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I. DERIVATION OF MASTER EQUATION FOR THERMAL ATOMIC SPIN ENSEMBLE

The density matrix evolution of alkali atoms is given by [1]

dρ̂

dt
=− i

ℏ

[
Ĥ0, ρ̂

]
+Rsd [φ̂− ρ̂] +Rse

[
φ̂
(
I + 4⟨S⟩ · Ŝ

)
− ρ̂
]
+Rop

[
φ̂
(
I + 2s · Ŝ

)
− ρ̂
]
, (S1)

where the ground state Hamiltonian Ĥ0 = AhfsÎ · Ŝ + gsµBB · Ŝ − gIµIB · Î. Ŝ and Î are the electron and nuclear
spin operators of alkali atom. B is the magnetic field. Pure electron spin operator φ̂ = ρ̂/4 + Ŝ · ρeŜ, where we have
neglected light shift term since it can be eliminated by the magnetic field compensation. Rse/sd/op is the rate for spin

exchange (se) interaction, spin destruction (sd) interactions, and optical pumping (op), respectively. ⟨O⟩ = Tr[ρ̂Ô]

is the ensemble average for arbitrary operator Ô. I is the unitary matrix. s = iE ×E∗/|E|2 is the average photon

spin. Here, the first term on the right stands for unitary evolution of Ĥ0. The second term is the relaxation process
of alkali atoms. The third term is the spin exchange interactions between alkali atoms. The fourth term is the optical
pumping process neglecting light shift term. The fourth term is the spin exchange interactions among alkali atoms.

To show that Eq. (S1) can be written in master equation form as Eq. (1) shown in the manuscript, we will show
that the last three terms can be simplified to Lindblad terms. We begin from the destruction term Rsd[φ̂− ρ̂].

Rsd[φ̂− ρ̂] = Rsd

[
Ŝ · ρ̂Ŝ − 3

4
ρ̂

]
. (S2)

Since 3ρ̂/4 = S(S + 1)ρ̂ = Ŝ2ρ̂ =
(

Ŝ+Ŝ−+Ŝ−Ŝ+

2 + Ŝ2
z

)
ρ̂ =

(
Ŝ+Ŝ−+Ŝ−Ŝ+

4 +
Ŝ2
z

2

)
ρ̂ + ρ̂

(
Ŝ+Ŝ−+Ŝ−Ŝ+

4 +
Ŝ2
z

2

)
=

1
2

[
{Ŝ†

−Ŝ−,ρ̂}
2 +

{Ŝ†
+Ŝ+,ρ̂}
2

]
+

{Ŝ†
z Ŝz,ρ̂}
2 , we have

Rsd[φ̂− ρ̂] =
Rsd

2

[(
Ŝ−ρ̂Ŝ

†
− −

{Ŝ†
−Ŝ−, ρ̂}
2

)
+

(
Ŝ+ρ̂Ŝ

†
+ −

{Ŝ†
+Ŝ+, ρ̂}
2

)]
+Rsd

[
ŜzρŜ

†
z −

{Ŝ†
z Ŝz, ρ̂}
2

]
. (S3)

In this way, we show that spin destruction interactions can be written in Lindblad form. Similar calculation can be
performed to optical pumping. With the Eq. (102) in [1], optical pumping term can be simplified as

Rop

[
φ̂(1 + 2s · Ŝ)− ρ̂

]
= Rop

[
Ŝ · ρ̂Ŝ − 3

4
ρ̂

]
+
Rop

2

[{
ρ̂, s · Ŝ

}
− 2is ·

(
Ŝ × ρ̂Ŝ

)]
(S4)

∗ Contact author: weikai@buaa.edu.cn



2

In consistence to our experiment, we set s = (0, 0, 1). Then we find the equation above can be simplified as

Rop

[
φ̂(1 + 2s · Ŝ)− ρ̂

]
=Rop

[
Ŝ · ρ̂Ŝ − 3

4
ρ̂

]
+
Rop

2
[{ρ, Sz}+ (S+ρS− − S−ρS+)]

= Rop

SzρS
†
z −

{
ρ, S†

zSz

}
2

+
S+ρS

†
+

2
−

{
ρ, S†

+S+

}
4

 (S5)

