

565 **5 Appendix**

566 **5.1 Traffic camera distribution and traffic detector setting**

567 A total of 914 traffic cameras (<https://webcams.nyctmc.org/api/cameras/>) provide
568 live feeds in NYC, with 331 located in Manhattan. After manually reviewing each
569 camera to exclude those with poor views, 309 cameras are used for analysis, among
570 which 267 update their views every 2 seconds, and the remaining update every 5 sec-
571 onds. The resolutions of videos vary from 360×240 pixels to 1920×1080 pixels, with
572 over 80% at the latter resolution. Extended Data [Figure 1](#) (a) presents the spatial
573 distribution of these cameras along with some snapshots taken on December 5, 2023,
574 from 09:00-10:00 a.m. As shown, traffic cameras cover a variety of road types and
575 intersections, containing rich on-road vehicles and traffic information with high tem-
576 poral resolution and dense spatial coverage. For this study, we analyze traffic camera
577 footage from four one-week periods in 2024 (the first week of January, April, August,
578 and December) to determine fleet composition and signal timing. These patterns are
579 then applied to other days, assuming that fleet composition and signal timing remain
580 relatively stable over time. Beginning in January 2025, we expand data collection to
581 a weekly basis to closely monitor the effects of congestion pricing.

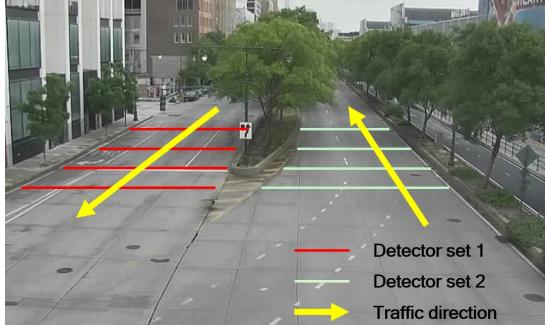
582 One main challenge is linking cameras to the road network, as a single camera may
583 cover multiple roads or directions, particularly at intersections. To address this, we
584 first map the cameras on Google Maps based on their spatial coordinates. Next, we
585 manually compare the Google Maps Street View with the camera footage to identify
586 the road segment sharing the same view. After locating the road segment, separate
587 sets of detectors are assigned to each road and matched to the corresponding segment
588 (Extended Data [Figure 1](#) (b)). To accommodate different camera configurations, four
589 parallel detectors are placed per direction to optimize detection accuracy. We analyze
590 the impact of detector location on recorded traffic volume and find a robust pattern
591 when detectors are positioned near the stop line (Extended Data [Figure 1](#) (c), C3 and
592 C4). Conversely, placing detectors farther from the stop line (Extended Data [Figure 1](#)
593 (c), C1 and C2) results in underestimations of traffic volume, as vehicles appear smaller
594 and are less likely to be detected by the computer vision algorithm.

595 **5.2 Vehicle type classification**

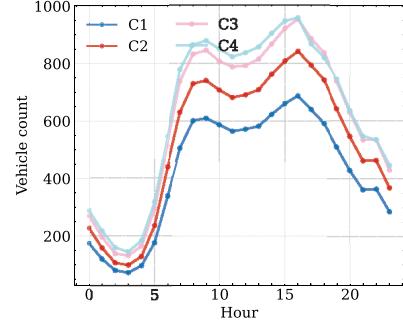
596 We use the Bing Image API to collect images. For each retrieved image, we use
597 YOLOv8 to detect objects classified as cars, motorcycles, buses, or trucks, crop them
598 out, and save them as individual images. To ensure dataset quality, images smaller
599 than 50×50 pixels are also removed. In total, 6,382 images are collected.

600 We test a total of 10 image classifiers from the *timm* library [71], including
601 ViT (`vit_small_patch16_224`), Swin (`swin_base_patch4_window7_224`), ConvNeXt
602 (`convnext_tiny`), RepVGG (`repvgg_a2`), Inception-v4 (`inception_v4`), ResNet-50
603 (`resnet50`), DenseNet-201 (`densenet201`), InceptionNeXt (`inception_next_tiny`),
604 Xception (`xception71`), and EfficientNet-v2 (`efficientnetv2_rw_t`). Images are
605 resized to 224×224 pixels by cropping and reflection padding before training. All mod-
606 els are pre-trained on the ImageNet-1k dataset [72] and fine-tuned for the new dataset

(a) Map and view of cameras



(b) Detector setting



(c) Hourly volume by detector

Extended Data Fig 1: | Map and view of cameras and detectors. (a) Six cameras (marked in white) are randomly selected to show their snapshots: Worth Street @ Bowery; FDR Dr @ 96 Street; 2 Ave @ 42 St; FDR Dr @ 111 ST; 11 Ave @ W 23rd St; 62 St @ QBB Upper-Level exit ramp. (b) Locations of traffic detectors. Four detectors are placed for each direction. (c) Traffic volume collected by different detectors.

607 using the *timm* framework [71]. The training parameters are as follows: batch size =
608 32, training/validation/testing ratio = 8:1:1, number of epochs = 15, and early stopping
609 if validation loss does not decrease 10^{-3} for 5 epochs. The initial learning rate is
610 chosen based on the loss-learning rate curve showing the sharpest downward slope.

