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S1 Supplementary Information for Methods Section
S1.1 Basic OMP Machinery

We can write the series of linear mixing equations in vector form for n SWTs, where z; is the
relative fraction of SWT;, Vf WT is the vector of SWT; end members, and VO is the vector of
observed values with a residual vector r:

n
in*VfWT =V ¢ (1)
i=1

The size of the vectors equals the number of variables used in the analysis. Both the end
member vector and observed values vector are normalised by subtracting the mean and dividing
by the standard deviation of the end members, such that:

VnormSWT _ (VZSWT _ VSWT)/V§WT (2)

i =

Vnorm{" = (VO _ yObs) jyObs (3)
Where VO and VI are the mean and standard deviation vectors across the whole data
sample, respectively. The analysis also includes a series of user-defined weights, W, to account for
variation in the precision of measurement of each variable, or confidence in end-member definition.
Our weighting matrix can be found in Table S1.2. The final cost function (i.e. the quantity to be
minimised by the least-squares solver) can be written in terms of the residual vector r:

n
r=Wx (Z z; % Vnorm? W7 — VnormObS> (4)
i=1
This is then solved in a least-squares optimisation to minimise r, and only solutions in which
x; > 0 are accepted so that the analysis is 'non-negative’. We can write the water mass solution
vector x, in terms of the cost function in Equation 4, where argmin specifies the value of x that
minimises the quantity in square brackets:

n
X = argmin lW * (Z z; * Vnorm?"W7T — VnormObS)] (5)
i=1
As we state in Section 5.3, we opt to model the semi-conservative parameters NO and PO.
These variables can be written as:

PO = 0y + 1132, PO, (6)
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NO =0, + " L NOs3 (7)

N03
"po,

Where rtj denotes a user-specified exchange ratio of parameter a with respect to b. In this
application, rt makes use of the Redfield ratios: we specify the rt109204 value as -170 and the rtgg ?

value as 16. These are the default values in the original Karstensen & Tomczak [1] implementation.

S1.2 Additional Information on the Selection of End Members and
Weighting Practices

We start with the original Temperature-Salinity end members from the Southern Ocean OMP from
Pardo et al. [2], and make some minor tweaks to better fit the parameter space of our GLODAP
data. These are shown in Figure 1. We use a K-D tree to find the nearest 1000 data points to the
temperature and salinity end member pair, selecting the median value from this sample as the end
member for each tracer. The full set of end members used is shown in Table S1.2. We elect to use
the parameter weights shown in Table S1.2. These are the default values in the documentation
from Shrikumar et al. [3], and relate to the uncertainties surrounding the measurement of each
variable. In practice, these weights determine the strength of the constraint on each variable: i.e.
the extent to which residuals in that variable will be tolerated in the solving of the least-squares
equations. Where measurement uncertainty is relatively low, then the weight is increased to force
lower residuals in that equation at the expense of variables with higher degrees of uncertainty. We
define weights for every variable, for which the solver uses a hard mass constraint (which prioritises
returning a residual of 0 in the mass equation). Further details can be found in Shrikumar et al.
[3].

As described in section 5.5, we use a spatial mask to calculate A values, which we define as the
change in the properties of the grid cells with the highest concentration of each water mass in the
time-mean 20-year Argo dataset. We judge 1000 grid points to be a sufficient sample to describe
the mean properties of the source water, but it is possible that this approach somewhat obscures
any large changes in the distribution of the core of the source water. By definition, the spatial
mask as defined in the 20-year mean encompasses both early and late distributions of each water
mass; it is merely an approximation of the 3D distribution of the source water from a time-mean
perspective. It is worth also noting that the definition of AABW A values is confined to the top
2000 m (the maximum depth range of Argo floats), such that it may not capture changes in the
core of the water mass. However, as we describe in Sections 4 and S3.1.1, the main findings of the
study are robust to significant perturbations in these values.