For spin-exchange interactions, it has been shown by K. Mouloudakis [2] that spin-exchange interactions can be

written in Lindblad form by spin-exchange operator P̂e = I/2 + 2⟨S⟩ · Ŝ,

Rse

[
φ̂
(
I + 4⟨S⟩ · Ŝ

)
− ρ̂
]
= Rse

P̂eρP̂
†
e −

{
P̂ †
e P̂e, ρ̂

}
2

 (S6)

Substitute Eq. (S3), Eq. (S5), and Eq. (S6) into Eq. (S1), we arrive at

dρ̂

dt
= − i

ℏ

[
Ĥ0, ρ̂

]
+ (Rop +Rsd)

Ŝz ρ̂Ŝ
†
z −

{
Ŝ†
z Ŝz, ρ̂

}
2

+
Rop +Rsd

2

Ŝ+ρ̂Ŝ
†
+ −

{
Ŝ†
+Ŝ+, ρ̂

}
2

 (S7)

+
Rsd

2

Ŝ−ρ̂Ŝ
†
− −

{
Ŝ†
−Ŝ−, ρ̂

}
2

+Rse

P̂eρP̂
†
e −

{
P̂ †
e P̂e, ρ̂

}
2

 . (S8)

By denoting

L̂1 =
√
Rop +RsdSz, (S9)

L̂2 =

√
Rop +Rsd

2
S+, (S10)

L̂3 =

√
Rsd

2
S−, (S11)

L̂4 =
√
RsePe, (S12)

the Eq. (S8) can be written as

dρ̂

dt
= − i

ℏ

[
Ĥ0, ρ̂

]
+

4∑
i=1

LiρL†
i −

{L†
iLi, ρ}
2

, (S13)

which gives the Eq. (1) in the manuscript.

II. BLOCH EQUATIONS IN EQUILIBRIUM LIMITS

Typically, when the Hamiltonian is axial-symmetric about ẑ-axis, the expectation value for z-component of the spin
⟨Ŝz⟩ is conserved, which gives the so called spin-temperature distribution [1]. In statistical physics, when a system’s
total energy is fixed and the number of energy levels is constant, the populations of each energy level must follow a
specific distribution if there are conservation laws related to the population numbers as constraints. Similarly, the
essence of the spin-temperature distribution lies in the population distribution of the system under the constraints
of particle number conservation and spin z-component conservation, when the system’s density matrix maximizes
entropy due to thermal equilibrium. This can be modeled by

max S = −Tr[ρ̂ ln ρ̂],

s.t. 1 = Tr[ρ̂],

⟨Jz⟩ = Tr[ρ̂Ĵz].

(S14)
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where S is density entropy. J is arbitrary angular momentum number. ⟨Jz⟩ is the z-component expected value for
angular momentum J , where J = F, I, S can be total angular momentum F , nuclear spin I, or electronic spin S for
alkali atoms. The optimization problem mentioned above can be formulated using the Lagrange multiplier method
to derive the optimal equations

∂f

∂ρi
= 0, (S15)

where f = S + α + β⟨Jz⟩ is the Lagrange function with α and β being Lagrangian constants, and ρi being the i-th
diagonal element for density matrix ρ̂. Then by solving the equation above, we can simply find ρi ∝ eβmi . Therefore,
the partition function can be expressed as

Z(J, β) =
eβmi

2J+1∑
i=1

eβmi

=
sinh

[
β
2 (2J + 1)

]
sinh β

2

, (S16)

so that one can easily obtain

⟨Jz⟩ =
d lnZ

dβ
=

1

2
ε(J, β) tanh

β

2
, (S17)

where

ε(J, β) = (2J + 1) coth

[
β

(
J +

1

2

)]
coth

β

2
− coth2

β

2
= ⟨J(J + 1)− J2

z ⟩. (S18)

Thus, a slowing down factor q for Larmor frequency is introduced by considering the strong-coupling of hyperfine
interaction

q =
⟨Fz⟩
⟨Sz⟩

= 1 + ε(I, β) ≈ ⟨Fi⟩
⟨Si⟩

, i = x, y, z (S19)

with I = 3/2 for 87Rb. Eq. (S19) is the most important relationship for spin equilibrium temperature distribution
which is usually written as ⟨F ⟩ = q⟨S⟩.
On the other hand, we can turn density matrix evolution into the evolution of the expectation values for spin ⟨S⟩

by multiplying Eq. (S1) with total angular momentum of alkali atom F and taking the trace, then we obtain

∂⟨F ⟩
∂t

= γeB × ⟨S⟩+Rop

(
1

2
s− ⟨S⟩

)
−Rsd⟨S⟩, (S20)

where γe = gsµB/ℏ is the electronic gyromagnetic ratio. With the spin equilibrium temperature distribution relation-
ship from Eq. (S19) ⟨F ⟩ = q⟨S⟩, we find the Bloch equation

∂⟨S⟩
∂t

=
γe
q
B × ⟨S⟩+ Rop

q

(
1

2
s− ⟨S⟩

)
− Rsd

q
⟨S⟩, (S21)

which is the original equation for alkali atomic spin ensemble given by Romalis [1, 3, 4].

