets that included controls, we established control/control comparisons where we modeled the number of CNVs in specified size bins (30-50kb, 50-100kb, 100-200kb, 200-500kb, 500-1000kb, >1000kb) as a function of sex, sample ancestry cluster, LRR SD metric, and dataset origin. We specifically aimed to address whether small CNVs (<100kb, with a ten probe threshold) exhibited heterogeneity in call rates across control datasets. 
For the OmniExpress group, the available datasets included EMTICS, Pato_GPC_OmniExp_controls, 2012-328s, and WTCCC2. Within the 610K group, only two datasets were available: TS_GWAS1_610K and ALZ_610K_ctrls. The GSA group also included two datasets: GSA_UFpharma_controls and gpc_pato_gsa_md_v2. We conducted these tests using two sets of minimum probe counts: >= 10 and >= 15. CNV call thresholds suitable for our case/control comparison should result in null statistics in a control/control comparison for single array groups, defined here as having no association between CNV count and the individual dataset at Bonferroni P < 0.05 for OmniExpress and uncorrected P < 0.01 for GSA and 610K. We aimed to identify the combination of minimum size and probe count per array group that achieves this outcome. In cases where no such threshold could be established, we examined whether individual datasets contributed to the comparability issues and decided to exclude these datasets from the final analysis.
In the OmniExpress group data, we found that CNVs ranging from 30 to 100 kb with at least ten probes showed evidence of imbalance among the specified control groups (adjusted P = 2.3x10-4). Increasing the minimum probe count to at least 15 did not fully resolve the issue (adjusted P = 0.01). For our subsequent analyses of sample-level data, we therefore only used CNV calls that spanned at least 15 probes and were a minimum of 100 kb in size. Using these call thresholds, none of the dataset groups showed evidence of differences in CNV call rate as described above.
[bookmark: _5rx65tqf92vo]Global CNV burden analyses
[bookmark: _7t5dwxk6h0ro]Control-control analyses to calibrate minimum CNV size in case/control comparisons
We utilized control/control comparisons of separate datasets in each of the major array groups (OmniExpress, GSA, 610K) in order to determine if the original size and probe minimum thresholds set (>30kb, >=10 probes) led to CNV callsets that had no evidence of differential call rates between control datasets. We tested combinations of 2 different size minimums (>30kb, >100kb) and 2 different minimum probe counts (10, 15). For each combination, we took each of the 3 array groups, and for each major control group (4 in OmniExpress, 2 in GSA, 2 in 610K), formed a linear model where CNV count is the outcome, membership in that control group is the critical predictor, and LRR SD is the covariate. We stored the minimum p-value observed in each group, and sought a size threshold where no minimum p-value observed in any of the 3 array groups was less than 0.05. We found that only a threshold combination of >100kb and at least 15 probes led to this result across 3 array groups (Supplemental Table 6). 

[bookmark: _qmn5fd3x79aq]Replication of prior CNV test results in samples from Huang et al.
Before proceeding with our full burden tests, we first aimed to determine whether, using our callset, we could replicate the results outlined in Huang et al. [1] on samples that overlapped with that analysis. As mentioned earlier, these samples specifically focus on those of European ancestry. The general logistic regression model used previously is:
TS_status~Burden_metric + subject_sex + PC1 + PC2 + PC3 + PC4 + LRR_SD
We utilized samples that met the following criteria: 1) they were from an OmniExpress dataset represented in the previous analysis (2012-38s cases and controls, WTCCC2 controls, GPC controls); 2) they belonged to ancestry clusters 1, 2, or 3, which all are of European ancestry. We replaced the first four principal components of this comparison with binary indicators for cluster membership (in_anc_2, in_anc_3). The model used is thus:
  	TS_status~Burden_metric + subject_sex + in_anc_2 + in_anc_3 + LRR_SD
We conducted association tests between TS case status and burden metrics (measured by the number of qualifying CNVs) that were particularly relevant to Huang et al.: 1) nongenic CNVs (not overlapping a protein-coding base); 2) genic CNVs (overlapping a protein-coding base); 3) CNVs larger than 1 megabase; 4) singleton CNVs. Only nongenic CNVs showed no evidence in prior analyses for a difference in burden between cases and controls. The results obtained from this comparison were consistent with those described previously.
[bookmark: _5a8kwwrk2btt]Additional analyses
[bookmark: _qrhorrmfyxxr]Identification of Regulatory Interactions in Overlapping Genomic Regions
We analyzed genomic interactions within chr17:35,443,991–35,766,389 (hg19), a region encompassing multiple genes and overlapping with topologically associating domain (TAD) boundaries in both fetal and adult brain tissues. Our objective was to identify gene interactions mediated by chromatin loops. Hi-C datasets from the adult temporal cortex (N = 3) and fetal cortex (N = 3) were used, obtained from previously published studies.[10]
[bookmark: _tsl632hgei5k]Identification of High-Confidence Regulatory Chromatin Interactions (HCRCIs)
We defined high-confidence regulatory chromatin interactions (HCRCIs) as 10 kb  anchor regions located 30 kb – 2 Mb apart in fetal and adult Hi-C datasets. Interactions were considered significant based on observed-to-expected contact ratio thresholds (P < 0.005/42,985,244 or P < 1.16319 × 10⁻¹⁰).[10] These interactions correspond to promoter-promoter and enhancer-promoter chromatin loops within cortical tissues. The dataset comprises 102,016 HCRCIs, with 62,777 interactions identified in the adult cortex and 64,424 in the fetal cortex.
[bookmark: _p3ckdnfvny7r]Overlap Analysis of HCRCIs with Risk Genes
To assess the regulatory significance of this genomic region, we analyzed HCRCIs within a ±5 kb window around both left and right anchor sites. This approach identified genes positioned near chromatin loop anchors, which may act as potential risk genes within the locus.
To further characterize chromatin looping patterns, we integrated gene expression data from protein-coding genes expressed in the human brain[10] and assessed their overlap with chromatin interaction anchors. Genes within ±5 kb window from both of an anchor region were considered linked to HCRCIs, enabling the identification of putative regulatory interactions.
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