611 Extended Data [Figure 2](#) (a) shows learning curves on the training dataset. The
612 training losses decrease rapidly and converge after several epochs, albeit at varying
613 convergence speeds. Extended Data [Figure 2](#) (b) presents the relationship between
614 the number of parameters and testing accuracy for all models. As shown, Swin [73]
615 achieves the highest accuracy (93.1%) but has the most parameters (the lowest effi-
616 ciency). ConvNeXt [60] achieves a slightly lower accuracy (92.9%) but has significantly
617 fewer parameters (much higher efficiency). Considering both accuracy and efficiency,
618 ConvNeXt is selected as the final image classifier. The class-wise performance of Con-
619 vNext, as illustrated in Extended Data [Figure 2](#) (c), demonstrates high accuracy
620 values (81-100%) along the diagonal, with particularly high performance in identifying
621 motorcycles (98.8%), refuse trucks (98.0%), and school buses (100%). Some vehicle
622 types, such as intercity versus transit buses and passenger versus single-unit trucks,
623 remain challenging to distinguish, likely due to their similar shapes and appearances.

624 **5.3 Traffic volume validation**

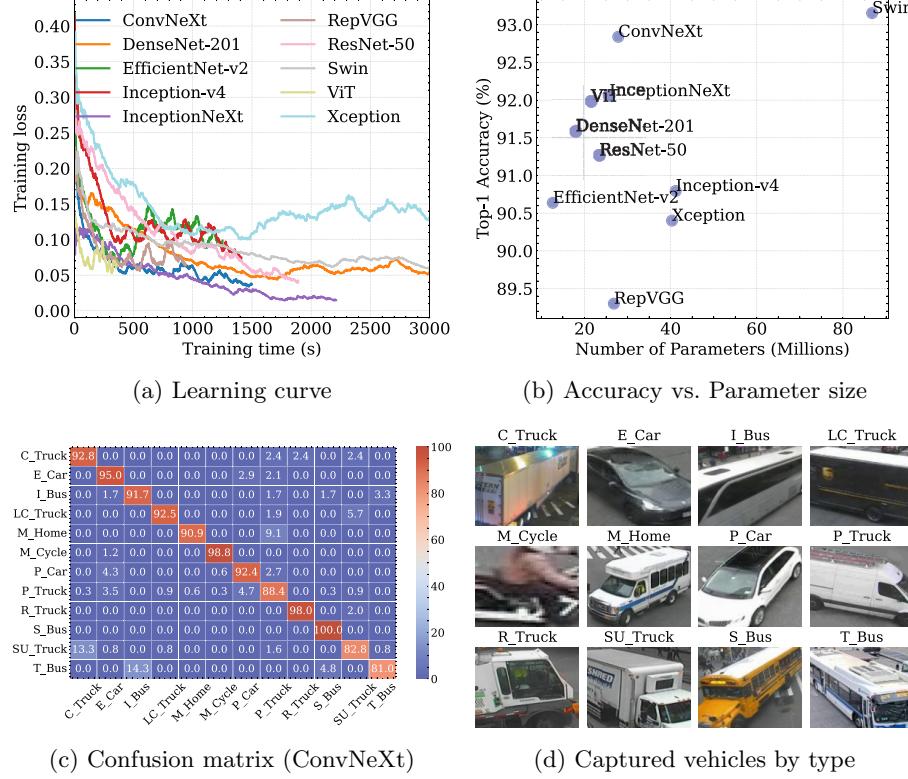
625 To account for potential underestimation due to low FPS, we weight the camera-
626 based traffic volume by its frame update frequency (1/FPS). We then compare the
627 camera-based volume with the ground truth for validation. The NYC Department
628 of Transportation uses automated traffic recorders (ATR) to collect traffic volume.
629 Since ATR counts are not year-round and the number of recorded days per location
630 varies annually, we compare the hourly averages for the same day of the week within
631 the same month between camera-based and ATR-based volumes for matching links.
632 A total of 60 cameras can find a corresponding ATR, and the MAPE for the hourly
633 average volume can achieve 16.31%, with a Pearson correlation of 0.93 ([Figure 1](#) (b)).

634 The validation is also conducted on an hourly basis. The results show that camera-
635 based volumes tend to underestimate the ground truth during nighttime, which is
636 mainly due to poor lighting conditions that affect the performance of computer vision
637 algorithms. During the daytime, camera-based volumes exhibit much higher accuracy,
638 with an average MAPE of 13.07%. However, daytime estimates tend to slightly over-
639 estimate the ground truth, likely due to the complexity of traffic conditions and mixed
640 directions of traffic flows within one camera’s view.

641 Note that given the absence of key camera configuration details, such as height,
642 view angle, and focal length, and the limitations of tracking algorithms for low-FPS,
643 low-resolution videos, we opt not to use camera footage to compute traffic speed, as
644 this process requires precise distance estimation.