III. SIMPLIFIED MODEL FOR THE EVOLUTION OF SPIN ⟨S⟩ UNDER FEEDBACK

In component form, the Eq. (S21) can be written as

Ṡx =
γe
q

(BySz −BzSy)−
Sx

T2
, (S22)

Ṡy =
γe
q

(BzSx −BxSz)−
Sy

T2
, (S23)

Ṡz =
γe
q

(BxSy −BySx)−
Sz

T2
+
Rp

2q
. (S24)
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where we have omit ⟨⟩ for simplification. But one should keep in mind that the Si is an expectation value rather than
an operator. 1/T2 = (Rop + Rsd)/q is the transverse relaxation rate. We consider the case that the magnetic field is

B = (k1S
3
x + k2Ṡx, Bm cosωmt, B0), then we have

Ṡx =ωySz cosωmt− ω0Sy −
Sx

T2
, (S25)

Ṡy =ω0Sx − γe
q
(k1S

3
x + k2Ṡx)Sz −

Sy

T2
, (S26)

Ṡz =
γe
q

(
k1S

3
x + k2Ṡx

)
Sy − ωy cosωmtSx − Sz

T2
+
Rp

2q
. (S27)

where ω0 = γeBz/q, ωy = γeBm/q. Taking the derivative on both sides of Eq. (S25), we obtain

S̈x +
1

T2
Ṡx = −ω0Ṡy − ωyωmSz sinωmt+ ωyṠz cosωmt. (S28)

Substitute Eq. (S26) into Eq. (S31), we find

S̈x +

(
1

T2
− k2

γe
q
ω0Sz

)
Ṡx + ω2

0Sx − k1
γe
q
ω0SzS

3
x =

ω0

T2
Sy − ωyωmSz sinωmt+ ωyṠz cosωmt. (S29)

According to Eq. (S25), we have

Sy = − 1

ω0

(
Ṡx +

1

T2
Sx − ωySz cosωmt

)
. (S30)

Substitute Eq. (S30) into Eq. (S31), then we find

S̈x +

(
2

T2
− k2

γe
q
ω0Sz

)
Ṡx +

(
ω2
0 +

1

T 2
2

)
Sx − k1

γe
q
ω0SzS

3
x = ΩmSz

(
1

T2
cosωmt− ωm sinωmt

)
+ ωyṠz cosωmt.

(S31)

In our simplified model, we take the longitude spin to be steady, i.e., Ṡz = 0, to find that Sz = S0 = RpT2/2q is a
constant which is usually used in most of the analysis for spin dynamics. This assumption is well satisfied when the
Larmor frequency induced by transverse magnetic field is much smaller than pumping rate, i.e., γ|B⊥| ≪ Rp. Then
we find the equation above can be written as

S̈x + ΓṠx + αSx + βS3
x = A cos(ωmt+ ϕ). (S32)

where

Γ =
2

T2
− k2

γe
q
ω0S0, (S33)

α =ω2
0 +

1

T 2
2

, (S34)

β =− k1
γe
q
ω0S0, (S35)

A =ωySz

√
1

T 2
2

+ ω2
m, (S36)

ϕ =
ωm

T2
. (S37)

The Eq. (S32) is the so-called Duffing oscillator model for the Eq.(2) in the manuscript, which is a fundamental model
in chaos generation. In the process of chaotic generation within the Duffing system, two essential conditions must
be satisfied: (1) sufficiently strong nonlinearity and (2) adequately long coherence time to sustain chaotic dynamics.
Phenomenologically, the cubic feedback proportional to k1 totally determine the nonlinear term, which is responsible
for generating chaos. The derivative feedback proportional to k2 therefore serves to adjust the effective coherence
time γ through parametric control. In our experiments, though we set ωm = 0, negative Γ is realized by tuning k2.
This drives the system into a self-sustained oscillation phase which can also generate chaotic behavior.
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IV. SELF-SUSTAINED OSCILLATION BY DERIVATIVE FEEDBACK