In Table S1.2 we show the full set of A values discussed in Section 5.5. We also show how
zonal-mean temperature and salinity have changed in the Southern Ocean during the 20-year Argo
period via the composite anomalies shown in Figure S22.

S1.3 The Importance of Tracers in the OMP Solution

To demonstrate the importance of tracers in the OMP-based classification of water masses, we
show a sample of an OMP classification in the GLODAP climatology using only temperature
and salinity (see Figure S16). This shows that the analysis struggles to differentiate between end
members which are similar in temperature-salinity space. Specifically and most importantly for
the focus of this study, the classification cannot distinguish between CDW, NADW, and AABW
with any real degree of skill. As we state in Section 5.6, our method enables skillful classification
in the absence of these tracers (provided that we have some tracer data to conduct an initial
classification with which to train on). Figure S16 demonstrates that we cannot assess changes
in water masses in the gridded Argo data from an OMP framework, without at least giving it a
prior. We acknowledge that similar levels of skill may be achievable without machine learning, if
we were to introduce a ’a-priori’ weighting matrix into the OMP linear mixing equations.



Source Water End Members
Source Temp. Salinity Oxygen Nitrate Phosphate | Total
Water (°C) (Psu) (umolkg™ )| (umolkg™")| (umolkg™')| Alkalinity
Type (umolkg ™)
STCW 13.50 35.30 214.49 8.63 £1.96 | 0.72 £0.15 | 2320.72
+2.33 +0.17 +11.8 +10.82
SAMW1 8.75 £2.81 | 34.58 242.78 15.75 1.15 £0.28 | 2284.11
+0.16 +26.05 +4.15 +12.49
SAMW2 5.00 £1.18 | 34.14 310.21 20.00 1.43 £0.23 | 2284.86
+0.13 +13.88 +3.75 +13.49
DSW -1.91 34.82 282.86 30.42 2.15 £0.16 | 2344.32
+1.13 +0.14 +25.32 +2.24 +8.66
AASW -1.85 33.82 326.26 26.13 1.84 £0.21 | 2276.65
+0.51 +0.16 +16.18 +2.69 +17.58
AAIW 3.13 £0.39 | 34.14 291.17 26.34 1.84 £0.09 | 2284.95
+0.03 +12.28 +1.32 +3.373
NADW 2.50 £0.24 | 34.83 217.01 26.48 1.79 £0.12 | 2341.39
+0.04 +9.39 +1.29 +4.00
CDW 1.00£0.08 | 34.74 206.12 31.06 2.16 £0.07 | 2356.31
+0.01 +10.02 +0.73 +4.12
AABW -0.50 34.64 252.93 32.41 2.24 +£0.04 | 2355.21
+0.14 +0.01 +6.81 +0.57 +1.52
Table S1: End member values used for each of the 9 source waters used in the water mass

classification. Uncertainty values are calculated retroactively as one standard deviation within the
1000 grid points of highest relative water mass fraction, taken to approximate the properties of
the source water. These values are used in the sensitivity testing in Section S1.4.

Parameter Weights

Temp.

Salinity

Oxygen

Nitrate

Phosphate

Alkalinity

24

24

7

2

2

2

Table S2: Relative weights used in the water mass classification for each of the 6 parameters

considered.

Source Water A Values

Source Water Type A Temp. (°C) A Salinity (Psu)
STCW 0.024 0.0166
SAMW1 0.181 0.0217
SAMW2 0.047 0.0092
DSW 0.127 -0.0001
AASW 0.091 0.0039
AATW 0.096 -0.0059
AABW 0.077 0.0069

Table S3: End member A values used for each of the 9 source

classification.

waters used in our water mass
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S1.4 Sensitivity Testing of the OMP Solution

Figures S17, S18, S19, and S20 show the results of end-member sensitivity testing in the clima-
tological OMP solution at 0, 90, 180, and 240°E. Firstly, for each water mass, we define a source
water mask as the 1000 data points with the highest fraction according to the original classifi-
cation. We compute the standard deviation for each variable within this source water mask and
use this as a perturbation to the original end members. The output shown in Figures S17, S18,
S19, and S20 is the result of a simultaneous perturbation of 1 standard deviation in each variable.
These values are shown in Table S1.2.