645 **5.4 Fleet composition**

646 We show the spatial distribution of hourly volume by vehicle types in Extended Data
647 [Figure 3](#). For each vehicle type, data from three time periods are presented: midnight
648 (03:00–04:00 a.m.), morning peak (08:00–09:00 a.m.), and afternoon peak (04:00–05:00
649 p.m.). Significant spatiotemporal differences in fleet composition are observed. For
650 instance, buses are predominantly concentrated in Midtown, trucks are mainly con-
651 centrated in suburban areas, and passenger cars are mainly located along the outer



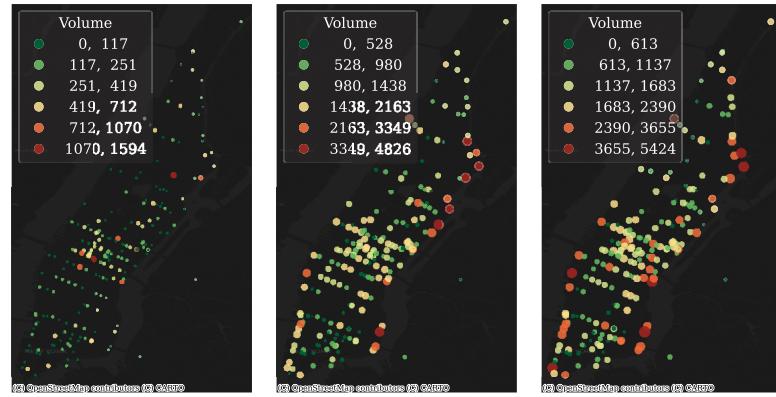
Extended Data Fig 2: | Vehicle type classifier performance and outcome.

(a) Learning curves for the ten image classifiers. (b) Scatter plot showing the number of parameters (M) versus Top-1 Accuracy (%). (c) Confusion matrix for ConvNeXt. Twelve vehicle types are considered: combination truck (C_Truck), electric car (E_Car), intercity bus (I_Bus), light commercial truck (LC_Truck), motorcycle (M_Cycle), motorhome (M_Home), passenger car (P_Car), passenger truck (P_Truck), refuse truck (R_Truck), single-unit truck (SU_Truck), school bus (S_Bus), and transit bus (T_Bus). (d) Examples of extracted images from camera footage for each vehicle type.

652 rings. These variations underscore the importance of accounting for hyperlocal fleet
653 composition when estimating on-road traffic emissions.

654 5.5 Signal timing inference

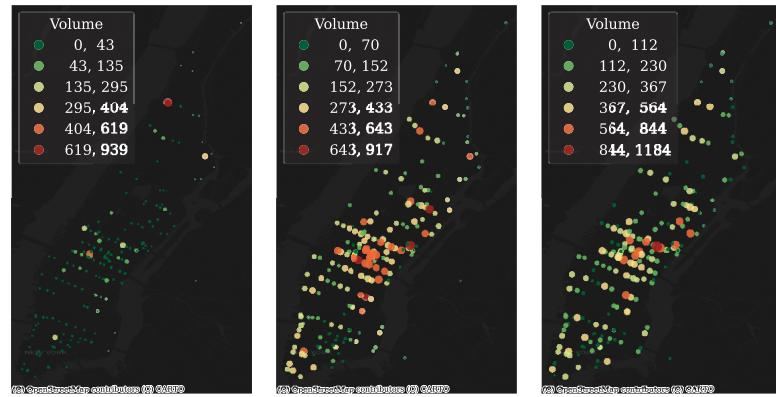
655 For validation, we manually check 60 intersections (10 for each type) and report the
656 errors in Extended Data Table 1. Note that the road network is sourced from OSM,
657 which includes highways, trunks, primary roads, secondary roads, residential roads,
658 tertiary roads, and unclassified roads. No signalized intersections are observed on
659 highways or trunks. In addition, for simplification, we combine “unclassified” and
660 “tertiary” roads as “residential”.



(a) car, 3 a.m.

(b) car, 8 a.m.

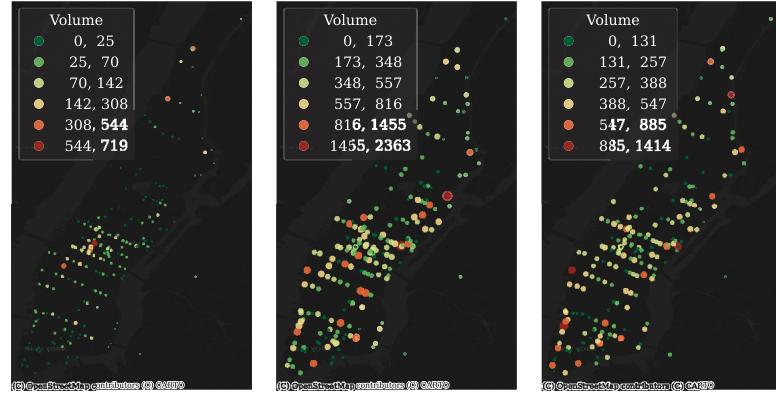
(c) car, 4 p.m.



(d) Transit bus, 3 a.m.

(e) Transit bus, 8 a.m.

(f) Transit bus, 4 p.m.



(g) Truck, 3 a.m.

(h) Truck, 8 a.m.

(i) Truck, 4 p.m.

Extended Data Fig 3: | Spatial map of passenger cars, transit buses, and trucks. (a-c) Hourly passenger cars; (d-f) Hourly transit buses. (g-i) Hourly trucks.