We will demonstrate the origin of self oscillation by derivative feedback. Now consider the stability of the equations
Eq. (S22)-Eq. (S24) when there is ONLY derivative feedback term k2Ṡx, which gives

Ṡx =
γe
q

(BySz −BzSy)−
Sx

T2
, (S38)

Ṡy =
γe
q

(
BzSx − k2ṠxSz

)
− Sy

T2
, (S39)

Ṡz =
γe
q

(
k2ṠxSy −BySx

)
− Sz

T2
+
Rp

2
. (S40)

Substituting Eq. (S38) into Eq. (S39) and Eq. (S40), we find

Ṡx =
γe
q

(BySz −BzSy)−
Sx

T2
, (S41)

Ṡy =
γe
q
BzSx − k2

γ2e
q2
ByS

2
z + k2

γ2e
q2
BzSySz + k2

γe
q

SxSz

T2
− Sy

T2
, (S42)

Ṡz =k2
γ2e
q2
BySySz − k2

γ2e
q2
BzS

2
y − k2

γe
q

SxSy

T2
− γe

q
BySx − Sz

T2
+
Rp

2
. (S43)

We linearize these equation around the equilibrium point by S = S∗ + δS where the equilibrium point S∗ is given
by Ṡ = 0 with perturbation δS. The complete steady solution for these equations has been given by Seltzer [5]. For
simplicity, one can directly set S∗

x = S∗
y = 0, S∗

z = RpT2/2 = S0 for a good approximation around the real equilibrium
point. Then we have Sx = δSx, Sy = δSy, Sz = S0 + δSz. Noting the definition of S∗ and neglecting the second order
term in δSiδSj , i, j = x, y, z, the equations above can be simplified to

δṠx =− δSx

T2
− γe

q
BzδSy +

γe
q
ByδSz, (S44)

δṠy =

(
γe
q
Bz + k2

γe
q

S0

T2

)
δSx +

(
k2
γ2e
q2
BzS0 −

1

T2

)
δSy − 2k2

γ2e
q2
ByS0δSz, (S45)

δṠz =− γe
q
ByδSx + k2

γ2e
q2
ByS0δSy −

δSz

T2
. (S46)

These equations can be written in matrix form,

d

dt
|ψ⟩ =

 δṠx

δṠy

δṠz

 = −i

 −i 1
T2

−iγe

q Bz iγe

q By

iγe

q Bz + ik2
γe

q
S0

T2
ik2

γ2
e

q2BzS0 − i 1
T2

−2ik2
γ2
e

q2ByS0

−iγe

q By ik2
γ2
e

q2ByS0 −i 1
T2


 δSx

δSy

δSz

 = −iHeff|ψ⟩ (S47)

where |ψ⟩ = [δSx, δSy, δSz]
T is an effective state vector combined by each component of perturbation δS. In this

way, we formally obtain an effective non-Hermitian Hamiltonian Heff for perturbation so that quantum theory can be
applied to this effective system as shown in Eq. (3) in the manuscript. We calculate the eigenvalues λ = ω + iΓ for
the effective Hamiltonian Heff by varying k2 as shown in FIG. (3) (a) in the manuscript.

It can be shown that the evolution for ψ⟩ is proportional to eλt = eΓte−iωt. When k2 = 0, the system has the
relaxation rate 1/T2 = 20Hz while the evolution frequency ω/2π = 84.6Hz given by magnetic field |B| = 15.5nT.
Interestingly, we find exceptional points(EP) typically appeared in non-Hermitian physics. However, in experiments,
the large k2 regime has no signal since the Larmor frequency is zero, making this result trivial. The main point in
this work lies in the regime where k2 ∈ [0.005, 0.239] (red lines). In this regime, both of the eigenvalues for Sx and
Sy are degenerated and have positive real part Γ > 0 while the imaginary part is non-zero, corresponding to gain in
amplitude and oscillation in phase. This is the essential point for generating self oscillation. The typical behavior
for this phenomenon is that the amplitude grows rapidly with oscillation. However, this model is effective only when
the spin is near equilibrium point S∗ since the amplitude of δSx/y will be infinity when t → +∞. Thus, this model
describes whether the amplitude of a small perturbation will grow or damp, and also the phase of a small perturbation
will oscillate or not. This is an intuitive explain for the origin of self-oscillation by derivative feedback. For further
accurate understanding when the spin is far from the equilibrium point, it can be fully but numerically analyzed by
density matrix.
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V. DETAILED MODEL FOR NUMERICALLY ANALYZING SPIN DYNAMICS