In almost all cases, the median impact of this perturbation is extremely close to 0. In the most
sensitive cases, the inter-quartile range shows a change in water mass fractions on the order of
5-10%. This can be seen in the CDW/AABW perturbations at 0°E and in the SAMW1/SAMW?2
perturbations at 90, 180, and 240°E. Unsurprisingly, perturbations to a given end member typically
cause the greatest impact in fractions on itself and the end member closest to it in parameter space.
For example, the change in CDW fractions that is induced by perturbing the CDW end member
leads to an almost equal and opposite change in AABW (Figure S17). Likewise, when the SAMW1
end members are perturbed, the change in SAMWs fractions often induces a similar magnitude
change of opposite sign in AAIW.

Figure S21 shows the impact of perturbing the weighting matrix on the OMP solution. Here,
we reduce the relative weighting of each variable sequentially by 50%, and compare the change in
the solution. Compared with perturbing the end members, the solution with perturbed weights is
relatively insensitive to variability in the weights; the highest AW ater MassFraction values are
only on the order of + 0.6%. We show a sample of the output for just 0°E, but the impact is of
similar order of magnitude elsewhere.

S1.5 Supplementary Information for Validation of the ML Model

Figure S23 shows a sample comparison between the output of the original GLODAP and algorithm-
derived Argo water mass distribution. In Figure S24, we show the output of the uncertainty
calculations used in the application of the RF model to the RG Argo gridded data. The uncertainty
is calculated on a grid-point basis as the variance across the 5-fold ensemble members, normalised
by the 99th percentile. This is shown for a variety of water masses at a number of depth levels.

Exclusion of water masses from R? values in RF model verification In Table 1, we
show the results of the out-of-distribution testing of the RF via the exclusion of repeat sections.
As we state in Section 5.6, there are some cases in which we remove the R? contribution from a
particular water mass from the final R? value shown in the table. These are cases in which the
relative fraction of a particular water mass is effectively 0 and the model exhibits no meaningful
skill in prediction. In the Drake Passage (line SR01), we remove the low R? values associated
with both NADW and STCW. Here, relative fractions of each are very close to 0 at all observed
data points. In line P06, which is a zonal section across the Pacific at 30°S, we exclude the low
R? values associated with both NADW and DSW. We do the same for the meridional section in
the Pacific (line P18). In the Indian Ocean, the R? values associated with DSW and AASW are
excluded from the zonal cross section in line 105, whilst we exclude NADW from the meridional
section in line I07. In all such cases, the relative fraction of the water mass in all data points along
that section is negligible. Finally, we also exclude the R? contribution from STCW and NADW
in the zonal section across west Antarctic to the Ross Sea (line S04P), with the same reasoning.

S2 Supplementary Information for Results Sections

S2.1 Additional Samples of Water Mass Classification Output

Figures S1 and S3 show samples of DSW, AASW, STCW, SAMWs and NADW from the clima-
tology / 'mean-state’ GLODAP classification at a range of depths. Figure 4 shows the fractions



Expocodes used in Analysis and Validation

Location Line(s) Expocode(s)

Weddell Sea Al12, A21 06AQ20060825
06AQ20080210
35MF20080207
740H20081226
740H20090307
29HE20190406

