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S1 Supplementary Information for Methods Section5

S1.1 Basic OMP Machinery6

We can write the series of linear mixing equations in vector form for n SWTs, where xi is the7

relative fraction of SWTi, V
SWT
i is the vector of SWTi end members, and VObs is the vector of8

observed values with a residual vector r:9

n∑
i=1

xi ∗VSWT
i = VObs + r (1)

The size of the vectors equals the number of variables used in the analysis. Both the end10

member vector and observed values vector are normalised by subtracting the mean and dividing11

by the standard deviation of the end members, such that:12

VnormSWT
i = (VSWT

i −VSWT )/VSWT
σ (2)

VnormObs
i = (VObs

i −VObs)/VObs
σ (3)

Where VObs and VObs
σ are the mean and standard deviation vectors across the whole data13

sample, respectively. The analysis also includes a series of user-defined weights, W, to account for14

variation in the precision of measurement of each variable, or confidence in end-member definition.15

Our weighting matrix can be found in Table S1.2. The final cost function (i.e. the quantity to be16

minimised by the least-squares solver) can be written in terms of the residual vector r:17

r = W ∗

(
n∑

i=1

xi ∗VnormSWT
i −VnormObs

)
(4)

This is then solved in a least-squares optimisation to minimise r, and only solutions in which18

xi ≥ 0 are accepted so that the analysis is ’non-negative’. We can write the water mass solution19

vector x, in terms of the cost function in Equation 4, where argmin specifies the value of x that20

minimises the quantity in square brackets:21

x = argmin

[
W ∗

(
n∑

i=1

xi ∗VnormSWT
i −VnormObs

)]
(5)

As we state in Section 5.3, we opt to model the semi-conservative parameters NO and PO.22

These variables can be written as:23

PO = O2 + rtO2

PO4
PO4 (6)
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24

NO = O2 +
rtO2

PO4

rtNO3

PO4

NO3 (7)

Where rtab denotes a user-specified exchange ratio of parameter a with respect to b. In this25

application, rt makes use of the Redfield ratios: we specify the rtO2

PO4
value as -170 and the rtNO3

PO4
26

value as 16. These are the default values in the original Karstensen & Tomczak [1] implementation.27

S1.2 Additional Information on the Selection of End Members and28

Weighting Practices29

We start with the original Temperature-Salinity end members from the Southern Ocean OMP from30

Pardo et al. [2], and make some minor tweaks to better fit the parameter space of our GLODAP31

data. These are shown in Figure 1. We use a K-D tree to find the nearest 1000 data points to the32

temperature and salinity end member pair, selecting the median value from this sample as the end33

member for each tracer. The full set of end members used is shown in Table S1.2. We elect to use34

the parameter weights shown in Table S1.2. These are the default values in the documentation35

from Shrikumar et al. [3], and relate to the uncertainties surrounding the measurement of each36

variable. In practice, these weights determine the strength of the constraint on each variable: i.e.37

the extent to which residuals in that variable will be tolerated in the solving of the least-squares38

equations. Where measurement uncertainty is relatively low, then the weight is increased to force39

lower residuals in that equation at the expense of variables with higher degrees of uncertainty. We40

define weights for every variable, for which the solver uses a hard mass constraint (which prioritises41

returning a residual of 0 in the mass equation). Further details can be found in Shrikumar et al.42

[3].43

As described in section 5.5, we use a spatial mask to calculate ∆ values, which we define as the44

change in the properties of the grid cells with the highest concentration of each water mass in the45

time-mean 20-year Argo dataset. We judge 1000 grid points to be a sufficient sample to describe46

the mean properties of the source water, but it is possible that this approach somewhat obscures47

any large changes in the distribution of the core of the source water. By definition, the spatial48

mask as defined in the 20-year mean encompasses both early and late distributions of each water49

mass; it is merely an approximation of the 3D distribution of the source water from a time-mean50

perspective. It is worth also noting that the definition of AABW ∆ values is confined to the top51

