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5.1 Traffic camera distribution and traffic detector setting566

A total of 914 traffic cameras (https://webcams.nyctmc.org/api/cameras/) provide567

live feeds in NYC, with 331 located in Manhattan. After manually reviewing each568

camera to exclude those with poor views, 309 cameras are used for analysis, among569

which 267 update their views every 2 seconds, and the remaining update every 5 sec-570

onds. The resolutions of videos vary from 360 ×240 pixels to 1920 ×1080 pixels, with571

over 80% at the latter resolution. Extended Data Figure 1 (a) presents the spatial572

distribution of these cameras along with some snapshots taken on December 5, 2023,573

from 09:00-10:00 a.m. As shown, traffic cameras cover a variety of road types and574

intersections, containing rich on-road vehicles and traffic information with high tem-575

poral resolution and dense spatial coverage. For this study, we analyze traffic camera576

footage from four one-week periods in 2024 (the first week of January, April, August,577

and December) to determine fleet composition and signal timing. These patterns are578

then applied to other days, assuming that fleet composition and signal timing remain579

relatively stable over time. Beginning in January 2025, we expand data collection to580

a weekly basis to closely monitor the effects of congestion pricing.581

One main challenge is linking cameras to the road network, as a single camera may582

cover multiple roads or directions, particularly at intersections. To address this, we583

first map the cameras on Google Maps based on their spatial coordinates. Next, we584

manually compare the Google Maps Street View with the camera footage to identify585

the road segment sharing the same view. After locating the road segment, separate586

sets of detectors are assigned to each road and matched to the corresponding segment587

(Extended Data Figure 1 (b)). To accommodate different camera configurations, four588

parallel detectors are placed per direction to optimize detection accuracy. We analyze589

the impact of detector location on recorded traffic volume and find a robust pattern590

when detectors are positioned near the stop line (Extended Data Figure 1 (c), C3 and591

C4). Conversely, placing detectors farther from the stop line (Extended Data Figure 1592

(c), C1 and C2) results in underestimations of traffic volume, as vehicles appear smaller593

and are less likely to be detected by the computer vision algorithm.594

5.2 Vehicle type classification595

We use the Bing Image API to collect images. For each retrieved image, we use596

YOLOv8 to detect objects classified as cars, motorcycles, buses, or trucks, crop them597

out, and save them as individual images. To ensure dataset quality, images smaller598

than 50 ×50 pixels are also removed. In total, 6,382 images are collected.599

We test a total of 10 image classifiers from the timm library [71], including600

ViT (vit small patch16 224), Swin (swin base patch4 window7 224), ConvNeXt601

(convnext tiny), RepVGG (repvgg a2), Inception-v4 (inception v4), ResNet-50602

(resnet50), DenseNet-201 (densenet201), InceptionNeXt (inception next tiny),603

Xception (xception71), and EfficientNet-v2 (efficientnetv2 rw t). Images are604

resized to 224×224 pixels by cropping and reflection padding before training. All mod-605

els are pre-trained on the ImageNet-1k dataset [72] and fine-tuned for the new dataset606
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(a) Map and view of cameras

(b) Detector setting (c) Hourly volume by detector

Extended Data Fig 1: | Map and view of cameras and detectors. (a) Six
cameras (marked in white) are randomly selected to show their snapshots: Worth Street @
Bowery; FDR Dr @ 96 Street; 2 Ave @ 42 St; FDR Dr @ 111 ST; 11 Ave @ W 23rd St; 62 St
@ QBB Upper-Level exit ramp. (b) Locations of traffic detectors. Four detectors are placed
for each direction. (c) Traffic volume collected by different detectors.

using the timm framework [71]. The training parameters are as follows: batch size =607