South of Tasmania SR0O3 09AR20071216
09AR20080322
096020180111

Drake Passage SRO1 74JC20151217
740H20090203
74JC20181103

West Pacific Ocean P15 095520090203
096U20160426
49NZ20071122

Pacific Ocean (zonal) P06 318M20091121
320620170703
320620170820
49NZ20170208

East Pacific Ocean P18, P17 33R0O20071215
33R0O20161119
49NZ20170208

East Indian Ocean 108 33RR20070204
33RR20080204
33RR20160208

Central Indian Ocean 107 33R0O20180423
49N720191229

West Indian Ocean 106 325020190403
Indian Ocean (zonal) 105 33RR20090320
Pacific Ocean (zonal) S04P 320620180309

Table S4: List of all expocodes used in each of the location/line groupings using in the validation
of the machine learning model in Section 5.6.
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of AASW at the surface. These compliment the outputs in Figure 2. We also provide maps of
the DSW and DSW + AABW distribution in the upper 1000 m of the mean-state classification in
Figure S2. Our analysis successfully identifies the principal known locations of DSW production
(Weddell and Ross Seas, Adelie Coast, Prydz Bay).

We show additional sample output from the water mass classification along repeat GLODAP
lines. Figure S5 shows the classification along the I06S line in 2008, Figure S6 shows the classi-
fication along the I08S line in 2007, and Figure S7 shows the classification along the P18 line in
2007. The panels are plotted as scatter plots of point-wise observations.

We also provide maps of the absolute layer thicknesses, derived from the ML model applied
to the Argo data. These are shown to complement the thickness change discussion in Section
3.2. Figure S9 shows the averaged 20-year integrated layer thickness for CDW, AABW+DSW,
SAMWSs and AATW.

S2.2 Layer Thickness Calculations

In Section 3.2, we compute the layer thicknesses from the water mass classification output. The
layer thickness at each grid point can be described as H, where D is depth, WM F' is the water
mass fraction and p is the total number of vertical levels:

p—1
D.yy—D., D,-D,_
Hij=>" (( +1 + 1) X WMFMZ) (8)

2 2

z=1

We can then approximate the volume of each water mass at any given grid point, using an
approximation for the surface area of each grid square:

Vij = Hi,j X R2 X AN X AP x COS((I)) (9)

Where R is the radius of the earth, A is longitude and @ is latitude. The total water mass
volume in any given domain can therefore be estimated by integrating in both directions, such
that Viyar = Z?:o Z;-n:o v;,5, where n and m are the total number of meridional and zonal indices,
respectively.

S3 Supplementary Information for Discussion and Conclu-
sions Section

S3.1 Sensitivity Testing of the Poleward Expansion of CDW
S3.1.1 Varying A Values

Extreme AABW Warming In this section, we test the sensitivity of our conclusions to vari-
ations in the delta values that we pick to constrain the changes in end members over the 20-year
Argo period. In particular, it is important to ensure that the major trend of poleward migration in
the upwelling CDW water mass is not primarily a product of a substantial warming in the AABW
end member, which is not captured by a AABW AT value that is too low. Our methodology for
isolating the 20-year source water change (discussed in Section 5.5) gives an AABW AT value of
0.077. As we discuss, this is consistent with the range of observed rates of AABW warming. Here
we repeat the analysis, but this time assume a very high AABW AT value of 0.16°C - at the
upper-extreme of the observed warming rate range. We re-classify the water mass distribution,
using an otherwise identical method to Section 5.3. We then re-train the ML model on this output,
and re-calculate the layer thickness changes from Figure 5. These are shown in Figure S11. We
also re-compute the EOF analysis and show this in Figure S12.
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Perturbing A Values Additionally, we perform some perturbation experiments on the chosen
A values to determine to what extent poleward migration of CDW is sensitive to the choice of
these values. We compute the standard deviation of the A values (as described in Section 5.5),
and simultaneously perturb temperature and salinity for every water mass by 1 standard deviation
in each direction. We then repeat the method in exactly the same way, training the RF model
on the output of the classification with the perturbed A values. Figure S13 shows that poleward
migration of CDW remains the first EOF of the CDW layer thickness timeseries from Argo data
in both perturbation scenarios.