2000 m (the maximum depth range of Argo floats), such that it may not capture changes in the52

core of the water mass. However, as we describe in Sections 4 and S3.1.1, the main findings of the53

study are robust to significant perturbations in these values.54

In Table S1.2 we show the full set of ∆ values discussed in Section 5.5. We also show how55

zonal-mean temperature and salinity have changed in the Southern Ocean during the 20-year Argo56

period via the composite anomalies shown in Figure S22.57

S1.3 The Importance of Tracers in the OMP Solution58

To demonstrate the importance of tracers in the OMP-based classification of water masses, we59

show a sample of an OMP classification in the GLODAP climatology using only temperature60

and salinity (see Figure S16). This shows that the analysis struggles to differentiate between end61

members which are similar in temperature-salinity space. Specifically and most importantly for62

the focus of this study, the classification cannot distinguish between CDW, NADW, and AABW63

with any real degree of skill. As we state in Section 5.6, our method enables skillful classification64

in the absence of these tracers (provided that we have some tracer data to conduct an initial65

classification with which to train on). Figure S16 demonstrates that we cannot assess changes66

in water masses in the gridded Argo data from an OMP framework, without at least giving it a67

prior. We acknowledge that similar levels of skill may be achievable without machine learning, if68

we were to introduce a ’a-priori’ weighting matrix into the OMP linear mixing equations.69
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Source Water End Members
Source
Water
Type

Temp.
(◦C)

Salinity
(Psu)

Oxygen
(µmol kg−1)

Nitrate
(µmol kg−1)

Phosphate
(µmol kg−1)

Total
Alkalinity
(µmol kg−1)

STCW 13.50
±2.33

35.30
±0.17

214.49
±11.8

8.63 ±1.96 0.72 ±0.15 2320.72
±10.82

SAMW1 8.75 ±2.81 34.58
±0.16

242.78
±26.05

15.75
±4.15

1.15 ±0.28 2284.11
±12.49

SAMW2 5.00 ±1.18 34.14
±0.13

310.21
±13.88

20.00
±3.75

1.43 ±0.23 2284.86
±13.49

DSW -1.91
±1.13

34.82
±0.14

282.86
±25.32

30.42
±2.24

2.15 ±0.16 2344.32
±8.66

AASW -1.85
±0.51

33.82
±0.16

326.26
±16.18

26.13
±2.69

1.84 ±0.21 2276.65
±17.58

AAIW 3.13 ±0.39 34.14
±0.03

291.17
±12.28

26.34
±1.32

1.84 ±0.09 2284.95
±3.373

NADW 2.50 ±0.24 34.83
±0.04

217.01
±9.39

26.48
±1.29

1.79 ±0.12 2341.39
±4.00

CDW 1.00±0.08 34.74
±0.01

206.12
±10.02

31.06
±0.73

2.16 ±0.07 2356.31
±4.12

AABW -0.50
±0.14

34.64
±0.01

252.93
±6.81

32.41
±0.57

2.24 ±0.04 2355.21
±1.52

Table S1: End member values used for each of the 9 source waters used in the water mass
classification. Uncertainty values are calculated retroactively as one standard deviation within the
1000 grid points of highest relative water mass fraction, taken to approximate the properties of
the source water. These values are used in the sensitivity testing in Section S1.4.

Parameter Weights
Temp. Salinity Oxygen Nitrate Phosphate Alkalinity
24 24 7 2 2 2

Table S2: Relative weights used in the water mass classification for each of the 6 parameters
considered.

Source Water ∆ Values
Source Water Type ∆ Temp. (◦C) ∆ Salinity (Psu)
STCW 0.024 0.0166
SAMW1 0.181 0.0217
SAMW2 0.047 0.0092
DSW 0.127 -0.0001
AASW 0.091 0.0039
AAIW 0.096 -0.0059
AABW 0.077 0.0069

Table S3: End member ∆ values used for each of the 9 source waters used in our water mass
classification.
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S1.4 Sensitivity Testing of the OMP Solution70

Figures S17, S18, S19, and S20 show the results of end-member sensitivity testing in the clima-71

tological OMP solution at 0, 90, 180, and 240◦E. Firstly, for each water mass, we define a source72

water mask as the 1000 data points with the highest fraction according to the original classifi-73

cation. We compute the standard deviation for each variable within this source water mask and74

use this as a perturbation to the original end members. The output shown in Figures S17, S18,75