32, training/validation/testing ratio = 8:1:1, number of epochs = 15, and early stop-608

ping if validation loss does not decrease 10−3 for 5 epochs. The initial learning rate is609

chosen based on the loss-learning rate curve showing the sharpest downward slope.610
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Extended Data Figure 2 (a) shows learning curves on the training dataset. The611

training losses decrease rapidly and converge after several epochs, albeit at varying612

convergence speeds. Extended Data Figure 2 (b) presents the relationship between613

the number of parameters and testing accuracy for all models. As shown, Swin [73]614

achieves the highest accuracy (93.1%) but has the most parameters (the lowest effi-615

ciency). ConvNeXt [60] achieves a slightly lower accuracy (92.9%) but has significantly616

fewer parameters (much higher efficiency). Considering both accuracy and efficiency,617

ConvNeXt is selected as the final image classifier. The class-wise performance of Con-618

vNext, as illustrated in Extended Data Figure 2 (c), demonstrates high accuracy619

values (81-100%) along the diagonal, with particularly high performance in identifying620

motorcycles (98.8%), refuse trucks (98.0%), and school buses (100%). Some vehicle621

types, such as intercity versus transit buses and passenger versus single-unit trucks,622

remain challenging to distinguish, likely due to their similar shapes and appearances.623

5.3 Traffic volume validation624

To account for potential underestimation due to low FPS, we weight the camera-625

based traffic volume by its frame update frequency (1/FPS). We then compare the626

camera-based volume with the ground truth for validation. The NYC Department627

of Transportation uses automated traffic recorders (ATR) to collect traffic volume.628

Since ATR counts are not year-round and the number of recorded days per location629

varies annually, we compare the hourly averages for the same day of the week within630

the same month between camera-based and ATR-based volumes for matching links.631

A total of 60 cameras can find a corresponding ATR, and the MAPE for the hourly632

average volume can achieve 16.31%, with a Pearson correlation of 0.93 (Figure 1 (b)).633

The validation is also conducted on an hourly basis. The results show that camera-634

based volumes tend to underestimate the ground truth during nighttime, which is635

mainly due to poor lighting conditions that affect the performance of computer vision636

algorithms. During the daytime, camera-based volumes exhibit much higher accuracy,637

with an average MAPE of 13.07%. However, daytime estimates tend to slightly over-638

estimate the ground truth, likely due to the complexity of traffic conditions and mixed639

directions of traffic flows within one camera’s view.640

Note that given the absence of key camera configuration details, such as height,641

view angle, and focal length, and the limitations of tracking algorithms for low-FPS,642

low-resolution videos, we opt not to use camera footage to compute traffic speed, as643

this process requires precise distance estimation.644

5.4 Fleet composition645

We show the spatial distribution of hourly volume by vehicle types in Extended Data646

Figure 3. For each vehicle type, data from three time periods are presented: midnight647

(03:00–04:00 a.m.), morning peak (08:00–09:00 a.m.), and afternoon peak (04:00–05:00648

p.m.). Significant spatiotemporal differences in fleet composition are observed. For649

instance, buses are predominantly concentrated in Midtown, trucks are mainly con-650

centrated in suburban areas, and passenger cars are mainly located along the outer651
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(a) Learning curve (b) Accuracy vs. Parameter size

(c) Confusion matrix (ConvNeXt) (d) Captured vehicles by type

Extended Data Fig 2: | Vehicle type classifier performance and outcome.
(a) Learning curves for the ten image classifiers. (b) Scatter plot showing the number of
parameters (M) versus Top-1 Accuracy (%). (c) Confusion matrix for ConvNeXt. Twelve
vehicle types are considered: combination truck (C Truck), electric car (E Car), intercity bus
(I Bus), light commercial truck (LC Truck), motorcycle (M Cycle), motorhome (M Home),
passenger car (P Car), passenger truck (P Truck), refuse truck (R Truck), single-unit truck
(SU Truck), school bus (S Bus), and transit bus (T Bus). (d) Examples of extracted images
from camera footage for each vehicle type.

rings. These variations underscore the importance of accounting for hyperlocal fleet652

composition when estimating on-road traffic emissions.653

5.5 Signal timing inference654

For validation, we manually check 60 intersections (10 for each type) and report the655

errors in Extended Data Table 1. Note that the road network is sourced from OSM,656

which includes highways, trunks, primary roads, secondary roads, residential roads,657

tertiary roads, and unclassified roads. No signalized intersections are observed on658

highways or trunks. In addition, for simplification, we combine “unclassified” and659

“tertiary” roads as “residential”.660
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(a) car, 3 a.m. (b) car, 8 a.m. (c) car, 4 p.m.