Though Eq. (S32) is a simple model for explaining the fact that this system can generate chaos, we have to confess
that there is one serious problem in this model. In spin equilibrium temperature distribution regime induced by
frequency spin exchange collisions between alkali atoms, one can obtain the relationship between atomic spin F
and electronic spin S satisfy F = qS by maximizing the spin entropy S = −ρ ln ρ under the restriction condition
of spin number conservation Tr[ρ] = 1 and longitudinal spin component conservation Sz = S0. In this sense, this

result can only be reached when longitudinal spin Sz is a constant, or equivalently, Ṡz = 0. We also utilize this
assumption in deriving Eq. (S32) from Eq. (S31). Take these facts into consideration, Bloch equations for electronic
spin Eq. (S22)-Eq. (S24) are no more accurate description for spin dynamics unless a time dependence is considered
in q.

To address the problems above, we perform our analysis based on density matrix. The density matrix is given by
Eq. (1) in the main text. We solve the density matrix in coupled representation |F,mF ⟩, which is the eigenstates for

hyperfine interactions AhfsÎ · Ŝ, but not for Zeeman interaction whose eigenstates are uncoupled basis |mI ,mS⟩ =
|I,mI⟩ ⊗ |S,mS⟩. This means we need to express all the operators in the coupled representation. This process

can be achieved through a change of representation for operators from uncoupled basis ÔUC to coupled basis by
Ô = UÔUCU

†given by the unitary transformation,

|mI ,mS⟩ =
∑
F,mF

|F,mF ⟩⟨F,mF |mI ,mS⟩ = U |F,mF ⟩. (S48)

For 87Rb, electronic spin S = 1/2, nuclear spin I = 3/2, atomic spin F = I ± S = 1, 2. The basis order is defined by

|Ψ⟩ = [|2,+2⟩, |2,+1⟩, ..., |2,−2⟩, |1,+1⟩, |1, 0⟩, |1,−1⟩]T (S49)

For completeness, we directly list the matrix form for all the operators in our simulation in coupled basis. For 87Rb,
I = 3/2, F = 1, 2, we find unitary transform matrix

U =



1 0 0 0 0 0 0 0

0 1
2 0 0 0

√
3
2 0 0

0
√
3
2 0 0 0 − 1

2 0 0

0 0
√
2
2 0 0 0

√
2
2 0

0 0
√
2
2 0 0 0 −

√
2
2 0

0 0 0
√
3
2 0 0 0 1

2

0 0 0 1
2 0 0 0 −

√
3
2

0 0 0 0 1 0 0 0


, (S50)