S19, and S20 is the result of a simultaneous perturbation of 1 standard deviation in each variable.76

These values are shown in Table S1.2.77

In almost all cases, the median impact of this perturbation is extremely close to 0. In the most78

sensitive cases, the inter-quartile range shows a change in water mass fractions on the order of79

5-10%. This can be seen in the CDW/AABW perturbations at 0◦E and in the SAMW1/SAMW280

perturbations at 90, 180, and 240◦E. Unsurprisingly, perturbations to a given end member typically81

cause the greatest impact in fractions on itself and the end member closest to it in parameter space.82

For example, the change in CDW fractions that is induced by perturbing the CDW end member83

leads to an almost equal and opposite change in AABW (Figure S17). Likewise, when the SAMW184

end members are perturbed, the change in SAMWs fractions often induces a similar magnitude85

change of opposite sign in AAIW.86

Figure S21 shows the impact of perturbing the weighting matrix on the OMP solution. Here,87

we reduce the relative weighting of each variable sequentially by 50%, and compare the change in88

the solution. Compared with perturbing the end members, the solution with perturbed weights is89

relatively insensitive to variability in the weights; the highest ∆WaterMassFraction values are90

only on the order of ± 0.6%. We show a sample of the output for just 0◦E, but the impact is of91

similar order of magnitude elsewhere.92

S1.5 Supplementary Information for Validation of the ML Model93

Figure S23 shows a sample comparison between the output of the original GLODAP and algorithm-94

derived Argo water mass distribution. In Figure S24, we show the output of the uncertainty95

calculations used in the application of the RF model to the RG Argo gridded data. The uncertainty96

is calculated on a grid-point basis as the variance across the 5-fold ensemble members, normalised97

by the 99th percentile. This is shown for a variety of water masses at a number of depth levels.98

Exclusion of water masses from R2 values in RF model verification In Table 1, we99

show the results of the out-of-distribution testing of the RF via the exclusion of repeat sections.100

As we state in Section 5.6, there are some cases in which we remove the R2 contribution from a101

particular water mass from the final R2 value shown in the table. These are cases in which the102

relative fraction of a particular water mass is effectively 0 and the model exhibits no meaningful103

skill in prediction. In the Drake Passage (line SR01), we remove the low R2 values associated104

with both NADW and STCW. Here, relative fractions of each are very close to 0 at all observed105

data points. In line P06, which is a zonal section across the Pacific at 30◦S, we exclude the low106

R2 values associated with both NADW and DSW. We do the same for the meridional section in107

the Pacific (line P18). In the Indian Ocean, the R2 values associated with DSW and AASW are108

excluded from the zonal cross section in line IO5, whilst we exclude NADW from the meridional109

section in line IO7. In all such cases, the relative fraction of the water mass in all data points along110

that section is negligible. Finally, we also exclude the R2 contribution from STCW and NADW111

in the zonal section across west Antarctic to the Ross Sea (line S04P), with the same reasoning.112

S2 Supplementary Information for Results Sections113

S2.1 Additional Samples of Water Mass Classification Output114

Figures S1 and S3 show samples of DSW, AASW, STCW, SAMWs and NADW from the clima-115

tology / ’mean-state’ GLODAP classification at a range of depths. Figure 4 shows the fractions116
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Expocodes used in Analysis and Validation

Location Line(s) Expocode(s)

Weddell Sea A12, A21 06AQ20060825
06AQ20080210
35MF20080207
740H20081226
740H20090307
29HE20190406

South of Tasmania SR03 09AR20071216
09AR20080322
096U20180111

Drake Passage SR01 74JC20151217
740H20090203
74JC20181103

West Pacific Ocean P15 09SS20090203
096U20160426
49NZ20071122

Pacific Ocean (zonal) P06 318M20091121
320620170703
320620170820
49NZ20170208

East Pacific Ocean P18, P17 33RO20071215
33RO20161119
49NZ20170208

East Indian Ocean I08 33RR20070204
33RR20080204
33RR20160208

Central Indian Ocean I07 33RO20180423
49NZ20191229

West Indian Ocean I06 325020190403

Indian Ocean (zonal) I05 33RR20090320

Pacific Ocean (zonal) S04P 320620180309

Table S4: List of all expocodes used in each of the location/line groupings using in the validation
of the machine learning model in Section 5.6.
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of AASW at the surface. These compliment the outputs in Figure 2. We also provide maps of117

the DSW and DSW + AABW distribution in the upper 1000 m of the mean-state classification in118