(d) Transit bus, 3 a.m. (e) Transit bus, 8 a.m. (f) Transit bus, 4 p.m.

(g) Truck, 3 a.m. (h) Truck, 8 a.m. (i) Truck, 4 p.m.

Extended Data Fig 3: | Spatial map of passenger cars, transit buses, and
trucks. (a-c) Hourly passenger cars; (d-f) Hourly transit buses. (g-i) Hourly trucks.
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Extended Data Table 1: Summary of signal timing

Type Total
count

Max.
cycle

Min.
cycle

Avg.
cycle

Ground
truth

MAE

primary-residential 952 125 70 97 100 3
residential-secondary 910 115 60 76 80 4
residential-residential 414 90 45 60 65 5
secondary-secondary 205 135 70 88 90 2
primary-secondary 198 140 90 113 110 3
primary-primary 183 145 110 133 135 2

5.6 OD matrix661

The OD matrix data is obtained through the Data for Good program by Cuebiq662

[61]. Aggregated mobility data are provided by Cuebiq, a location intelligence plat-663

form. Data is collected from anonymized users who have opted in to provide access to664

their location data anonymously, through a CCPA and GDPR-compliant framework.665

Through its Social Impact program, Cuebiq provides mobility insights for academic666

research and humanitarian initiatives. The Cuebiq responsible data sharing frame-667

work enables research partners to query anonymized and privacy-enhanced data, by668

providing access to an auditable, on-premise Data Cleanroom environment. All final669

outputs provided to partners are aggregated in order to preserve privacy.670

To calculate population weighting factors, we compare the census block group671

(CBG)-level population size (from the 5-year American Community Survey 2020) with672

the number of devices assigned to each CBG during the year 2020. Home Census Block673

Group assignments are determined using three variables: the number of days spent674

at a location in the past month, the daily average number of hours spent there, and675

the time of day (nighttime/daytime) spent at the location [35, 61]. We find a strong676

positive correlation between the total population and the total number of devices677

(ρ = 0.73), with an average penetration rate of approximately 21.49% annually.678

5.7 Dynamic traffic assignment (DTA)679

We used DTALite to conduct the DTA. DTALite is an open-source mesoscopic traffic680

simulator that includes both static traffic assignment and dynamic traffic simulation681

to reflect the impact of road capacity constraints [36, 65]. Three traffic stream mod-682

els, namely, point queue model (for secondary, tertiary, and residential roads), spatial683

queue model (for primary and secondary roads), and simplified kinematic wave mod-684

els (for motorways), are embedded in the mesoscopic simulator to describe queuing685

behavior at bottlenecks with tight capacity constraints. Developed in C++, DTALite686

supports parallel computing on shared-memory multi-core systems, enabling large-687

scale network simulations with high efficiency. In this section, we briefly outline the688

inputs prepared for the DTALite simulation.689

Simulation network: Road networks from OSM cannot be directly used for traffic690

assignment due to missing details such as the number of lanes, free flow speed, and691

link capacity, as well as their unstandardized network format, such as mixed use of692

directed and undirected links. To address these, we use the osm2gmns package [63] to693
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convert the OSM network into an assignment-ready format. osm2gmns enriches OSM694

by adding essential link attributes such as lanes, free flow speed, and capacities, and695

standardizes the network by converting bi-directional roads into pairs of directed links.696

Finally, we include 418,602 links covering 31,767 miles in the simulation, which is a697

large-scale network that would typically require several hours to run on traditional698

traffic simulators.699

OD matrix: The simulation includes 2,744 TAZs within the modeled area. The700

connection between TAZ and the road network is via the centroid connector. To701

reduce the computational load of large-scale network simulation, we focus on Man-702

hattan as the core area and aggregate OD flows outside Manhattan based on their703

importance. The importance of an OD pair is determined by the total traffic volume704

passing through Manhattan. After aggregation, the final network includes 401 zones705

within Manhattan and 556 zones (originally 2,343) outside Manhattan. As shown in706