Extended Data Table 1: Summary of signal timing

Type	Total count	Max. cycle	Min. cycle	Avg. cycle	Ground truth	MAE
primary-residential	952	125	70	97	100	3
residential-secondary	910	115	60	76	80	4
residential-residential	414	90	45	60	65	5
secondary-secondary	205	135	70	88	90	2
primary-secondary	198	140	90	113	110	3
primary-primary	183	145	110	133	135	2

661 5.6 OD matrix

662 The OD matrix data is obtained through the Data for Good program by *Cuebiq*
 663 [61]. Aggregated mobility data are provided by Cuebiq, a location intelligence plat-
 664 form. Data is collected from anonymized users who have opted in to provide access to
 665 their location data anonymously, through a CCPA and GDPR-compliant framework.
 666 Through its Social Impact program, Cuebiq provides mobility insights for academic
 667 research and humanitarian initiatives. The Cuebiq responsible data sharing frame-
 668 work enables research partners to query anonymized and privacy-enhanced data, by
 669 providing access to an auditable, on-premise Data Cleanroom environment. All final
 670 outputs provided to partners are aggregated in order to preserve privacy.

671 To calculate population weighting factors, we compare the census block group
 672 (CBG)-level population size (from the 5-year American Community Survey 2020) with
 673 the number of devices assigned to each CBG during the year 2020. Home Census Block
 674 Group assignments are determined using three variables: the number of days spent
 675 at a location in the past month, the daily average number of hours spent there, and
 676 the time of day (nighttime/daytime) spent at the location [35, 61]. We find a strong
 677 positive correlation between the total population and the total number of devices
 678 ($\rho = 0.73$), with an average penetration rate of approximately 21.49% annually.

679 5.7 Dynamic traffic assignment (DTA)

680 We used DTALite to conduct the DTA. DTALite is an open-source mesoscopic traffic
 681 simulator that includes both static traffic assignment and dynamic traffic simulation
 682 to reflect the impact of road capacity constraints [36, 65]. Three traffic stream mod-
 683 els, namely, point queue model (for secondary, tertiary, and residential roads), spatial
 684 queue model (for primary and secondary roads), and simplified kinematic wave mod-
 685 els (for motorways), are embedded in the mesoscopic simulator to describe queuing
 686 behavior at bottlenecks with tight capacity constraints. Developed in C++, DTALite
 687 supports parallel computing on shared-memory multi-core systems, enabling large-
 688 scale network simulations with high efficiency. In this section, we briefly outline the
 689 inputs prepared for the DTALite simulation.

690 **Simulation network:** Road networks from OSM cannot be directly used for traffic
 691 assignment due to missing details such as the number of lanes, free flow speed, and
 692 link capacity, as well as their unstandardized network format, such as mixed use of
 693 directed and undirected links. To address these, we use the *osm2gmns* package [63] to

694 convert the OSM network into an assignment-ready format. *osm2gmns* enriches OSM
695 by adding essential link attributes such as lanes, free flow speed, and capacities, and
696 standardizes the network by converting bi-directional roads into pairs of directed links.
697 Finally, we include 418,602 links covering 31,767 miles in the simulation, which is a
698 large-scale network that would typically require several hours to run on traditional
699 traffic simulators.

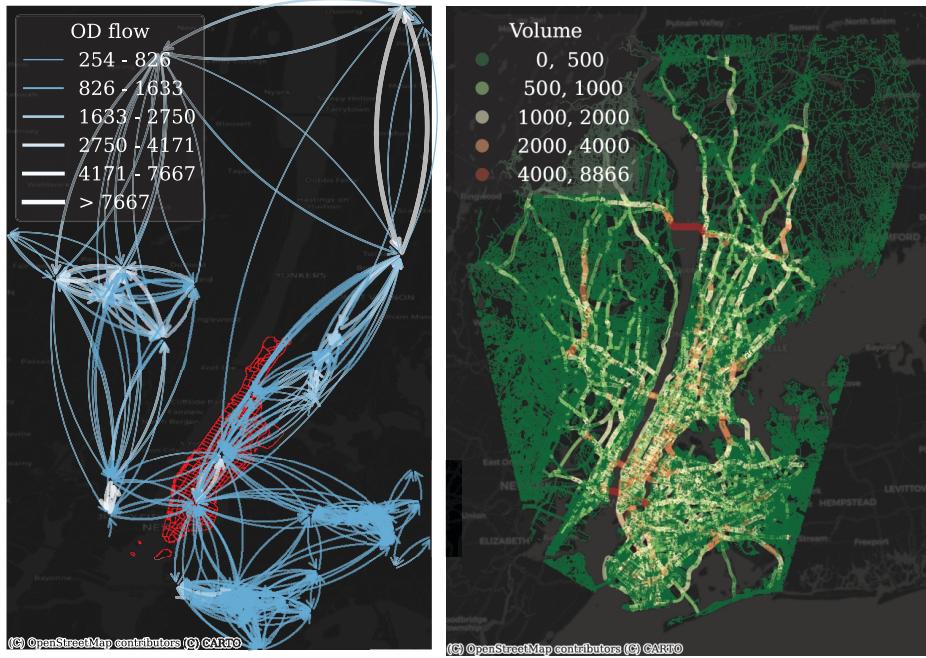
700 **OD matrix:** The simulation includes 2,744 TAZs within the modeled area. The
701 connection between TAZ and the road network is via the centroid connector. To
702 reduce the computational load of large-scale network simulation, we focus on Man-
703 hattan as the core area and aggregate OD flows outside Manhattan based on their
704 importance. The importance of an OD pair is determined by the total traffic volume
705 passing through Manhattan. After aggregation, the final network includes 401 zones
706 within Manhattan and 556 zones (originally 2,343) outside Manhattan. As shown in
707 Extended Data [Figure 4](#) (a-b), traffic volume outside Manhattan is sparse and primar-
708 ily concentrated on major roads, whereas more detailed traffic patterns are simulated
709 within Manhattan.

