

## Supplementary Information

# Benchmarking Deep Learning Models for Predicting Anticancer Drug Potency ( $IC_{50}$ ): Insights for the Medicinal Chemist

Udbhas Garai<sup>1†</sup>, Aditya S. Pal<sup>2†</sup>, Koyel Ghosh<sup>2</sup>, Deepak B. Salunke<sup>3</sup> and Utpal Garain<sup>2,4\*</sup>

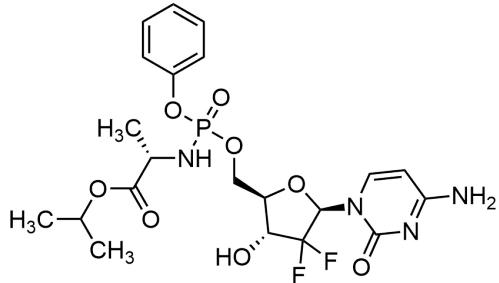
<sup>1</sup>Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India

<sup>2</sup>Computer Vision & Pattern Recognition [CVPR] Unit, Indian Statistical Institute, Kolkata, West Bengal 700108, India

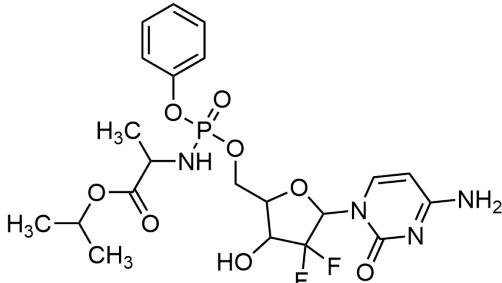
<sup>3</sup>Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab 160062, India

<sup>4</sup>Centre for Artificial Intelligence and Machine Learning (CAIML), Indian Statistical Institute, Kolkata, West Bengal 700108, India

\*Correspondence: [utpal@isical.ac.in](mailto:utpal@isical.ac.in)


†These authors contributed equally to this work.

---


### Contents

|                       |                                                                                                                                                                                 |    |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Supplementary Fig. 1  | The two SMILES representations.                                                                                                                                                 | S2 |
| Supplementary Table 1 | Prediction performance comparison of four deep learning models on unseen anticancer compounds from literature using isomeric and canonical (or generic) SMILES representations. | S2 |
|                       | Proof of $\sigma(\Delta x) = \sqrt{2} \times \sigma(x)$ used in EVAPA derivation                                                                                                | S3 |

---

**a**

NC1=NC(N(C=C1)[C@H]2C(F)(F)[C@H](O)[C@@H](COP(OC3=CC=C3)(N[C@@H](C)C(OC(C)C)=O)=O)O2)=O

**b**

NC1=NC(N(C=C1)C2C(F)(F)C(O)C(COP(OC3=CC=C3)(NC(C)C(OC(C)C)=O)=O)O2)=O

Supplementary Fig. 1: The two SMILES representations. (a) Isomeric SMILES representation that encodes that stereochemical (chiral) information of the molecule. “@” lists neighboring atoms anticlockwise; “@@” lists them clockwise. (b) Canonical or Generic SMILES representation that does not have any stereochemical information. No “@” or “@@” symbols used.

Supplementary Table 1: Prediction performance of four deep learning models on unseen anticancer compounds from literature using isomeric and canonical (or generic) SMILES representations.

| Model    | Isomeric SMILES |                       |           |                                | Canonical/Generic SMILES |                       |           |                                |
|----------|-----------------|-----------------------|-----------|--------------------------------|--------------------------|-----------------------|-----------|--------------------------------|
|          | r               | MAPE( $IC_{50}$ ) (%) | EVAPA (%) | within $3\sigma_{IC_{50}}$ (%) | r                        | MAPE( $IC_{50}$ ) (%) | EVAPA (%) | within $3\sigma_{IC_{50}}$ (%) |
| DeepCDR  | 0.6381          | 2268.44               | 37.50     | 12.50                          | 0.6291                   | 2346.34               | 40.63     | 15.63                          |
| DrugCell | 0.4829          | 2507.52               | 37.50     | 18.75                          | 0.5246                   | 1167.97               | 56.25     | 9.38                           |
| PaccMann | -0.4650         | 6836.81               | 31.25     | 6.25                           | -0.3540                  | 3445.20               | 34.38     | 6.25                           |
| Precily  | 0.6384          | 2920.53               | 40.63     | 12.50                          | 0.5311                   | 4205.95               | 34.38     | 6.25                           |

### Proof of $\sigma(\Delta x) = \sqrt{2} \times \sigma(x)$ used in EVAPA derivation

Let  $x_1$  and  $x_2$  be 2 independent variables. Using the property of variance for sums of independent variables, we can write:

$$\text{Var}(x_1 - x_2) = \text{Var}(x_1) + \text{Var}(x_2) - 2 \text{Cov}(x_1, x_2)$$

Since  $x_1$  and  $x_2$  are independent,  $\text{Cov}(x_1, x_2) = 0$ . Thus,

$$\begin{aligned} \text{Var}(x_1 - x_2) &= \text{Var}(x_1) + \text{Var}(x_2) - 2 \text{Cov}(x_1, x_2) \\ \implies \text{Var}(x_1 - x_2) &= \text{Var}(x_1) + \text{Var}(x_2) \quad (\because \text{Cov}(x_1, x_2) = 0) \\ \implies \text{Var}(\Delta x) &= \text{Var}(x_1) + \text{Var}(x_2) \\ \implies \sigma^2(\Delta x) &= \sigma^2(x_1) + \sigma^2(x_2) \\ \implies \sigma^2(\Delta x) &= 2 \sigma^2(x) \\ \implies \sigma(\Delta x) &= \sqrt{2} \sigma(x) \end{aligned}$$