Extended Data Figure 4 (a-b), traffic volume outside Manhattan is sparse and primar-707

ily concentrated on major roads, whereas more detailed traffic patterns are simulated708

within Manhattan.709

OD matrix calibration: As shown in Extended Data Figure 4 (c-d), OD matrix710

calibration results in a steady decrease in MAPE but also causes a sharp increase in711

the user equilibrium (UE) gap after a certain number of iterations. This is due to the712

trade-off in the objective function of OD matrix calibration. The model aggressively713

minimizes the gap between observed and assigned traffic volumes while compromising714

the UE condition. To avoid this, we terminate the iteration at 38, where the UE gap715

remains below 0.1%, while MAPE also remains at low values of 20.18%.716

Speed-density calibration: We compare road traffic speed before and after717

speed-density calibration in Extended Data Figure 5. After calibration, the R2
718

improves significantly, ranging from 0.892 to 0.942 across different road types. In con-719

trast, R2 before calibration is low, demonstrating that default parameters without720

calibration fail to accurately capture road-level speed-density relationships.721

5.8 MOVES722

MOVES mainly bases on operating modes (OpMode) to determine emission rates.723

Each operating mode is classified based on vehicle-specific power (VSP), speed, and724

acceleration. Mode 0 represents deceleration and braking. Mode 1 represents idle725

conditions at very low speeds. Modes 11 and 21 correspond to coasting conditions,726

differentiated by speed ranges. Modes 12–16 and 22–40 represent various cruise and727

acceleration states, further segmented by VSP intervals and speed bins. Extended Data728

Figure 6 provides an example of MOVES emission rates for different source types (all729

in the model year 2020) in each OpMode bin. High speeds, moderate accelerations at730

high speeds, and rapid accelerations at moderate or high speeds push on-road activity731

into higher VSP bins, leading to higher fuel consumption and emission rates in the732

emission calculation.733
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(a) Driving OD matrix (b) Assignment volume

(c) Change of volume MAPE (d) User equilibrium (UE) gap

Extended Data Fig 4: | The DTA outcomes of the whole simulation net-
work. The volume is based on the average value during the morning peak 08:00-09:00 a.m.
OD flow is aggregated at the census tract level, and only class labels greater than 1 are plot-
ted for better visualization. In the real simulation, OD flow is aggregated at the TAZ level
and all OD flows are inputted. Although only Manhattan City is the focus (red area), we
considered nearby OD flows to include passing-through travels. In (c-d), the red line repre-
sents the iteration where we terminate the DTA and calibration.
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(a) Motorway (b) Primary

(c) Secondary (d) Residential

Extended Data Fig 5: | Speed-density calibration. Comparison of assigned vs.
observed traffic speed by motorways (a), primary roads (b), secondary roads (c), and resi-
dential roads (d), before (teal) and after (gray) calibration. Each point represents the hourly
speed on a single road. The black dashed line indicates the 1:1 reference line.

5.9 Scenario analysis734

Extended Data Figure 7 shows the spatial distribution of four types of emissions during735

three periods: Morning peak (08:00-09:00 a.m.), Afternoon peak (04:00-05:00 p.m.),736

and Midnight (03:00-04:00 a.m.). As shown, the emission rates of most of the on-road737

traffic emissions decrease significantly during midnight, while the morning peak and738

afternoon peak show much more substantial concentration, with midtown and cross-739

city bridges showing the highest density. This is mainly due to the variation of traffic740

volume across the hours of the day and the spatial locations.741

Extended Data Figure 8 shows the spatial distribution of CO2 changes during four742

different events. A substantial decrease is observed across all road segments in Man-743

hattan City during the snowstorm, Henri flooding, and COVID-19, while a substantial744

increase is observed during Black Friday, although the degree of change varies signif-745

icantly across different road segments. These results highlight the time sensitivity of746

our method due to the use of MPLD to compute the OD matrix for traffic assignment.747
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(a) PM2.5 (b) CO

(c) CO2 (d) NOx

Extended Data Fig 6: | Emission rate by operating mode.