Figure S2. Our analysis successfully identifies the principal known locations of DSW production119

(Weddell and Ross Seas, Adelie Coast, Prydz Bay).120

We show additional sample output from the water mass classification along repeat GLODAP121

lines. Figure S5 shows the classification along the I06S line in 2008, Figure S6 shows the classi-122

fication along the I08S line in 2007, and Figure S7 shows the classification along the P18 line in123

2007. The panels are plotted as scatter plots of point-wise observations.124

We also provide maps of the absolute layer thicknesses, derived from the ML model applied125

to the Argo data. These are shown to complement the thickness change discussion in Section126

3.2. Figure S9 shows the averaged 20-year integrated layer thickness for CDW, AABW+DSW,127

SAMWs and AAIW.128

S2.2 Layer Thickness Calculations129

In Section 3.2, we compute the layer thicknesses from the water mass classification output. The130

layer thickness at each grid point can be described as H, where D is depth, WMF is the water131

mass fraction and p is the total number of vertical levels:132

Hi,j =

p−1∑
z=1

((
Dz+1 −Dz

2
+

Dz −Dz−1

2

)
×WMFi,j,z

)
(8)

We can then approximate the volume of each water mass at any given grid point, using an133

approximation for the surface area of each grid square:134

vi,j = Hi,j ×R2 ×∆λ×∆Φ× cos(Φ) (9)

Where R is the radius of the earth, λ is longitude and Φ is latitude. The total water mass135

volume in any given domain can therefore be estimated by integrating in both directions, such136

that VWM =
∑n

i=0

∑m
j=0 vi,j , where n and m are the total number of meridional and zonal indices,137

respectively.138

S3 Supplementary Information for Discussion and Conclu-139

sions Section140

S3.1 Sensitivity Testing of the Poleward Expansion of CDW141

S3.1.1 Varying ∆ Values142

Extreme AABW Warming In this section, we test the sensitivity of our conclusions to vari-143

ations in the delta values that we pick to constrain the changes in end members over the 20-year144

Argo period. In particular, it is important to ensure that the major trend of poleward migration in145

the upwelling CDW water mass is not primarily a product of a substantial warming in the AABW146

end member, which is not captured by a AABW ∆T value that is too low. Our methodology for147

isolating the 20-year source water change (discussed in Section 5.5) gives an AABW ∆T value of148

0.077. As we discuss, this is consistent with the range of observed rates of AABW warming. Here149

we repeat the analysis, but this time assume a very high AABW ∆T value of 0.16◦C - at the150

upper-extreme of the observed warming rate range. We re-classify the water mass distribution,151

using an otherwise identical method to Section 5.3. We then re-train the ML model on this output,152

and re-calculate the layer thickness changes from Figure 5. These are shown in Figure S11. We153

also re-compute the EOF analysis and show this in Figure S12.154
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Perturbing ∆ Values Additionally, we perform some perturbation experiments on the chosen155

∆ values to determine to what extent poleward migration of CDW is sensitive to the choice of156

these values. We compute the standard deviation of the ∆ values (as described in Section 5.5),157

and simultaneously perturb temperature and salinity for every water mass by 1 standard deviation158

in each direction. We then repeat the method in exactly the same way, training the RF model159

on the output of the classification with the perturbed ∆ values. Figure S13 shows that poleward160

migration of CDW remains the first EOF of the CDW layer thickness timeseries from Argo data161

in both perturbation scenarios.162

S3.1.2 Training the ML Model on the Climatology Dataset163

We also train a ML model on the output of the water mass classification in the GLODAP clima-164

tology dataset. This model is identical to that described in the main manuscript, except that it is165

trained on the GLODAP climatology OMP output described in Section 5.1. There is therefore no166

consideration of early and late periods, ∆ values, or how end members may have changed during167

the 20-year Argo period that the data is applied to. The output of this model provides a baseline168

with which to compare our variable-end member model.169

We show the layer thickness change derived from the climatology model applied to Argo data170

in Figure S14. Comparing with equivalent Figure 5 in the main manuscript reveals that there171

is very little change in the dominant trends between the two models. Likewise, we repeat the172