710 **OD matrix calibration:** As shown in Extended Data [Figure 4](#) (c-d), OD matrix
711 calibration results in a steady decrease in MAPE but also causes a sharp increase in
712 the user equilibrium (UE) gap after a certain number of iterations. This is due to the
713 trade-off in the objective function of OD matrix calibration. The model aggressively
714 minimizes the gap between observed and assigned traffic volumes while compromis-
715 ing the UE condition. To avoid this, we terminate the iteration at 38, where the UE gap
716 remains below 0.1%, while MAPE also remains at low values of 20.18%.

717 **Speed-density calibration:** We compare road traffic speed before and after
718 speed-density calibration in Extended Data [Figure 5](#). After calibration, the R^2
719 improves significantly, ranging from 0.892 to 0.942 across different road types. In con-
720 trast, R^2 before calibration is low, demonstrating that default parameters without
721 calibration fail to accurately capture road-level speed-density relationships.

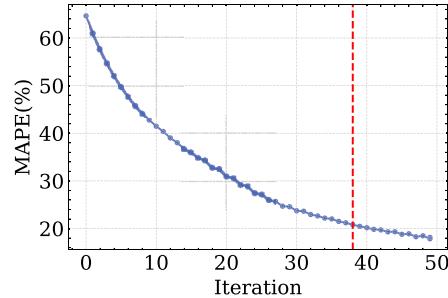
722 5.8 MOVES

723 MOVES mainly bases on operating modes (OpMode) to determine emission rates.
724 Each operating mode is classified based on vehicle-specific power (VSP), speed, and
725 acceleration. Mode 0 represents deceleration and braking. Mode 1 represents idle
726 conditions at very low speeds. Modes 11 and 21 correspond to coasting conditions,
727 differentiated by speed ranges. Modes 12–16 and 22–40 represent various cruise and
728 acceleration states, further segmented by VSP intervals and speed bins. Extended Data
729 [Figure 6](#) provides an example of MOVES emission rates for different source types (all
730 in the model year 2020) in each OpMode bin. High speeds, moderate accelerations at
731 high speeds, and rapid accelerations at moderate or high speeds push on-road activity
732 into higher VSP bins, leading to higher fuel consumption and emission rates in the
733 emission calculation.

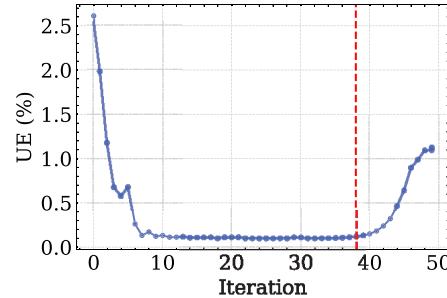


(a) Driving OD matrix

(b) Assignment volume

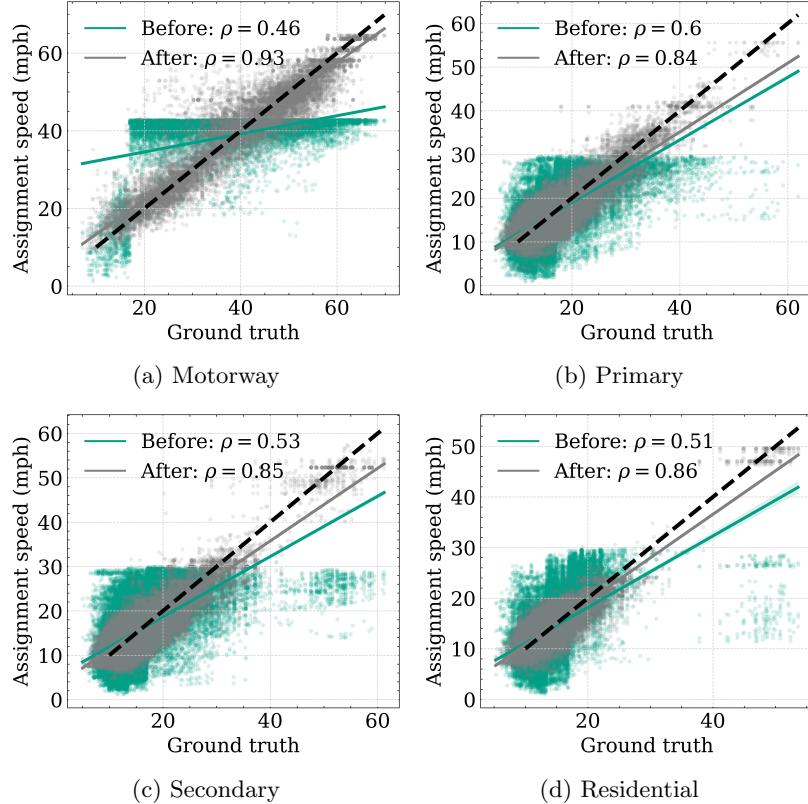


(c) Change of volume MAPE



(d) User equilibrium (UE) gap

Extended Data Fig 4: | The DTA outcomes of the whole simulation network. The volume is based on the average value during the morning peak 08:00-09:00 a.m. OD flow is aggregated at the census tract level, and only class labels greater than 1 are plotted for better visualization. In the real simulation, OD flow is aggregated at the TAZ level and all OD flows are inputted. Although only Manhattan City is the focus (red area), we considered nearby OD flows to include passing-through travels. In (c-d), the red line represents the iteration where we terminate the DTA and calibration.