Extended Data Figure 9 shows the change in speed and volume after the imple-748

mentation of congestion pricing in Manhattan. Panel (a) shows the percentage change749

in traffic speed across different road types over 2 to 8 weeks after the announcement750

of congestion pricing. Speed increased consistently over time across all road types,751

with the most significant increases observed on motorways and primary roads (15%).752

Residential and secondary roads saw smaller but still positive speed gains (8–12%).753

Panel (b) shows the percentage change in traffic volume by vehicle type over the same754

period. Truck volumes decreased the most, reaching nearly -14% by week 8, followed755

by car volumes, decreasing around -10%. Bus and other vehicle categories experienced756
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(a) 03:00 a.m. (b) 03:00 a.m. (c) 03:00 a.m. (d) 03:00 a.m.

(e) 08:00 a.m. (f) 08:00 a.m. (g) 08:00 a.m. (h) 08:00 a.m.

(i) 04:00 p.m. (j) 04:00 p.m. (k) 04:00 p.m. (l) 04:00 p.m.

Extended Data Fig 7: | Spatial distribution of emission density. CO2 is mea-
sured in ton·h−1·mile−1 and the others are measured in kg·h−1·mile−1.
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(a) Snow storm (b) Henri (c) Black Friday (d) COVID-19

Extended Data Fig 8: | Event-induced CO2 emissions changes. The daily
average total emission on the same day of the week without events is used as the baseline.

relatively small changes. The greater reductions in truck traffic are largely due to its757

highest toll rates under the congestion pricing policy [12].758

The observed changes are consistent with multiple independent data sources [43,759

44]. For instance, data from the E-ZPass system show that the total number of vehicles760

crossing the Lincoln Tunnel declined by 8.18% in January 2025 compared to January761

2024, with the reduction increasing to 11.71% in February 2025. Similarly, vehicle762

counts through the Holland Tunnel decreased by 4.99% in January and 9.72% in763

February 2025, relative to the same months in the previous year. Additionally, a study764

based on Google Maps traffic trends [44] reported significant increases in average765

traffic speeds in NYC central business district (CBD) after congestion pricing: highway766

speeds rose by 13%, arterial speeds by 10%, and local road speeds by 8%.767

5.10 Computational setup768

All data processing is conducted on an hourly basis with a one-day lag relative to real769

time due to the update frequency of the MPLD. Within the simulation, the temporal770

resolution is further refined to 5-minute intervals to capture finer traffic dynamics.771

Running on a local server with 4 NVIDIA GEFORCE RTX 2080 Ti GPUs, the average772

processing time for one hour of citywide data is 22 minutes, including 19 minutes for773

image processing, 2 minutes for dynamic traffic simulation, and 1 minute for emission774

estimation. This processing time, particularly for image processing, can be further775

reduced with more advanced GPUs or cloud-computing frameworks. These results776

indicate that, with fully live data streams, the framework is capable of generating777

near-real-time emission estimates within approximately 30 minutes.778
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(a) Network speed change (b) Network volume change

(c) Passenger car change (d) Truck change (e) Pedestrian change

Extended Data Fig 9: | Impact of congestion pricing on traffic speed and
volume. The daily average traffic volume and speed from the same day of the week and the
corresponding week in 2024 are used as the baseline. (a-b) Temporal changes in network-wide
average traffic speed (by road type) and volume (by car type). Shaded areas represent 95%
confidence intervals. (c-e) Spatial distribution of traffic volume changes (in %) by week 8.
Each point represents a camera location. Green indicates a decrease in volume, red indicates
an increase. Marker size reflects the magnitude of absolute change. “Truck” represents the
combined total of passenger trucks, single-unit trucks, and combination trucks. The blue
boundary denotes the congestion relief zone.
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