and the spin operators

Ŝ+ =



0 1
2 0 0 0

√
3
2 0 0

0 0
√
6
4 0 0 0

√
6
4 0

0 0 0
√
6
4 0 0 0

√
2
4

0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 0

0 0 −
√
2
4 0 0 0 −

√
2
4 0

0 0 0 −
√
6
4 0 0 0 −

√
2
4

0 0 0 0 −
√
3
2 0 0 0


, Ŝ− =



0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0

0
√
6
4 0 0 0 −

√
2
4 0 0

0 0
√
6
4 0 0 0 −

√
6
4 0

0 0 0 1
2 0 0 0 −

√
3
2√

3
2 0 0 0 0 0 0 0

0
√
6
4 0 0 −

√
2
4 0 0 0

0 0
√
2
4 0 0 0 −

√
2
4 0


,

Î+ =



0 3
2 0 0 0 −

√
3
2 0 0

0 0 3
√
6

4 0 0 0 −
√
6
4 0

0 0 0 3
√
6

4 0 0 0 −
√
2
4

0 0 0 0 3
2 0 0 0

0 0 0 0 0 0 0 0

0 0
√
2
4 0 0 0 5

√
2

4 0

0 0 0
√
6
4 0 0 0 5

√
2

4

0 0 0 0
√
3
2 0 0 0


, Î− =



0 0 0 0 0 0 0 0
3
2 0 0 0 0 0 0 0

0 3
√
6

4 0 0 0
√
2
4 0 0

0 0 3
√
6

4 0 0 0
√
6
4 0

0 0 0 3
2 0 0 0

√
3
2

−
√
3
2 0 0 0 0 0 0 0

0 −
√
6
4 0 0 0 5

√
2

4 0 0

0 0 −
√
2
4 0 0 0 5

√
2

4 0


,
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Ŝz =



1
2 0 0 0 0 0 0 0

0 1
4 0 0 0 −

√
3
4 0 0

0 0 0 0 0 0 − 1
2 0

0 0 0 − 1
4 0 0 0 −

√
3
4

0 0 0 0 − 1
2 0 0 0

0 −
√
3
4 0 0 0 − 1

4 0 0
0 0 − 1

2 0 0 0 0 0

0 0 0 −
√
3
4 0 0 0 1

4


, Îz =



3
2 0 0 0 0 0 0 0

0 3
4 0 0 0

√
3
4 0 0

0 0 0 0 0 0 1
2 0

0 0 0 − 3
4 0 0 0

√
3
4

0 0 0 0 − 3
2 0 0 0

0
√
3
4 0 0 0 5

4 0 0
0 0 1

2 0 0 0 0 0

0 0 0
√
3
4 0 0 0 − 5

4


.

For atomic spin operators, we calculate from the eigenvalue directly under coupled basis by F̂z|F,mF ⟩ = mF |F,mF ⟩
and F̂±|F,mF ⟩ =

√
F (F + 1)−mF (mF ± 1)|F,mF ⟩ to find

F̂+ =



0 2 0 0 0 0 0 0

0 0
√
6 0 0 0 0 0

0 0 0
√
6 0 0 0 0

0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
√
2 0

0 0 0 0 0 0 0
√
2

0 0 0 0 0 0 0 0


, F̂− =



0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0

0
√
6 0 0 0 0 0 0

0 0
√
6 0 0 0 0 0

0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
√
2 0 0

0 0 0 0 0 0
√
2 0


, F̂z =



2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1


.

With these matrix, we are able to numerically solve Eq. (S1) by 4th order Runge-Kutta method. One can verify these

operators by the relationship F̂i = Îi + Ŝi, i = x, y, z,±. We list F̂i operators to numerically show that when Sz can
no more be regarded a constant, and how accuracy Bloch equations are by setting q as a constant. We also calculate
the slowing down factor according to the original definition q = ⟨Fz⟩/⟨Sz⟩ with ⟨Fz⟩ = Tr[ρ̂F̂z] and ⟨Sz⟩ = Tr[ρ̂Ŝz]
obtained from density matrix to evaluate whether the spin in our experiment is in a non-equilibrium case. Through

FIG. S1. Slowing down factor q calculated by original definition in [1] using density matrix. When there is no feedback, the
time evolution of q can be regarded as a constant in red line, while this result can be broken when feedback is added as given
by the black line. This result can be much larger or even negative than the theoretical boundary for q ∈ [4, 6] in equilibrium
state, showing the evidence for the system to go into non-equilibrium state. The feedback parameters are k1 = 1.5 × 105 and
k2 = 0.29. The data for analysis is set to [1, 2] s to avoid numerical instability due to initial conditions in simulation. In
simulation, Rsd = Rop = 100s−1, T = 428.15K, q = 5.2.

numerical simulations of the density matrix Eq. (S1), we calculate the slowing down factor q corresponding to the
spin equilibrium temperature distribution. Under our experimental configuration, this factor is defined as the ratio
between the z-component of total atomic spin Fz and the electronic spin Sz for 87Rb atoms, yielding a value of
q = (6 + 2P 2)/(1 + P 2) ∈ [4, 6] [1], where P = ⟨Sz⟩/S is the spin polarization. In the absence of feedback, the
polarization P = 0.5 corresponds to a slowing down factor of q = 5.2, as the red line shown in FIG. S1. Remarkably,
when feedback is introduced, the slowing down factor exhibits oscillatory behavior. This parameter exceeds its original
numerical range in spin equilibrium state and diverges at some points when Sz is near zero, thereby invalidating
the Bloch equations derived from the spin equilibrium temperature distribution. This divergence provides indirect
evidence that the system has been broken away from spin equilibrium. In this sense, we say that the system is in spin
non-equilibrium state. The physical picture for this phenomenon is the large transverse feedback magnetic field flips
the ⟨Sz⟩ from +ẑ to −ẑ direction, which will generate a point with ⟨Sz⟩ = 0 while ⟨Fz⟩ ≠ 0 in turn making the ratio
q = ⟨Fz⟩/⟨Sz⟩ diverge around every zero point.
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VI. ENCRYPTION PRINCIPLE AND EXAMPLE