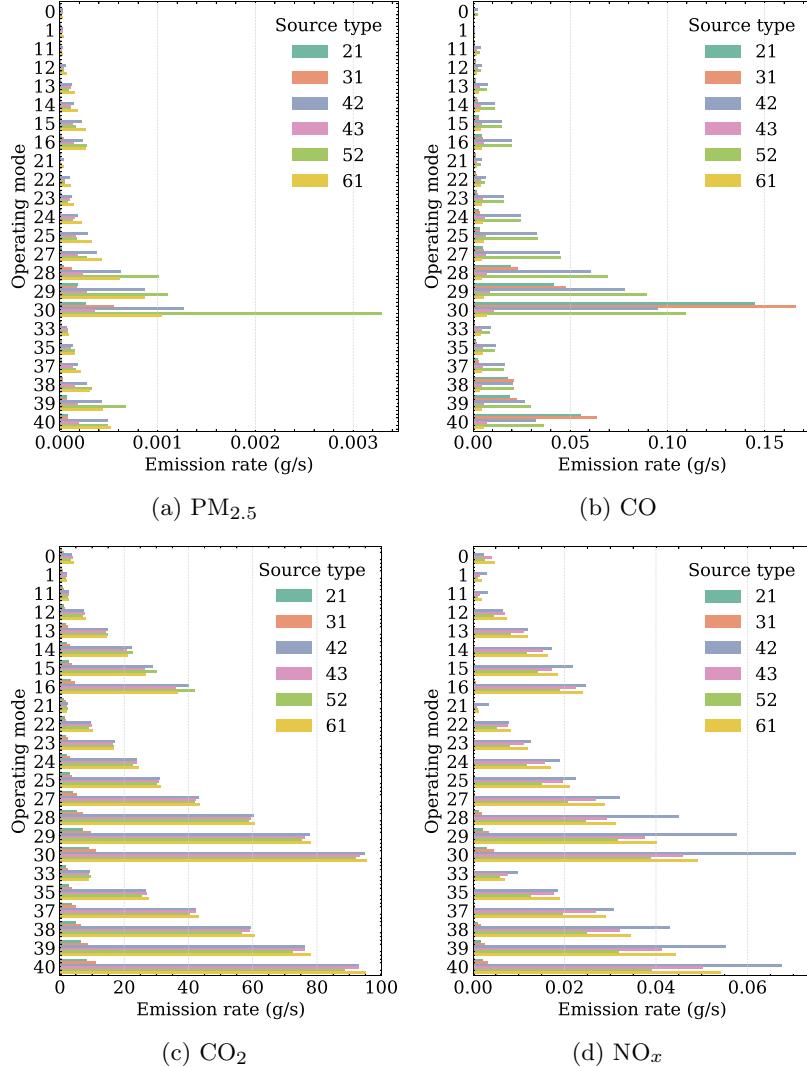


Extended Data Fig 5: | Speed-density calibration. Comparison of assigned vs. observed traffic speed by motorways (a), primary roads (b), secondary roads (c), and residential roads (d), before (teal) and after (gray) calibration. Each point represents the hourly speed on a single road. The black dashed line indicates the 1:1 reference line.

734 5.9 Scenario analysis

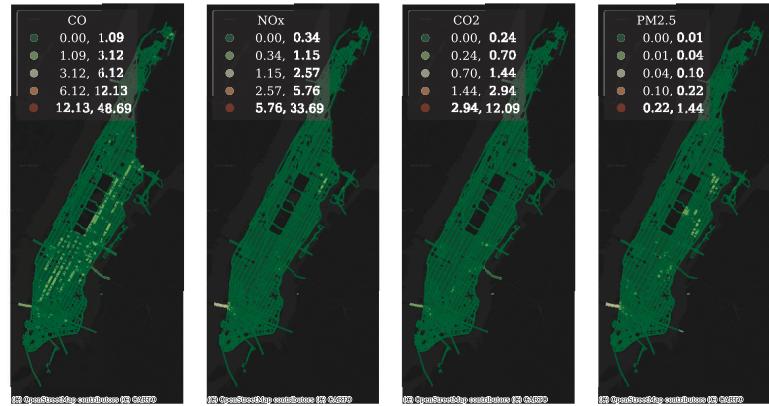
735 Extended Data [Figure 7](#) shows the spatial distribution of four types of emissions during
 736 three periods: Morning peak (08:00-09:00 a.m.), Afternoon peak (04:00-05:00 p.m.),
 737 and Midnight (03:00-04:00 a.m.). As shown, the emission rates of most of the on-road
 738 traffic emissions decrease significantly during midnight, while the morning peak and
 739 afternoon peak show much more substantial concentration, with midtown and cross-
 740 city bridges showing the highest density. This is mainly due to the variation of traffic
 741 volume across the hours of the day and the spatial locations.

742 Extended Data [Figure 8](#) shows the spatial distribution of CO₂ changes during four
 743 different events. A substantial decrease is observed across all road segments in Man-
 744 hattan City during the snowstorm, Henri flooding, and COVID-19, while a substantial
 745 increase is observed during Black Friday, although the degree of change varies signif-
 746 icantly across different road segments. These results highlight the time sensitivity of
 747 our method due to the use of MPLD to compute the OD matrix for traffic assignment.