EOF analysis on the CDW layer thickness time series in Figure S15, and find that the poleward173

migration in CDW is still the dominant mode of non-seasonal variability.174

This has a variety of important implications. Firstly, the high degree of agreement between the175

two models suggests that we don’t need much spatial coverage to recover most of the water mass176

distribution and trends; the model in the main manuscript is trained on individual GLODAP lines177

(shown in Figure 1), whilst the one we show here is trained on the full 1◦by 1◦climatology grid with178

58 vertical levels. Secondly, it implies that the principal trends in water mass distribution that we179

document in the main manuscript have a low degree of sensitivity to changing end members and180

the addition of ∆ values. This is a useful indicator that the trends which we observe are not in181

any way the product of the use of ∆ values.182

7



DSW AASW STCW

500m

250m

1000m

0

0.2

0.4

0.6

0.8

1

Figure S1: Additional samples of water mass classification output in the GLODAP climatology
(’mean-state’), for DSW, AASW, and STCW at a range of depths.
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a) DSW (250-1000m mean) b) DSW+AABW (250-1000m mean)
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Figure S2: Additional samples of DSW and DSW+AABW output from the GLODAP climatology
(’mean-state’) water mass classification, showing the principal sites of DSW formation on the
continental shelf. The plots show the mean concentration within the depth range 250-1000 m.
Low concentrations are removed from the visualisation.
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Figure S3: Additional samples of water mass classification output in the GLODAP climatology
(’mean-state’), for SAMW1, SAMW2, and NADW at a range of depths.
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AASW at Surface

Figure S4: Concentrations of AASW at the surface in the GLODAP climatology (’mean-state’)
water mass classification.
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CDW AABW
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Sample Output: 2008 I06S Line (30oE)  
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Figure S5: Additional sample of water mass classification along the I06S line.
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CDW AABW
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Sample Output: 2007 I08S Line (80-100oE)  
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Figure S6: Additional sample of water mass classification along the I08S line.
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CDW AABW
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Sample Output: 2007 P18 Line (100-120oW)  
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Figure S7: Additional sample of water mass classification along the P18 line.
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CDW AABW (+ DSW)

SAMWs AAIW

m20yr-1

Figure S8: As for Figure 5, but showing the 20-year linear trend in integrated layer thickness.
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CDW AABW (+ DSW)

SAMWs AAIW

Figure S9: Absolute layer thicknesses in Argo data to accompany the changes shown in Figure 5,
averaged over the 20-year period.
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a CDW-AABW mixing: East Antarctica

CDW-AABW mixing: zonal mean

CDW-AABW mixing anomaly

b

c

Figure S10: Mixing between CDW and AABW, calculated as the product of the OMP-derived
CDW and AABW water mass fractions. Panel a) shows the longitudinal distribution across East
Antarctica of the 0.08 mixing threshold contour for the early period (2004–2007 mean) and the late
period (2021–2024 mean), illustrating the spatial extent of regions with relatively intense mixing.
Panel b) shows the zonal mean mixing contours in the East Antarctic and Weddell Sea sectors
for threshold values of 0.04, 0.10, and 0.15, highlighting the vertical and meridional structure of
mixing intensity. Panel c) shows depth profiles of mean CDW–AABW mixing for discrete latitude
bands, showing the vertical change in mixing strength. Together, these results indicate a modest
southward migration of the primary mixing region over the study period, with no significant
enhancement in mixing strength; the zonal mean and depth profiles instead generally suggest a
slight decline in maximum mixing values (with the exception of a small increase in the 55-60◦S
band at mid-depths).
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CDW AABW (+ DSW)

SAMWs AAIW

ML Model With Extreme AABW Warming

Figure S11: As for Figure 5, but using an RF model trained on a classification dataset in which
an AABW ∆T value of 0.16◦C is used.
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ML Model With Extreme AABW Warming: 
EOF 1st