To demonstrate the feasibility of encoding for this system, we set k2 = 0.24 in the experiment to obtain the
self-sustained frequency ω0 = 2π × 83.05Hz by setting Bz = 15.5 nT. Then we apply a modulation magnetic field
δBz cosω0t in the z-axis so that the system can work in different phases when varying the amplitude of δBz. As
shown in FIG. S2, when the amplitude δBz is small (≤ 7.99 nT), there is only one main peak in the PSD. Further
increasing in δBz produces unstable subharmonic components, which gradually converges to 1/2-subharmonics. There
is a robust regime in [10.75, 14.46] nT where both the main peak and the 1/2-harmonics co-exist. Then, the system
goes into a new unstable region from 14.46 nT to 15.69 nT with inverse Farey tree like structures. Interestingly, in
[15.69, 16.47] nT, the system, again, produce stable multi-subharmonics to 7-th order. If we define the 3 different
phases as 3 different codes such as 0, 1, 2, then we are able to encode the signal by the PSD.

FIG. S2. Phase encoding verification. The feedback magnetic field is given by setting small cubic feedback k1 = 2000 and proper
k2 = 0.24 to generate the self-sustained oscillation. Three distinct stable regimes are found in [2, 7.99] nT, [10.75, 14.46] nT,
[15.69, 16.47] nT. These three regimes can be noted as state 1, 2, 3, respectively. Other state can be obtained by setting larger
δBz. These states are robust to the noise when operating in the center of the regimes.

The encryption mechanism proposed herein exploits the phase-dependent chaotic dynamics of the thermal atomic
spin ensemble, modulated by the amplitude of the magnetic field δBz. The principle hinges on encoding information
into distinct stable states of the power spectral density (PSD) by varying δBz within specific amplitude ranges, each
corresponding to a unique phase regime. These regimes—[2, 7.99] nT (state 0, characterized by a single dominant
peak), [10.75, 14.46] nT (state 1, featuring coexisting main peak and 1/2-subharmonics), and [15.69, 16.47] nT (state
2, exhibiting stable multi-subharmonics up to 7th order)—serve as the foundational encoding states, as demonstrated
in FIG. S2. The chaotic behavior in the unstable region [14.46, 15.69] nT, marked by inverse Farey tree structures,
enhances security by introducing sensitivity to initial conditions and parameter perturbations. A dynamic phase
modulation ϕ(t) is incorporated into the modulation field δBz cos(ω0t + ϕ(t)), where ϕ(t) acts as a time-varying
encryption key. The encrypted signal is transmitted as the PSD, which is subsequently can be decoded using threshold
pre-calibration by FFT or a machine learning method trained on experimental PSD data. The robustness of these
states to noise, particularly at the centers of the stable regimes, ensures reliable signal integrity, while the complexity
of the chaotic trajectories provides resistance against unauthorized decryption.

As a concrete example, consider the encryption of the binary message ”101” using the defined states. The encoding
process maps ”1” to state 1 (δBz = 12.6 nT, the center of [10.75, 14.46] nT), ”0” to state 0 (δBz = 5 nT, within [2, 7.99]
nT), and ”1” to state 1 (δBz = 12.6 nT). The sender modulates the magnetic field as δBz(t) = δB0

z +∆Bz cos(ω0t+
ϕ(t)), where δB0

z cycles through 5 nT, 12.6 nT, and 12.6 nT across corresponding time slots for each bit. The
dynamic phase ϕ(t) is a pseudo-random sequence, e.g., ϕ(t) = 0.1 × 2πt, shared as the secret key with the receiver.
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The resulting PSD is measured and transmitted: state 0 yields a single peak at ω0 = 2π × 83.05 Hz, while state 1
produces a main peak with 1/2-subharmonics. The receiver, synchronized with the key ϕ(t) and the self-sustained
frequency ω0, employs the threshold detection or the pre-trained machine learning model to analyze the PSD features
and reconstruct the sequence of states (0, 1, 1), decoding the original message ”101”. This example illustrates the
efficacy of the proposed chaotic phase-encoding scheme for secure communication, leveraging the system’s nonlinear
dynamics and experimental robustness.