Extended Data Fig 6: | Emission rate by operating mode.

748 Extended Data Figure 9 shows the change in speed and volume after the imple-
 749 mentation of congestion pricing in Manhattan. Panel (a) shows the percentage change
 750 in traffic speed across different road types over 2 to 8 weeks after the announce-
 751 ment of congestion pricing. Speed increased consistently over time across all road types,
 752 with the most significant increases observed on motorways and primary roads (15%).
 753 Residential and secondary roads saw smaller but still positive speed gains (8–12%).
 754 Panel (b) shows the percentage change in traffic volume by vehicle type over the same
 755 period. Truck volumes decreased the most, reaching nearly -14% by week 8, followed
 756 by car volumes, decreasing around -10%. Bus and other vehicle categories experienced

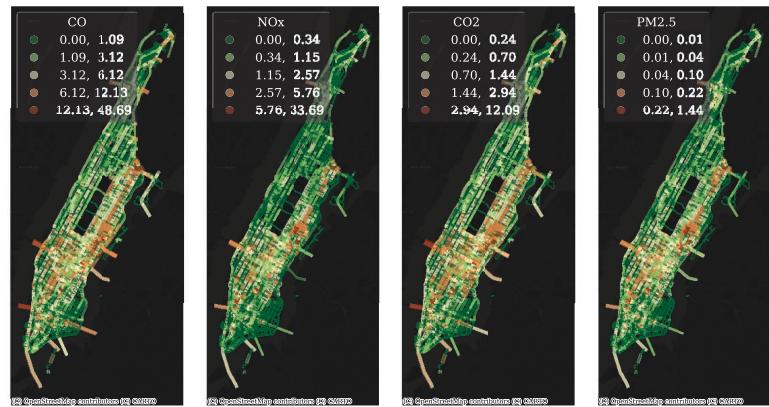


(a) 03:00 a.m.

(b) 03:00 a.m.

(c) 03:00 a.m.

(d) 03:00 a.m.

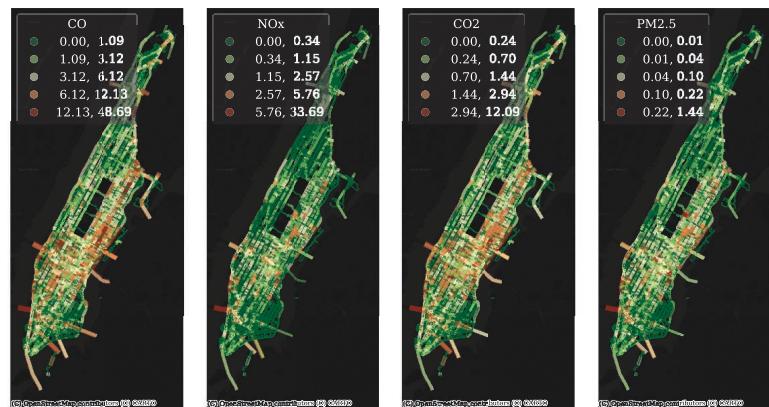


(e) 08:00 a.m.

(f) 08:00 a.m.

(g) 08:00 a.m.

(h) 08:00 a.m.



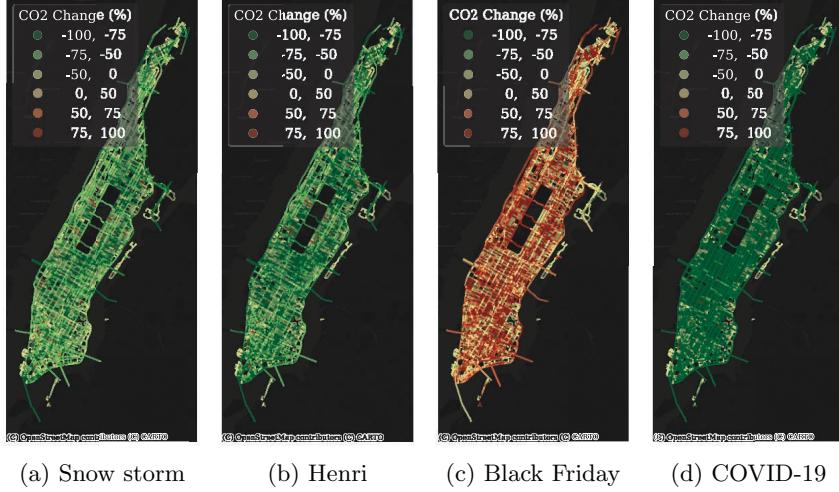
(i) 04:00 p.m.

(j) 04:00 p.m.

(k) 04:00 p.m.

(l) 04:00 p.m.

Extended Data Fig 7: | Spatial distribution of emission density. CO₂ is measured in ton·h⁻¹·mile⁻¹ and the others are measured in kg·h⁻¹·mile⁻¹.