S3.1.2 Training the ML Model on the Climatology Dataset

We also train a ML model on the output of the water mass classification in the GLODAP clima-
tology dataset. This model is identical to that described in the main manuscript, except that it is
trained on the GLODAP climatology OMP output described in Section 5.1. There is therefore no
consideration of early and late periods, A values, or how end members may have changed during
the 20-year Argo period that the data is applied to. The output of this model provides a baseline
with which to compare our variable-end member model.

We show the layer thickness change derived from the climatology model applied to Argo data
in Figure S14. Comparing with equivalent Figure 5 in the main manuscript reveals that there
is very little change in the dominant trends between the two models. Likewise, we repeat the
EOF analysis on the CDW layer thickness time series in Figure S15, and find that the poleward
migration in CDW is still the dominant mode of non-seasonal variability.

This has a variety of important implications. Firstly, the high degree of agreement between the
two models suggests that we don’t need much spatial coverage to recover most of the water mass
distribution and trends; the model in the main manuscript is trained on individual GLODAP lines
(shown in Figure 1), whilst the one we show here is trained on the full 1°by 1°climatology grid with
58 vertical levels. Secondly, it implies that the principal trends in water mass distribution that we
document in the main manuscript have a low degree of sensitivity to changing end members and
the addition of A values. This is a useful indicator that the trends which we observe are not in
any way the product of the use of A values.



Figure S1: Additional samples of water mass classification output in the GLODAP climatology
(‘mean-state’), for DSW, AASW, and STCW at a range of depths.



b) DSW+AABW (250-1000m mean)
N

a) DSW (250-1000m mean)
0

Figure S2: Additional samples of DSW and DSW+AABW output from the GLODAP climatology
(‘mean-state’) water mass classification, showing the principal sites of DSW formation on the
continental shelf. The plots show the mean concentration within the depth range 250-1000 m.

Low concentrations are removed from the visualisation.



Figure S3: Additional samples of water mass classification output in the GLODAP climatology
(‘mean-state’), for SAMW1, SAMW2, and NADW at a range of depths.
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AASW at Surface

Figure S4: Concentrations of AASW at the surface in the GLODAP climatology (‘mean-state’)
water mass classification.
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Sample Output: 2008 106S Line (30°E)
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Figure S5: Additional sample of water mass classification along the 106S line.
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Sample Output: 2007 108S Line (80-100°E)

AABW
04 0 ) 2
off oo AR EEOET B s B
~1000 ~1000 : - ,H.-.’:-lq"l
"y MH,HP.'I
- EEEE
—2000 - —2000 1 o
, x b
~3000 -3000
~4000 -4000
~5000 1 ~5000

-1000 -1000

~2000 -2000
-3000 ~3000

—4000 ~4000

—5000 -5000

-1000 ~1000

—2000 —2000
—3000 -3000

—4000 ~4000

~5000 -5000

Figure S6: Additional sample of water mass classification along the 108S line.
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Sample Output: 2007 P18 Line (100-120°W)
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Figure S7: Additional sample of water mass classification along the P18 line.
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Figure S8: As for Figure 5, but showing the 20-year linear
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a CDW-AABW mixing: EastAntarctica € CDW-AABW mixing anomaly
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Figure S10: Mixing between CDW and AABW, calculated as the product of the OMP-derived
CDW and AABW water mass fractions. Panel a) shows the longitudinal distribution across East
Antarctica of the 0.08 mixing threshold contour for the early period (2004-2007 mean) and the late
period (2021-2024 mean), illustrating the spatial extent of regions with relatively intense mixing.
Panel b) shows the zonal mean mixing contours in the East Antarctic and Weddell Sea sectors
for threshold values of 0.04, 0.10, and 0.15, highlighting the vertical and meridional structure of
mixing intensity. Panel ¢) shows depth profiles of mean CDW-AABW mixing for discrete latitude
bands, showing the vertical change in mixing strength. Together, these results indicate a modest
southward migration of the primary mixing region over the study period, with no significant
enhancement in mixing strength; the zonal mean and depth profiles instead generally suggest a
slight decline in maximum mixing values (with the exception of a small increase in the 55-60°S
band at mid-depths).
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ML Model With Extreme AABW Warming