Figure S12: As for Figure 7, but using an RF model trained on a classification dataset in which an
AABW ∆T value of 0.16◦C is used. Note that only the first EOF mode and principal component
are shown.
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EOF 1st:
+1 std perturbation of ∆ values 

EOF 1st:
-1 std perturbation of ∆ values 

Figure S13: As for Figure 7, but using an RF model trained on a classification dataset in which
∆T and ∆S values are perturbed by 1 standard deviation in both directions. Note that only the
first EOF mode and principal component are shown.
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CDW AABW (+ DSW)

SAMWs AAIW

Climatology ML Model

Figure S14: As for Figure 5, but using an RF model trained on the water mass classification from
the GLODAP climatology (’mean-state’).
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Climatology ML Model: EOF 1st

Figure S15: As for Figure 7, but using an RF model trained on the water mass classification
from the GLODAP climatology (’mean-state’). Note that only the first EOF mode and principal
component are shown.
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OMP Classification Without Tracers 

Figure S16: As for Figure 3, but using an OMP water mass classification in the GLODAP clima-
tology which uses just temperature and salinity.

23



Sensitivity Testing at 0oLongitude
STCW SAMW1 SAMW2

NADW DSW CDW

AASW AAIW AABW

ST
CW

SA
MW

s
DS

W
AA

SW AA
IW

CD
W

 + 
NA

DW
AA

BW

ST
CW

SA
MW

s
DS

W
AA

SW AA
IW

CD
W

 + 
NA

DW
AA

BW

ST
CW

SA
MW

s
DS

W
AA

SW AA
IW

CD
W

 + 
NA

DW
AA

BW

∆ W
ate

r M
as

s F
rac

tio
n

∆ W
ate

r M
as

s F
rac

tio
n

∆ W
ate

r M
as

s F
rac

tio
n

0.004

-0.008

0

0.06

0

-0.04

0.010

0

-0.006

0.00015

0

-0.00010

0.001

0

-0.001

0

0.2

-0.2

0.06

-0.06

0

0.002

-0.004

0

0.2

0

-0.2

Figure S17: Sensitivity testing of the climatological OMP solution at 0◦E. For each water mass,
the properties of the source water are approximated by taking the 1000 grid points of the highest
relative fraction in the original climatological OMP solution. Within this ’source water’ mask,
the standard deviation of each variable is calculated and used as a perturbation to investigate
the sensitivity of the solution to end member definitions. The results shown here are the result
of the simultaneous perturbation of the solution by 1 standard deviation in all variables (i.e. the
STCW panel shows just the impact of varying the STCW end-member definition of temperature,
salinity, oxygen, nitrate, phosphate, and alkalinity). The boxplots show the median, iter-quartile
range, and 1.5* the inter-quartile range of the distribution of the point-wise difference between
the non-perturbed and perturbed solutions.

24



Sensitivity Testing at 90oLongitude
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Figure S18: As for Figure S17, but for 90◦E.
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Sensitivity Testing at 180oLongitude
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Figure S19: As for Figure S17, but for 180◦E.
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Sensitivity Testing at 240oLongitude
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Figure S20: As for Figure S17, but for 240◦E.
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Sensitivity Testing of Weights at 0oLongitude
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Figure S21: As for Figure S17, but testing the sensitivity of the OMP solution to perturbations in
the weighting matrix. Each panel shows the impact on the solution of reducing the relative weight
of each variable by 50%.
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a) Zonal-meanArgo Salinity Anomaly b) Zonal-mean Argo Temperature Anomalypsu oC

Figure S22: Zonal mean salinity and temperature changes in the Southern Ocean over the last 20
years, from the RG gridded Argo dataset. Panels a) and b) show a composite anomaly for salinity
and temperature change respectively, calculated as the difference in means between the first and
last 3 years of the 20-year Argo dataset.
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Figure S23: Comparison between water mass classification with the GLODAP climatology vs.
from the machine learning model applied to Argo data.
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Figure S24: Uncertainty estimation in the application of the RF model to Argo data. Panels show
the normalised variance across the 5 fold models at each grid point (see Section 5.6), for a range
of water masses at a range of depths.
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