(a) Snow storm

(b) Henri

(c) Black Friday

(d) COVID-19

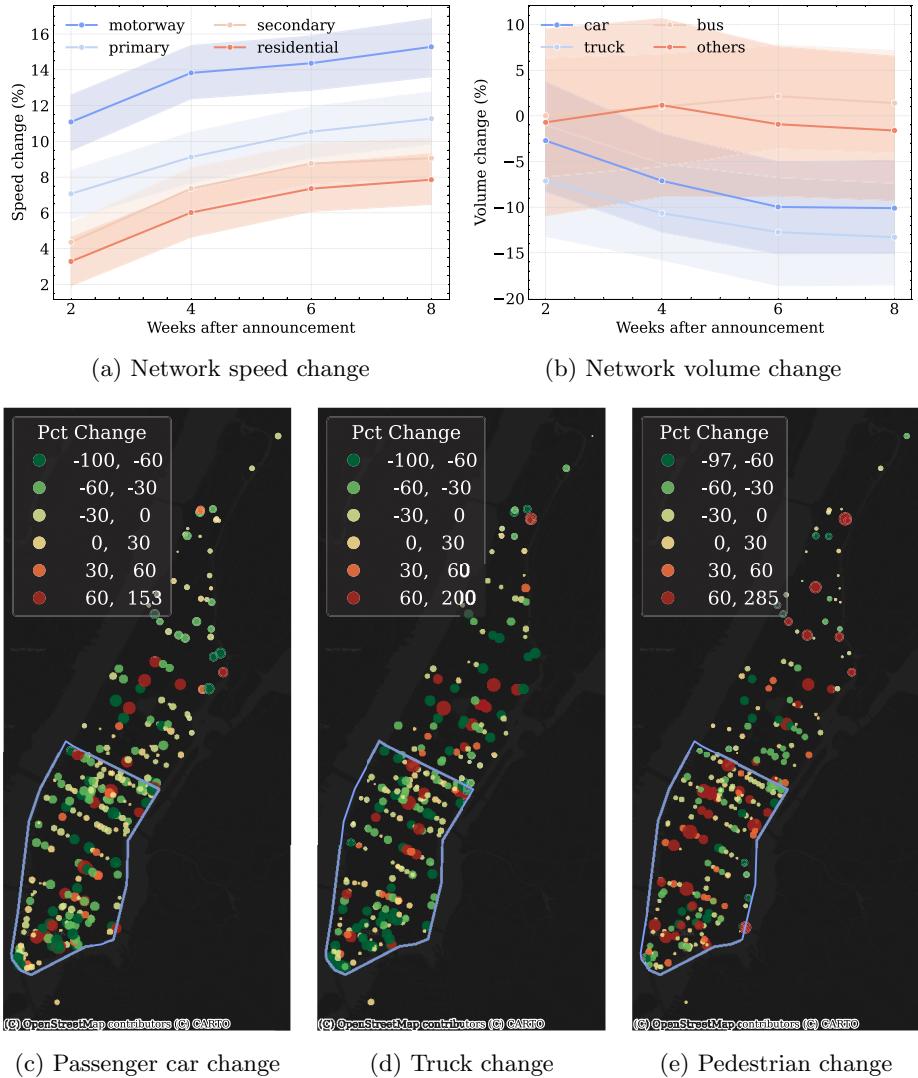
Extended Data Fig 8: | Event-induced CO₂ emissions changes. The daily average total emission on the same day of the week without events is used as the baseline.

757 relatively small changes. The greater reductions in truck traffic are largely due to its
 758 highest toll rates under the congestion pricing policy [12].

759 The observed changes are consistent with multiple independent data sources [43,
 760 44]. For instance, data from the E-ZPass system show that the total number of vehicles
 761 crossing the Lincoln Tunnel declined by 8.18% in January 2025 compared to January
 762 2024, with the reduction increasing to 11.71% in February 2025. Similarly, vehicle
 763 counts through the Holland Tunnel decreased by 4.99% in January and 9.72% in
 764 February 2025, relative to the same months in the previous year. Additionally, a study
 765 based on Google Maps traffic trends [44] reported significant increases in average
 766 traffic speeds in NYC central business district (CBD) after congestion pricing: highway
 767 speeds rose by 13%, arterial speeds by 10%, and local road speeds by 8%.

768 5.10 Computational setup

769 All data processing is conducted on an hourly basis with a one-day lag relative to real
 770 time due to the update frequency of the MPLD. Within the simulation, the temporal
 771 resolution is further refined to 5-minute intervals to capture finer traffic dynamics.
 772 Running on a local server with 4 NVIDIA GEFORCE RTX 2080 Ti GPUs, the average
 773 processing time for one hour of citywide data is 22 minutes, including 19 minutes for
 774 image processing, 2 minutes for dynamic traffic simulation, and 1 minute for emission
 775 estimation. This processing time, particularly for image processing, can be further
 776 reduced with more advanced GPUs or cloud-computing frameworks. These results
 777 indicate that, with fully live data streams, the framework is capable of generating
 778 near-real-time emission estimates within approximately 30 minutes.



Extended Data Fig 9: | Impact of congestion pricing on traffic speed and volume. The daily average traffic volume and speed from the same day of the week and the corresponding week in 2024 are used as the baseline. (a-b) Temporal changes in network-wide average traffic speed (by road type) and volume (by car type). Shaded areas represent 95% confidence intervals. (c-e) Spatial distribution of traffic volume changes (in %) by week 8. Each point represents a camera location. Green indicates a decrease in volume, red indicates an increase. Marker size reflects the magnitude of absolute change. “Truck” represents the combined total of passenger trucks, single-unit trucks, and combination trucks. The blue boundary denotes the congestion relief zone.