VII. ELECTRONIC CIRCUITS FOR FEEDBACK

The analog multiplier circuit is designed around the AD835 chip as shown in FIG. S3, a four-quadrant analog
multiplier capable of performing multiplication of two input signals and producing an output proportional to their
product. Input signals are fed into the X1 and Y1 pins of the AD835 via SMA connectors P2 and P4, respectively.
The output signal is taken from the W pin of the AD835 and coupled through a 0.1 µF capacitor (C4) to an SMA
connector P3 for AC coupling. The circuit operates with a dual power supply (VDD and VEE), with power stability
ensured by filter capacitors C1, C2, C9, and C10 (0.1 µF and 1 µF) and filters F1 and F2, which effectively suppress
noise interference. To optimize signal transmission, impedance matching is achieved using matching networks SB1,
SB2, and SB3. The primary function of this circuit is to perform analog multiplication of two input signals, making

FIG. S3. Schematic for multiplier circuit.

it suitable for a wide range of signal processing applications. To achieve cubic multiplication of a signal, two of the
above analog multiplier circuits are configured in a cascaded arrangement. The experimental setup splits an input
signal s ∝ ⟨Sx⟩ into three identical signals s1, s2, and s3 using two three-way splitters. The first multiplier takes s1
and s2 as inputs, producing an output signal s4 = s1s2. Subsequently, the second multiplier multiplies s3 with s4,
yielding the final output s5 = s3 × s4 = s3(s1s2). Since s1 = s2 = s3 = s, the final output becomes sout = s3 ∝ ⟨Sx⟩3,
thus achieving the cubic multiplication for the feedback signal.

The derivative circuit is designed around the AD8421 chip as shown in FIG. S4, a high-performance instrumentation
amplifier with low noise, high common-mode rejection ratio, and wide bandwidth (∼10 MHz), making it ideal for
high-precision differential signal processing. Input signals are fed into the IN+ and IN- pins of the AD8421 via
SMA connectors P4 and P7, forming a differential input. The gain is set by an external resistor R2 (10 kΩ), with
the gain formula G = 1 + 9.9kΩ

RG
, yielding G ≈ 1.99. The output signal is taken from the OUT pin of the AD8421

and transmitted through an SMA connector P6. The circuit operates with a dual power supply (V+ and V-), with
power stability ensured by filter capacitors C3, C9, C10, C11, and C12 (all 100 nF), reducing noise interference. The
REF pin is grounded through a resistor R7 (100 Ω) and a capacitor C11 (100 nF) to set the output reference level.
Additionally, an OPA177 operational amplifier (U2) is included, likely for generating a stable reference voltage.

The experimental setup realizes the derivative of the signal ⟨Sx⟩, denoted as ⟨Ṡx⟩, using a difference approximation.
The input signal ⟨Sx⟩ is split into two paths: one path, the current signal ⟨Sx(t)⟩, is fed into the IN+ pin of the
AD8421, while the other path, a delayed signal ⟨Sx(t−∆t)⟩, is delayed by ∆t and input to the IN- pin. The AD8421
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FIG. S4. Schematic for derivative circuit.

performs a differential operation, producing an output Vout = G · (⟨Sx(t)⟩− ⟨Sx(t−∆t)⟩), where G ≈ 1.99. Using the

known time interval ∆t, the difference approximates the derivative ⟨Ṡx⟩ ≈ ⟨Sx(t)⟩−⟨Sx(t−∆t)⟩
∆t . The final output Vout is

extracted from P6, and by scaling with a factor of η = G/∆t, the derivative proportional to ⟨Ṡx⟩ is obtained.
The experimental configuration connects the outputs of the AD835 and AD8421 to two separate variable feedback

resistors (FRs) and feedback coils (FCs) to achieve experimentally adjustable gain. The gain G of the chips is
determined by the feedback resistors FR1 and FR2. Adjusting the variable feedback resistors dynamically changes
the FRs to tune the gain. The feedback coils feed the output signal back to the spin by magnetic field, further
influencing the gain or the dynamic response of the signal. This feedback mechanism optimizes the gain for different
signal amplitudes, enhancing the circuit’s flexibility and applicability.
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