Figure S11: As for Figure 5, but using an RF model trained on a classification dataset in which
an AABW AT value of 0.16°C is used.
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ML Model With Extreme AABW Warming: -
EOF 1st 0
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Figure S12: As for Figure 7, but using an RF model trained on a classification dataset in which an
AABW AT value of 0.16°C is used. Note that only the first EOF mode and principal component
are shown.
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EOF 1st; EOF 1st
+1 std perturbation of A values -1 std perturbation of A values

7

Figure S13: As for Figure 7, but using an RF model trained on a classification dataset in which
AT and AS values are perturbed by 1 standard deviation in both directions. Note that only the
first EOF mode and principal component are shown.
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Figure S14: As for Figure 5, but u
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Climatology ML Model: EOF 1st
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Figure S15: As for Figure 7, but using an RF model trained on the water mass classification
from the GLODAP climatology ('mean-state’). Note that only the first EOF mode and principal
component are shown.
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OMP Classification Without Tracers

CDW +NADW SAMWSs AABW +DSW

Figure S16: As for Figure 3, but using an OMP water mass classification in the GLODAP clima-
tology which uses just temperature and salinity.



Sensitivity Testing at 0°Longitude

STCW SAMW1 SAMW2

004 T ’JW 006 T 0010
o — T

HH
—
L ]

'_
o

] __.

AWater Mass Fraction

= - e 0 -
0008 - 004 - 0006
NADW DSW CDW
000015 T i 02

AWater Mass Fraction
S
HH
| —
L
o
HH
—
—
| I
o
{1
H
1
|

0001 @

000010

AASW AAIW AABW

006 - -

AWater Mass Fraction
th
—

Figure S17: Sensitivity testing of the climatological OMP solution at 0°E. For each water mass,
the properties of the source water are approximated by taking the 1000 grid points of the highest
relative fraction in the original climatological OMP solution. Within this ’source water’ mask,
the standard deviation of each variable is calculated and used as a perturbation to investigate
the sensitivity of the solution to end member definitions. The results shown here are the result
of the simultaneous perturbation of the solution by 1 standard deviation in all variables (i.e. the
STCW panel shows just the impact of varying the STCW end-member definition of temperature,
salinity, oxygen, nitrate, phosphate, and alkalinity). The boxplots show the median, iter-quartile
range, and 1.5% the inter-quartile range of the distribution of the point-wise difference between
the non-perturbed and perturbed solutions.
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Sensitivity Testing at 90°Longitude
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Figure S18: As for Figure S17, but for 90°E.
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Sensitivity Testing at 180°Longitude
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Figure S19: As for Figure S17, but for 180°E.



Sensitivity Testing at 240°Longitude
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Figure S20: As for Figure S17, but for 240°E.
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Figure S21: As for Figure S17, but testing the sensitivity of the OMP solution to perturbations in
the weighting matrix. Each panel shows the impact on the solution of reducing the relative weight
of each variable by 50%.
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Figure S22: Zonal mean salinity and temperature changes in the Southern Ocean over the last 20
years, from the RG gridded Argo dataset. Panels a) and b) show a composite anomaly for salinity
and temperature change respectively, calculated as the difference in means between the first and
last 3 years of the 20-year Argo dataset.
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Figure S23: Comparison between water mass classification with the GLODAP climatology vs.
from the machine learning model applied to Argo data.
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Figure S24: Uncertainty estimation in the application of the RF model to Argo data. Panels show
the normalised variance across the 5 fold models at each grid point (see Section 5.6), for a range
of water masses at a range of depths.
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